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Shift-Variant Blind Deconvolution Using a Field of Kernels∗
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SUMMARY Blind deconvolution (BD) is the problem of restoring
sharp images from blurry images when convolution kernels are unknown.
While it has a wide range of applications and has been extensively studied,
traditional shift-invariant (SI) BD focuses on uniform blur caused by ker-
nels that do not spatially vary. However, real blur caused by factors such
as motion and defocus is often nonuniform and thus beyond the ability of
SI BD. Although specialized methods exist for nonuniform blur, they can
only handle specific blur types. Consequently, the applicability of BD for
general blur remains limited. This paper proposes a shift-variant (SV) BD
method that models nonuniform blur using a field of kernels that assigns a
local kernel to each pixel, thereby allowing pixelwise variation. This con-
cept is realized as a Bayesian model that involves SV convolution with the
field of kernels and smoothing of the field for regularization. A variational-
Bayesian inference algorithm is derived to jointly estimate a sharp latent
image and a field of kernels from a blurry observed image. Owing to the
flexibility of the field-of-kernels model, the proposed method can deal with
a wider range of blur than previous approaches. Experiments using images
with nonuniform blur demonstrate the effectiveness of the proposed SV BD
method in comparison with previous SI and SV approaches.
key words: blind deconvolution, deblurring, shift-variant, variational
Bayes

1. Introduction

Blind deconvolution (BD) for deblurring is one of the most
extensively studied topics in image processing [1], [2]. Es-
sentially, blurring of images is modeled as convolution of
images and kernels. Deconvolution is the inverse of this
process, which effectively restores sharp images from blurry
ones. The objective of BD is to perform deconvolution
when kernels are unknown, which is often the case in prac-
tice [1]. Since undesirable blur is quite common in the
real world, BD has a wide range of applications, e.g., mo-
bile photography [3], computational photography [4], com-
puter vision [5], astronomical imaging [6], and biomedical
imaging [7].

Traditional shift-invariant (SI) BD assumes uniform
blur produced by kernels that do not vary spatially across
images, such as the example in Fig. 1 (b). However, in re-
ality blur kernels often spatially vary, producing nonuni-
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form blur [1]. For example, independently moving ob-
jects produce different effects of motion blur, and objects
distant from a camera are more subject to defocus blur than
close objects. Blur is often more complex since both mo-
tion and defocus blur can simultaneously occur, as shown
in Fig. 1 (c). In such cases, SI BD methods fail in kernel
estimation and also in deconvolution [1]. Although special-
ized BD methods for nonuniform blur have been recently
developed, they can only handle certain types of blur, e.g.,
motion, defocus, or locally uniform blur [2]. Consequently,
the applicability of BD to general blurry images remains
limited.

In this paper, we propose a shift-variant (SV) BD
method that can handle nonuniform blur regardless of type.
The idea is to model a spatially variant kernel as a field of
kernels that assigns a local blur kernel to each image pixel.
By allowing different kernels among pixels, we can flexi-
bly represent nonuniform blur without making assumptions
about its type. To alleviate ill-posedness of the SV BD prob-
lem, we also introduce smoothing of the field, which suffi-
ciently regularizes kernel estimation without losing flexibil-
ity. Under this model, we estimate both a sharp latent image
and the field of kernels from a blurry image using techniques
of variational Bayes (VB). As demonstrated through exper-
iments, the flexibility of the proposed field-of-kernels model
enables BD to be applied to complex blur beyond the ability
of previous SI and SV approaches.

The rest of this paper is organized as follows. First,
we review previous work related to BD in Sect. 2. Next,
we describe the construction of a Bayesian model with a
field of kernels in Sect. 3, and then develop an SV BD al-
gorithm using VB techniques. Numerical implementation
of the algorithm is presented in Sect. 5. In Sect. 6, we show
experimental results to demonstrate the effectiveness of our

Fig. 1 (a) A sharp image as a reference. (b) Uniform blur assumed by
SI BD, where both the foreground and the background are affected by the
same blur. (c) Nonuniform blur assumed by SV BD, where the foreground
and the background are affected by motion and defocus blur, respectively.
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method. Finally, we conclude this paper with comments on
future work in Sect. 7.

2. Related Work

2.1 Shift-Invariant and Variant Blind Deconvolution

Throughout the history of image processing, a large body
of literature has been devoted to BD. Generally, SI BD as-
sumes globally uniform blur caused by a kernel that does not
vary between pixels. While this assumption has facilitated
development of various BD methods by simplifying convo-
lution models, it only holds for limited instances of blur in
reality [1]. When the assumption is violated, SI BD cannot
accurately estimate kernels, and often produces ringing arti-
facts that even degrade the quality of blurry images [8].

Recently, SV BD has been investigated to deal with
nonuniform blur. One approach to the SV BD problem is
segmentation-based BD [9]–[13], which performs SI BD in
each image segment, assuming locally uniform blur. Al-
though this assumption is more realistic than that of SI BD,
blur in often more complex and nonuniform even in each
segment. For example, motion involving rotation and de-
focus on surfaces nonparallel to an image plane are typical
sources of smoothly varying blur [1], [14], [15]. Such blur is
difficult to handle for segmentation-based BD since smooth
variation cannot be approximated well with the combina-
tion of a small number of kernels. While interpolation
can be used to describe smooth variation [16], its accuracy
still depends on the selection of kernels as samples. An-
other problem with segmentation-based BD is that segmen-
tation itself becomes inaccurate when edges are corrupted
by blur [14]. Although soft-segmentation alleviates this lim-
itation by ambiguously assigning multiple kernels to each
pixel [8], [17], [18], it still has difficulty in approximating
blur due to non-rigid motion and varying defocus [14]. In
addition, the number of segments, which is generally not
known, is usually required to be specified for each image
as a parameter in segmentation-based BD [14]. Compared
with segmentation-based models that allow variation of ker-
nels only between segments, the proposed field-based model
is more fine-grained and can describe kernels that vary be-
tween pixels. Therefore, the proposed method can deal with
a wider range of nonuniform blur, including smoothly vary-
ing blur while avoiding difficulties in segmentation.

Another approach to SV BD is to parameterize ker-
nels with a small number of parameters, assuming specific
blur types, e.g., motion blur [6], [11], [19]–[23] or defo-
cus blur [15], [24]–[27]. A drawback of such methods is
that they can only handle targeted blur types. For example,
methods designed for motion blur due to camera shake [20]
cannot deal with defocus blur, and motion blur due to mov-
ing objects. Generally, when we try to deblur an image,
we do not know what type of blur is present in the im-
age; thus, we cannot use parametric methods unless we
identify the type in advance, which is not a trivial task.
Furthermore, multiple types of blur often occur in a sin-

gle image. Although a few methods have been proposed to
handle different blur types simultaneously by decomposing
blur [28]–[30], their performance still depends on the flex-
ibility of parameterization for each type and the accuracy
of decomposition. In contrast, the proposed method is non-
parametric and can handle general blur even when blur types
are unknown. Note that the proposed field-based methodol-
ogy does not fully conflict with the parametric approach, but
can be integrated with it by considering a field of paramet-
ric kernels instead of nonparametric kernels. Such a hybrid
approach, which seems to be effective when blur types are
known but not globally parameterizable, is one of the possi-
ble future extensions of this work.

2.2 Other Topics

(1) Variational Bayes

Recent studies on BD have shown promising results for BD
using VB techniques, which enable robust joint estimation
of kernels and images. Unlike conventional techniques such
as maximum a posteriori, VB can avoid trivial solutions in
BD [1]. In fact, it has been reported that VB methods often
outperform non-VB methods [1], [31]. Furthermore, VB al-
gorithms can automatically adjust control parameters [31],
which usually require image-dependent tuning in non-VB
algorithms, via joint estimation under a single Bayesian
model. In this paper, we also employ VB techniques to ro-
bustly estimate a field of kernels without difficult parameter
tuning.

(2) Image and Kernel Priors

As estimation of blur-free images is inherently an ill-posed
problem, successful BD depends on the choice of image pri-
ors. Various image priors that exploit properties of natural
images have been proposed for BD [31]–[34]. As our focus
is to enable flexible SV BD rather than seeking for better
image priors, we use an image prior based on total variation
(TV) that is known to be effective for VB-based BD [31].
Meanwhile, priors for kernels have been also proposed in SI
BD [2], [35]. We discuss our choice of a prior for the pro-
posed field of kernels during model construction in Sect. 3.

(3) Acceleration

Efficient implementation of BD algorithms has also been
studied. However, acceleration of SV BD is more difficult
than that of SI BD since frequency-domain techniques can-
not be directly applied [6]. As we aim at effectiveness rather
than efficiency, we leave accelerated implementation of the
proposed SV BD algorithm for future work.

(4) Multiframe

Using multiple blurry images is known to be beneficial in
BD [36]–[39]. In multiframe BD, an approach similar to
ours was taken in [7], where a SV kernel is considered as
a set of SI kernels for each pixel. However, assuming a
common scenario in biomedical imaging and taking a non-
VB approach, this method requires multiple aligned images
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and parameters to be tuned, as opposed to the proposed VB
method for general images. Recently, BD has been incorpo-
rated into superresolution (SR) [40]–[44], which primarily
aims to recover high-resolution images from one or more
low-resolution images. Although extending the proposed
SV BD methodology to multiframe BD and SR is an inter-
esting future direction, it is beyond the scope of this paper.

3. Model

We assume that we have a blurry observed image of n pixels,
and denote it by a vector y = [y1 . . . yn]T ∈ Rn. Our goal is
to recover a sharp latent image, i.e., a blur-free version of
y, denoted by x = [x1 . . . xn]T ∈ Rn. To achieve this, we
assume that each observed pixel yi is the convolution of the
latent image x and a local blur kernel with m coefficients
wi = [wi1 . . . wim]T ∈ Rm:

yi =

m∑
j=1

wi j xi⊕ j, (1)

where i⊕ j denotes the j-th coefficient in the spatial support
of the kernel at the i-th pixel. In practice, we assume that
the support is square and centered at the i-th pixel. Then,
we gather the n local kernels from all the pixels into a single
vector w = [wT

1 . . .w
T
m]T ∈ Rmn. We refer to this vector as a

field of kernels since it has one kernel at each pixel in space.
This model is a generalization of SI BD and segmentation-
based BD, in which the same kernel is assumed for the pix-
els in the whole image and in each segment, respectively.
For example, by omitting i for wi in (1), we could assume
the same kernel at all pixels and obtain the traditional SI
BD problem. Here, we do not make such a restrictive as-
sumption; thus, our field-of-kernels model is more flexible,
allowing an arbitrary kernel at each pixel.

In our BD problem, both the field of kernels the la-
tent image are unknown. Thus, we need to estimate both of
them to perform deconvolution. For this purpose, taking a
Bayesian approach, we treat all observed and latent quanti-
ties as random variables and describe their relationships as
probability distributions. In the following, we construct a
Bayesian model by assigning a distribution to each variable.
The graphical representation in Fig. 2 provides an overview
of this model.

(1) Observed Image

First, we rephrase the SV convolution model in (1) in
Bayesian terms. Here, we assume that dominant noise in
observation is zero-mean additive Gaussian, which is a stan-
dard assumption in image restoration and BD [2], and define
an elementwise Gaussian distribution on y as follows:

p(y|x,w, b) ∝
n∏

i=1

√
b exp

(
−b

2
(y − Hwx)i

2

)
, (2)

where b ∈ R is a fidelity parameter that determines the reli-
ability of the observation, and Hw ∈ Rn×n is the SV convo-
lution matrix with respect to w such that (Hwx)i equals the

Fig. 2 Our Bayesian model for shift-variant blind deconvolution.

right-hand side of (1).

(2) Latent Image

Estimation of clean images from degraded images is a well-
known ill-posed problem, i.e., we cannot identify x from y
only; thus, we need to supplement observation with addi-
tional information. Exploiting a common property of nat-
ural images, we assume that the latent image is smooth ex-
cept for edges, and minimize its variation while allowing for
large variation at a small number of pixels. We achieve this
by defining an elementwise zero-mean Laplacian distribu-
tion on the gradient magnitude of x as follows:

p(x|a) ∝
n∏

i=1

a exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−a

√√√ 2∑
k=1

(Gk x)i
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3)

where a ∈ R is a smoothness parameter that determines the
global smoothness of x, and G1,G2 ∈ Rm×m are vertical
and horizontal differentiation matrices for x, respectively.
This is basically a Bayesian version of the classic TV image
prior [31], and its usage and effectiveness have been well-
studied in the context of VB BD [31].

(3) Field of Kernels

In SI BD, it is known that kernels can be estimated even
without priors [2]. This is because, given a reasonable es-
timate of a latent image, estimating a single kernel of m
elements from an observed image of n elements is a well-
posed problem when m � n. In our SV case, however,
we have a kernel of m coefficients at each of n pixels and
thus mn unknowns for a field of kernels, which makes the
problem highly ill-posed. To overcome this ill-posedness,
we also impose a prior on the field of kernels w. While
several kernel priors have been proposed for SI BD and we
could use them for each local kernel, such priors lead to
the same problem as explicitly parameterized methods, i.e.,
a limited range of tractable blur types [2]. Instead, we as-
sume that the field of kernels is smooth, i.e., local kernels
at adjacent pixels are similar. This assumption effectively
regularizes the ill-posed SV BD problem but still allows for
kernel variation between pixels, while SI and segmentation-
based SV BD assume no variation at least locally. We real-
ize such smoothing by defining an elementwise zero-mean
Gaussian distribution on the gradient magnitudes of the field
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as follows:

p(w|z) ∝
mn∏
i=1

√
z exp

⎛⎜⎜⎜⎜⎜⎜⎝− z
2

2∑
k=1

(Fkw)i
2

⎞⎟⎟⎟⎟⎟⎟⎠ , (4)

where z ∈ R is a smoothness parameter for w, and F1, F2 ∈
R

mn×mn are horizontal and vertical differentiation matrices
for w, respectively, which take the differences of corre-
sponding coefficients between adjacent pixels; thereby, the
Gaussian reduces the variations in local kernels between
pixels, effectively promoting smoothness of the field. While
this smoothing prior is simple and not edge-preserving, it is
sufficient to enable SV BD with the field of kernels, which is
the primary purpose of this paper. Note that the field of ker-
nels is not necessarily smooth in the same manner as natural
images; for example, camera shake affects a whole image
with smoothly varying blur, where the corresponding field
has no distinct edges. In fact, edge-preserving priors such
as Laplacians make a similar assumption to segmentation-
based methods, i.e., that local kernels in each segments are
constant, which can limit the range of tractable blur types
as we discussed in Sect. 2. In addition, using such priors
generally requires complicated approximations in inference
or optimization, which have been well-studied only for nat-
ural image priors [32]. Since the main focus of this paper
is on flexible BD via the field of kernels, we just use the
simple yet effective Gaussian prior for the field of kernels,
leaving the use of more elaborate priors as a possible future
extension.

(4) Weights

For the weight-like parameters in the proposed model, i.e.,
b, a, and z, we do not have reasonable prior information;
thus, we assume noninformative uniform distributions for
these parameters, i.e., p(b), p(a), and p(z) are constant.
While such parameters require careful tuning for each im-
age in non-VB BD [31], the proposed method can automat-
ically adjust them by joint estimation via VB inference, as
described in Sect. 4.

4. Algorithm

In Bayesian BD, our objective is to find the most probable
latent image given an observed image, i.e., under the model
defined in Sect. 3, we maximize the posterior probability of
x given y to obtain a restored image x̂ as follows:

x̂ = arg max
x

p(x|y). (5)

Using Bayes’ theorem and the law of total probability, we
obtain the posterior distribution of x by marginalizing out
latent variables other than x from the joint distribution of all
variables:

p(x|y) ∝
∫

p(y, x,w, b, a, z)dwdbdadz, (6)

where the joint distribution is the product of all the distribu-
tions in our model, i.e.,

p(y, x,w, b, a, z)

= p(y|x,w, b)p(x|a)p(w|z)p(b)p(a)p(z). (7)

Since exact marginalization is difficult due to the mu-
tual dependencies between variables, we invoke a VB tech-
nique called mean-field approximation [45], [46]. Specifi-
cally, we approximate the exact joint posterior by the prod-
uct of independent posteriors of individual variables as
follows:

p(x,w, b, a, z|y)
	 q(x,w, b, a, z) = q(x)q(w)q(b)q(a)q(z), (8)

where exact and approximate posteriors are denoted by p
and q, respectively. Here, q(x) approximates p(x|y), which
is required to evaluate (5). Following previous work on
BD via VB [2], we also assume that q(x) is Gaussian and
q(w), q(b), q(a), and q(b) are degenerate. This assump-
tion makes all approximate posteriors well-parameterized,
thereby simplifying optimization [45], [47]. Let μx ∈ Rn

and Σx ∈ Rn×n be the mean and covariance of q(x), re-
spectively, and let b̂, â, ẑ, and ŵ be the modes of q(b),
q(a), q(z), and q(w), respectively. Then, we can obtain op-
timal approximate posteriors in terms of Kullback-Leibler
divergence by maximizing the lower bound of the log-
evidence of the model, which is denoted by f and defined as
follows [45], [48]:

f [q(x,w, b, a, z)]

=

∫
q(x,w, b, a, z)

ln
p(y, x,w, b, a, z)
q(x,w, b, a, z)

dxdwdbdadz. (9)

The non-Gaussian image prior defined in (3) prevents
us from optimizing f directly; therefore, we employ an-
other VB technique called local approximation [45], [49],
which is common in VB-based BD [2]. Specifically, we ap-
proximate the non-Gaussian p(x|a) in (7) with a Gaussian-
like p′(x|a, u) with an auxiliary parameter u ∈ Rn, which is
derived from lower-bounding of p(x|a) [31] and defined as
follows:

p′(x|a, u) ∝
n∏

i=1

√
a exp

⎛⎜⎜⎜⎜⎜⎜⎝−avi
2

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

k=1

(Gk x)i
2 + v−2

i

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ .

(10)

Intuitively, vi is a local smoothing weight at the i-th pixel,
which is adapted to the latent image automatically through
VB inference, thereby enabling edge-preserving smoothing.

Combining (7) and (9) and replacing p(x|a) with
p′(x|a, u), we obtain a modified lower bound, denoted by f ′,
which depends on both the approximate posteriors and the
auxiliary u. We can evaluate it using the parameterizations
of approximate posteriors and the definition of the distribu-
tions in our model, i.e., (2), (4), and (10) as follows:

f ′[q(x), q(w), q(b), q(a), q(z), u]
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=
n
2

ln b̂ − b̂
2

(
‖y − Hŵμx‖22 + tr(HŵΣxHT

ŵ)
)

+
n
2

ln â

− â
2

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

k=1

(
‖V 1

2 Gkμx‖22 + tr(VGkΣxGT
k )

)
+ tr(V−1)

⎞⎟⎟⎟⎟⎟⎟⎠
+

mn
2

ln ẑ − ẑ
2

2∑
k=1

‖Fkŵ‖22

+
1
2

ln |Σx| + const., (11)

where Hŵ is the version of Hw constructed with ŵ and V is
the diagonal matrix of u; here, μx and Σx are the mean and
covariance of q(x), respectively, as defined above. Then, we
maximize ln f ′ with respect to each parameter, as described
in the following. The derivation of each equation is detailed
in Appendix.

(1) Auxiliary Parameter

Taking the derivative of (11) with respect to vi and setting it
to zero, we obtain each element vi of the auxiliary parameter
u as follows:

vi =
1√∑2

k=1

(
(Gkμx)i

2 + (GkΣxGT
k )ii

) . (12)

Here, vi is basically the inverse of the local image variation
at the i-th pixel captured by high-pass filtering via G1, G2;
therefore, vi becomes small around an edge, thereby weak-
ening local smoothing to preserve the edge.

(2) Weights

Taking the derivative of (11) with respect to each of ẑ, â,
and b̂ and setting it to zero, we obtain the parameters of
q(z), q(a), and q(b), respectively, as follows:

ẑ =
mn∑mn

i=1
∑2

k=1 (Fkŵ)i
2
, (13)

â =
n∑n

i=1

(
vi

∑2
k=1

(
(Gkμx)i

2 + (GkΣxGT
k )ii

)
+ v−1

i

) ,
(14)

b̂ =
n∑n

i=1

(
(y − Hŵμx)i

2 + (HŵΣxHT
ŵ)ii

) . (15)

(3) Latent Image

Taking the derivative of (11) with respect to μx, Σx and set-
ting it to zero, we obtain the parameters of q(x) as follows:

μx =

⎛⎜⎜⎜⎜⎜⎜⎝HT
ŵHŵ +

â

b̂

2∑
k=1

GT
k VGk

⎞⎟⎟⎟⎟⎟⎟⎠
−1

HT
ŵy, (16)

Σx =

⎛⎜⎜⎜⎜⎜⎜⎝b̂HT
ŵHŵ + â

2∑
k=1

GT
k VGk

⎞⎟⎟⎟⎟⎟⎟⎠
−1

. (17)

The covariance Σx represents uncertainty in estimates of

Fig. 3 The algorithm of VB inference for SV BD.

x [45], [47], [50], working as regularizers in the denomi-
nators of (12), (14), (15). In BD, this property of VB in-
ference helps avoid trivial solutions and improve deblur-
ring [1], [31], [33]. By replacing the exact posterior p(x|y)
with the obtained approximate posterior q(x) in (5), we can
obtain an optimal clean image estimate x̂ as the mode of
q(x), which coincides with μx since q(x) is Gaussian.

(4) Field of Kernels

Taking the derivative of (11) with respect to ŵ and setting it
to zero, we obtain the parameter of q(w) as follows:

ŵ =

⎛⎜⎜⎜⎜⎜⎜⎝HT
μx

Hμx + H2
Σx
+

ẑ

b̂

2∑
k=1

FT
k Fk

⎞⎟⎟⎟⎟⎟⎟⎠
−1

HT
μx
y, (18)

and Hμx and H2
Σx

are the matrices such that Hμx ŵ = Hŵμx

and ŵTH2
Σx
ŵ = tr(HŵΣxHT

ŵ), respectively; here, to reflect
the physical properties of real kernels [2], we also constrain
each local kernel ŵi so that 0 ≤ ŵi j ≤ 1 and

∑m
j=1 ŵi j = 1.

Since each approximate posterior depends on others
through parameters, we iteratively update them one by one,
starting with some initial estimates, which we discuss in
more detail in Sect. 5. Such a VB algorithm is guaranteed
to converge [45], [51]. The resulting algorithm is summa-
rized in Fig. 3.

5. Implementation

The algorithm in Fig. 3 can be numerically implemented us-
ing linear algebra routines on dense vectors and sparse ma-
trices. While we sometimes need to invert large sparse ma-
trices, exact inversion is computationally intractable. Thus,
we use conjugate gradient in (18) and (16) and diagonal co-
variance approximation in (12), (14), and (15), as in previ-
ous VB-based methods [2], [31].

At each iteration, we normalize the estimate of each
local kernel in the field to enforce the constraint described
at (18). Besides, sometimes very large values occur in esti-
mates of other parameters, particularly at the first iteration.
For example, according to (13), ẑ approaches to infinity if
ŵ is initialized by a smooth kernel field with no variation.
To ensure numerical stability in such cases, we perform ele-
mentwise value clamping on each estimate after updating it
so that the absolute value of each element is no greater than
104.
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In SI BD, estimation in filter domains tends to yield
better kernel estimates [2]. To improve kernel estimation,
we also apply this technique to our SV BD. Specifically, in
our model we replace y and x in (2) with prefiltered versions
Gy and Gx, respectively, where G = [GT

1 GT
2 ]T. Then, we

perform lower bound maximization with q(Gx) instead of
q(x). If we consider y and x in the original algorithm as
Gy and Gx, the resulting algorithm is nearly the same as
the original one, except that G1 and G2 disappear from (12),
(14) (16), and (17) since we have prefiltered images, and
the matrices multiplied with y and x become two-channel
operators, i.e., separately operate on horizontal and vertical
components of Gy and Gx. This modified algorithm only
yields the latent image estimate in the filter domain; thus,
we perform a final non-blind deconvolution step to obtain x̂
in the image domain using ŵ estimated in the filer domain.
To achieve this, we run the original image-domain algorithm
with ŵ fixed to the estimate obtained in the filter domain.

To initialize ŵ in the filter domain, we set each local
kernel to the delta kernel, i.e., the no-blur solution. Regard-
ing q(x), we initialize μx using observations, i.e., with Gy
and y in the filter and image domains, respectively. Mean-
while, in both domains we initialize the diagonal of Σx

with constant 104, which means large initial uncertainty and
drives optimization away from initial no-deblurring state.
For each run of the algorithm, we stop when variation in Gx̂
or x̂ between iterations is less than 0.1 in mean squared error
(MSE) or after 16 iterations, which are empirically sufficient
for convergence.

6. Experiments

We conducted experiments to evaluate the effectiveness of
the proposed method. To enable quantitative evaluation in
reference to ground truth, we prepared observed images as
inputs by convolving standard test images as latent images
with synthesized SV kernels, which imitate typical types of
nonuniform blur in reality. For each test image, a SV kernel
was synthesized as a field of kernels, where a local kernel is
assigned to each pixel in the manually-extracted foreground
and background, thereby allowing different blur types be-
tween them. In the following, the sizes of each image and
local kernel were n = 256 × 256 pixels and m = 5 × 5 coef-
ficients per pixel, respectively.

For a fair comparison, we modified the proposed SV
BD method into a SI version with nearly the same model,
assuming a single local kernel common to all pixels in the
convolution model (1) and disabling kernel smoothing. Note
that, ignoring minor differences in optimization, this SI vari-
ant is in principle equivalent to a previous method of VB-
based BD [31], which in turn is a special case of another
method for general image priors [32] that was reported to
achieve state-of-the-art performance for SI BD [33]. We
also compared the proposed field-of-kernels-based method
with a segmentation-based variant that assumes the same
kernel in each segment in (1). Here, we reused the ground-
truth segmentation result of foreground and background

Fig. 4 Fields of kernels for Lena. From the 256 × 256 pixels of each
field, 12 × 12 pixels were sampled at an equal interval. The value range of
the local kernel at each pixel were maximized for visualization. (a) Ground
truth. (b) Estimated by the proposed method. Note that the white blocks in
(a) indicate uniform kernels.

used in blurring; thus, this is basically a SV BD method
based on perfect segmentation with the state-of-the-art im-
age prior [32]. These three BD methods were applied to
each observed image. The image quality of each restored
image was assessed in terms of peak-signal-to-noise ratio
(PSNR) with respect to the corresponding latent image.

First, we blurred the Lena image with horizontal line
kernels of variable lengths for the foreground and a box ker-
nel for the background, which mimic motion blur due to
rotation around the vertical axis and uniform defocus blur,
respectively. Several samples of local kernels from this SV
kernel are shown in Fig. 4 (a), where we can see that the ro-
tation caused smooth variation of kernels in the foreground.
The results are shown in Fig. 5 with PSNR values. Here,
the SI method could not fully remove blur and even de-
graded image quality in terms of PSNR, attempting decon-
volution based on SI kernel estimation against nonuniform
blur. Meanwhile, the segmentation-based SV BD could
make only a slight PSNR improvement despite the use of
the perfect segmentation result, since the smoothly varying
blur in the foreground is difficult to approximate by segmen-
tation. Note that such composite blur is out of the domain of
most parametric BD methods that globally assume a single
type of blur, e.g., motion or defocus. In contrast, the pro-
posed field-based SV method successfully recovered a visu-
ally sharper image (e.g., around the edge of the face) with
a higher PSNR, dealing with both the smooth variation and
the complexity of the blur. Furthermore, the field of kernels
estimated by the proposed method is shown in Fig. 4 (b).
Here, we can see that the proposed method could capture
the outline of the field, i.e., the difference between the fore-
ground and the background, and also the smooth variation in
the foreground along the horizontal axis. Since we used the
non-edge-preserving Gaussian prior for smoothing of the
field, the discontinuities around the object boundaries were
smoothed out. Still, such a kernel prior was sufficient for
achieving PSNR improvement in the image domain, which
is the ultimate objective of BD. Using edge-preserving pri-
ors for the field of kernels can incur additional complexities
and limitations as we discussed in Sect. 3; thus, we leave
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Fig. 5 Images of Lena (top) and their closeups (bottom) with PSNR values: (a) Latent. (b) Observed.
(c) Restored by SI BD. (d) Restored by segmentation-based SV BD. (e) Restored by field-of-kernels-
based SV BD (proposed).

Fig. 6 Fields of kernels for Cameraman. From the 256 × 256 pixels of
each field, 12 × 12 pixels were sampled at an equal interval. The value
range of the local kernel at each pixel were maximized for visualization.
(a) Ground truth. (b) Estimated by the proposed method.

this topic for future work.
Next, we applied another realistic instance of blur

to the Cameraman image, where global in-plane rota-
tion (which often occurs in camera shake [1]) is mixed
with a out-of-focus effect; thus, both motion and defocus
blur simultaneously affected each pixel, which resulted in
very complex local kernels as shown in Fig. 6 (a). More-
over, the smooth variation of rotational motion blur can-
not be described by a finite number of kernels assumed
by segmentation-based methods, while parametric meth-
ods specialized for motion blur cannot deal with the mixed
defocus blur. As can be seen from the results shown in
Fig. 7, the proposed SV method outperformed the SI and
segmentation-based SV methods also for this image, both
in appearance and in PSNR. From the estimated field of
kernel shown in Fig. 6 (b), we can see that the proposed
method could stably capture smooth variations in the field,
except for the bottom-right region of the image, where the
estimated local kernels were relatively close to initial delta
kernels. This could be because this background region had
only textures of rather random patterns but no strong edges;
therefore, there were no distinct image features available
for kernel estimation. Note that BD in such regions is in

principle highly ill-posed, and to address this issue, we
might need to resort to more radical approaches such as
multi-observation [37]. It is noteworthy that the proposed
method achieved these results without image-dependent
tuning of parameters, e.g., numbers of segments, nor prior
knowledge on blur types. In practical applications, this is a
huge advantage over previous approaches.

Table 1 summarizes the computational time for the
Lena and Cameraman images with our current implemen-
tation on an Intel Xeon E5-2660 CPU. In these experiments,
the execution time of the SI method was longer than the
segmentation-based SV method, possibly because the vio-
lation of the invariance assumption slowed down its con-
vergence. Basically, the proposed field-of-kernels-based SV
method took longer than the SI and segmentation-based SV
methods due to the increased number of kernel coefficients
to be estimated.

Figure 8 shows the convergence of the proposed al-
gorithm in terms of the MSE in filter-domain image esti-
mates between iterations when we varied the size of local
kernels to be estimated. Here, the PSNR values of the re-
stored images became the highest when the local kernel size
is 5 × 5, i.e., when it coincides with the size of the ground
truth. From the graphs, we can observe that the variation in
the estimate became stationary, or small enough to terminate
(below 0.1), before 16 iterations regardless of kernels sizes.

Figure 9 shows the noise tolerance of the proposed
method. Here, the proposed method was applied to versions
of the blurry Lana and Cameraman images degraded with
Gaussian noise of varying standard deviation, and its per-
formance was measured in terms of improvement in signal-
to-noise ratio (ISNR), i.e., the difference in PSNR between
input and output. While the proposed method successfully
improved image quality with modest noise, it began to fail
at higher noise levels, i.e., ISNR values went below zero,
e.g., around standard deviation 3 and 5 in the cases of Lena
and Cameraman, respectively. We note that BD in general
is sensitive to degradation of high-frequency image compo-
nents due to noise, especially in the filter domain [2]. To
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Fig. 7 Images of Cameraman (top) and their closeups (bottom) with PSNR values: (a) Latent. (b) Ob-
served. (c) Restored by SI BD. (d) Restored by segmentation-based SV BD. (e) Restored by field-of-
kernels-based SV BD (proposed).

Table 1 Computational time of the proposed method [seconds]

Image SI BD
segmentation-based

SV BD
field-of-kernels-based

SV BD (proposed)
Lena 43 35 338

Cameraman 33 30 251

Fig. 8 Convergence of the proposed method for different local kernel
sizes. The PSNR values of the corresponding result images are shown in
parentheses.

improve the noise tolerance of the proposed method, we
will need to combine our model with image priors that have
stronger power to suppress noise, e.g., as proposed in [32].

Finally, using more practical images with large blur,
we compared the proposed method with recent BD meth-
ods: the SI method by Fergus et al. [52], the SV method for
rotational camera shake by Whyte et al. [20], the SV method

Fig. 9 Noise tolerance of the proposed method for varying noise levels
measured in standard deviation.

parameterized with a motion path by Gupta et al. [53], and
the SV method by Hirsch et al. [13], which is an extension of
the method by Gupta et al. [53] with patch-wise parameteri-
zation, and thus can be regarded as a parametric approach to
segmentation-based BD. To compare the proposed method
with these methods, we applied the proposed method to im-
ages blurred by camera shake used in Whyte et al. [20] and
Gupta et al. [53]. Here, the sizes of the input images were
354× 265 and 768× 512 pixels, respectively, and the size of
each local kernel was set to 11 × 11 pixels. Note that these
real images do not have corresponding ground truth images
and kernels; thus, only visual comparison is possible here.
The results are shown in Fig. 10 and Fig. 11, respectively.
While the SI method of Fergus et al. [52] failed in handling
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Fig. 10 Comparison with the previous methods using a practical image with large blur from Whyte
et al. [20]. The input image to the proposed method was released by the authors of [20], while the result
images by the previous methods were taken from [13]. These images were converted to grayscale and
gamma-corrected for visual comparison, since the colors of the images from [13] were not matched to
that of the input image. (a) Observed. (b) Restored by the SI method of Fergus et al. [52]. (c) Restored
by the parametric SV method of Whyte et al. [20]. (d) Restored by the parametric SV method of Hirsch
et al. [13]. (e) Restored by the proposed nonparametric SV method.

Fig. 11 Comparison with the previous methods using a practical image with large blur from Gupta
et al. [53]. The input image to the proposed method was released by the authors of [53], while the result
images by the previous methods were taken from [13]. (a) Observed. (b) Restored by the parametric SV
method of Gupta et al. [53]. (c) Restored by the parametric SV method of Hirsch et al. [13]. (d) Restored
by the proposed nonparametric SV method.

nonuniform blur, the proposed method successfully reduced
blur to some extent. The deblurring performance of the pro-
posed method was visually comparable with the paramet-
ric SV methods of Whyte et al. and Gupta et al. [20], [53],
although the proposed method produced some artifacts in
highly blurry regions, e.g., in the middle closeup image
of Fig. 10 (e). This is possibly due to inaccuracy in ker-
nel estimation, which could be seen as the price for the
flexibility offered by the nonparametic approach; still, such
artifacts might be suppressed by using more effective im-
age priors [32], which we consider as one of promising fu-
ture extensions of the proposed method. Meanwhile, the
previous parametric methods, especially the one of Hirsch
et al. [13], yielded sharper results in several regions, e.g.,
in the middle closeup image of Fig. 11 (c); however, they
also exhibited oversmoothing in regions with textures, as
seen in the middle and right closeup images of Fig. 10 (d),
which could happen when the assumptions under their pa-
rameterizations did not hold exactly. Note that the proposed
method has a clear advantage over these previous methods;
i.e., while these previous methods are specialized to camera
motion blur, the proposed method has the potential to han-
dle defocus blur, camera motion blur, object motion blur,
and even mixture of them, without the need for blur type

identification for each image.

7. Conclusion

In this paper, we have proposed a SV BD method based on
a field-of-kernels model. By modeling a spatially-varying
blur kernel as a smooth field of local kernels, the proposed
VB-based method can flexibly handle different kernels be-
tween pixels. Our experimental results confirm that the
proposed method can successfully deblur images affected
by nonuniform blur, which is intractable for previous ap-
proaches such as SI BD and segmentation-based SV BD.

One possible future direction is to introduce more ef-
fective priors to the field of kernels. Incorporating elaborate
image priors and using multiple observed images will also
enhance the effectiveness of the proposed method. Accel-
erated implementation of the proposed algorithm is another
topic of interest. Finally, integration with parametric ap-
proaches and other applications such as SR are interesting
future extensions of the proposed SV BD methodology.
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Appendix A: Derivation of the VB inference Algorithm

In this section, we derive the algorithm of the VB inference
for SV BD, which is outlined in Sect. 4. Under our Bayesian
model, the update equation for each latent variable is ob-
tained by maximizing the modified variational lower bound
f ′ with respect to the corresponding approximate posterior.

To begin with, we derive the expression of f ′ in (11).
By definition, f ′ is obtained by substituting (7) and (8) into
(9) and replacing p(x|a) with p′(x|a, u), i.e.,

f ′[q(x), q(w), q(b), q(a), q(z), u]

= E
[
ln

p(y|x,w, b)p′(x|a, u)p(w|z)p(b)p(a)p(z)
q(x)q(w)q(b)q(a)q(z)

]
,

(A· 1)

where E denotes expectation with respect to all approximate
posteriors. Using properties of logarithms, we can decom-
pose the right-hand side of (A· 1) as follows:

f ′[q(x), q(w), q(b), q(a), q(z), u]

= E[ln p(y|x,w, b)] + E[ln p′(x|a, u)] + E[ln p(w|z)]

+ E[ln p(a)] + E[ln p(b)] + E[ln p(z)]

+ H[x] + H[w] + H[b] + H[a] + H[z], (A· 2)

where H denotes entropy, i.e., H[α] = E[− ln q(α)] for any α.
Here, we can take expectations independently for each vari-
able owing to mean-field approximation in (8). Since q(w),
q(b), q(a), q(z) are assumed to be degenerate, the values of
their variables always coincide with their modes, and their
entropies are zero. Moreover, the hyperpriors p(b), p(a),
p(a) in our model are uniform and thus constant. Therefore,
by substituting the modes ŵ, b̂, â, ẑ for w, b, a, z, respec-
tively, setting H[w], H[b], H[a], H[z] to zero, and gathering
the constant terms E[ln p(b)], E[ln p(a)], E[ln p(z)], we can
further simplify (A· 2) as follows:

f ′[q(x), q(w), q(b), q(a), q(z), u]

= E[ln p(y|x, ŵ, b̂)] + E[ln p′(x|â, u)]
+ ln p(ŵ|ẑ) + H[x] + const., (A· 3)

where only expectations with respect to q(x) remain. To
evaluate them, we will use the following identity that holds
for any α,β ∈ Rν that follows from basis properties of ran-
dom vectors [54]:

E

⎡⎢⎢⎢⎢⎢⎣ ν∑
i=1

βiα
2
i

⎤⎥⎥⎥⎥⎥⎦ = E
[
αTBα

]
= E[α]TB E[α] + tr(B Var[α])

= ‖B 1
2 E[α]‖22 + tr(B Var[α]), (A· 4)

where Var[α] is the variance of α, and B is the diagonal

matrix of β. First, taking the logarithmic expectations of
both sides of (2) with w = ŵ and b = b̂, we obtain

E[ln p(y|x, ŵ, b̂)]

=
n
2

ln b̂ − b̂
2

E

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

(y − Hŵx)2
i

⎤⎥⎥⎥⎥⎥⎦ + const. (A· 5)

Then, substituting (A· 4) with α = y − Hŵx, β = 1, we
obtain

E[ln p(y|x, ŵ, b̂)]

=
n
2

ln b̂ − b̂
2

(
‖y − Hŵμx‖22 + tr(HŵΣxHT

ŵ)
)
+ const.,

(A· 6)

where we have evaluated the expectation and variance as
follows:

E[y − Hŵx] = y − Hŵμx, (A· 7)

Var[y − Hŵx] = HŵΣxHT
ŵ. (A· 8)

Second, taking the logarithmic expectations of both sides of
(10) with a = â, we obtain

E[ln p′(x|â, u)]

=
n
2

ln â − â
2

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

k=1

E

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

vi(Gk x)i

⎤⎥⎥⎥⎥⎥⎦ + n∑
i=1

v−1
i

⎞⎟⎟⎟⎟⎟⎟⎠ + const.

(A· 9)

Then, substituting (A· 4) with α = Gk x and β = u, we obtain

E[ln p′(x|â, u)]
=

n
2

ln â

− â
2

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

k=1

(
‖V 1

2 Gkμx‖22 + tr(VGkΣxGT
k )

)
+ tr(V−1)

⎞⎟⎟⎟⎟⎟⎟⎠
+ const., (A· 10)

where we have used
∑n

i=1 v
−1
i = tr(V−1) and evaluated the

expectation and variance as follows:

E[Gk x] = Gkμx, (A· 11)

Var[Gk x] = GkΣxGT
k . (A· 12)

Third, taking the logariths of both sides of (4) with w = ŵ
and z = ẑ, we obtain

ln p(ŵ|ẑ) =
mn
2

ln ẑ − ẑ
2

2∑
k=1

‖Fkŵ‖22 + const. (A· 13)

Finally, we have

H[x] =
1
2

ln |Σx| + const., (A· 14)

since q(x) is assumed to be Gaussian [54]. Substitituing
(A· 6), (A· 10), (A· 13), and (A· 14) into (A· 3), we obtain
f ′ as in (11).

Now, we derive the update equation of each parameter
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1982
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

that maximizes f ′ given other parameters fixed.

(1) Auxiliary Parameter

Taking the derivative of the right-hand side of (11) with re-
spect to V and setting it to zero, we obtain

− â
2

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

k=1

(
Gkμxμ

T
xGT

k + GkΣxGT
k

)
− V−2

⎞⎟⎟⎟⎟⎟⎟⎠ = 0, (A· 15)

where we have used ‖V 1
2 Gkμx‖22 = tr(VGkμxμ

T
xGT

k ) and
properties on derivative of traces [54]. Simplifying this with
respect to V, we obtain

V−2 =

2∑
k=1

(
Gkμxμ

T
xGT

k + GkΣxGT
k

)
. (A· 16)

Noting that V is the diagonal matrix of u, we obtain

vi =

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

k=1

(
Gkμxμ

T
xGT

k + GkΣxGT
k

)⎞⎟⎟⎟⎟⎟⎟⎠
− 1

2

ii

. (A· 17)

Using that (Gkμxμ
T
xGT

k )ii = (Gkμx)2
i , we obtain each vi as in

(12).

(2) Weights

Taking the derivative of the right-hand side of (11) with re-
spect to b̂ and setting it to zero, we obtain

n
2

b̂−1 − 1
2

(
‖y − Hŵμx‖22 + tr(HŵΣxHT

ŵ)
)
= 0. (A· 18)

Simplifying this with respect to b̂, we obtain

b̂ = n
(
‖y − Hŵμx‖22 + tr(HŵΣxHT

ŵ)
)−1
. (A· 19)

Using that ‖y − Hŵμx‖22 =
∑n

i=1(y − Hŵμx)2
i and that

tr(HŵΣxHT
ŵ) =

∑n
i=1(HŵΣxHT

ŵ)ii, we obtain b̂ as in (15).
Likewise, we obtain â and ẑ as in (14) and (13), respectively.

(3) Latent Image

Taking the derivative of the right-hand side of (11) with re-
spect to μx and setting it to zero, we obtain

−b̂HT
ŵ (Hŵμx − y) − â

2∑
k=1

GT
k VGkμx = 0, (A· 20)

where we have used the properties on derivative of squared
norms [54]. Simplifying this with respect to μx, we obtain⎛⎜⎜⎜⎜⎜⎜⎝b̂HT

ŵHŵ + â
2∑

k=1

GT
k VGk

⎞⎟⎟⎟⎟⎟⎟⎠μx = b̂HT
ŵy. (A· 21)

Premultiplying both sides with (b̂HT
ŵHŵ+â

∑2
k=1GT

k VGk)−1,
we obtain μx as in (16). Furthermore, taking the derivative
of the right-hand side of (11) with respect to Σx and setting
it to zero, we obtain

− b̂
2

HT
ŵHŵ − â

2

2∑
k=1

GT
k VGk +

1
2
Σ−1

x = 0, (A· 22)

where we have used properties on derivatives of traces and
logarithms of determinants [54]. Simplifying this with re-
spect to Σx, we obtain

Σ−1
x = b̂HT

ŵHŵ + â
2∑

k=1

GT
k VGk. (A· 23)

Inverting both sides, we obtain Σx as in (17).

(4) Field of Kernels

Substituting the definitions Hŵμx = Hμx ŵ and tr(HŵΣxHT
ŵ)

= ŵTH2
Σx
ŵ into (11), we obtain

f ′[q(x), q(w), q(b), q(a), q(a), u]

= − b̂
2

(
‖y − Hμx ŵ‖22 + ŵTH2

Σx
ŵ
)

− ẑ
2

2∑
k=1

‖Fkŵ‖22 + const., (A· 24)

where the terms constant with respect to ŵ are gathered.
Then, taking the derivative of the right-hand side with re-
spect to ŵ and setting it to zero, we obtain

−b̂
(
HT
μx

(
Hμx ŵ − y

)
+ H2

Σx
ŵ
)
− ẑ

2∑
k=1

FT
k Fkŵ = 0,

(A· 25)

where we have used properties on derivative of squared
norms [54]. Simplifying this with respect to ŵ, we obtain⎛⎜⎜⎜⎜⎜⎜⎝b̂ (

HT
μx

Hμx + H2
Σx

)
+ ẑ

2∑
k=1

FT
k Fk

⎞⎟⎟⎟⎟⎟⎟⎠ ŵ = b̂HT
μx
y (A· 26)

Premultiplying both sides with (b̂(HT
μx

Hμx + H2
Σx

) +

ẑ
∑2

k=1 FT
k Fk)−1, we obtain ŵ as in (16).
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