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Sensitivity-Characterised Activity Neurogram (SCAN) for
Visualising and Understanding the Inner Workings of Deep Neural

Network

SUMMARY  Deep Neural Network (DNN) is a powerful machine
learning model that has been successfully applied to a wide range of pat-
tern classification tasks. Due to the great ability of the DNNs in learn-
ing complex mapping functions, it has been possible to train and deploy
DNNs pretty much as a black box without the need to have an in-depth
understanding of the inner workings of the model. However, this often
leads to solutions and systems that achieve great performance, but offer
very little in terms of how and why they work. This paper introduces
Sensitivity-characterised Activity Neorogram (SCAN), a novel approach
for understanding the inner workings of a DNN by analysing and visualis-
ing the sensitivity patterns of the neuron activities. SCAN constructs a low-
dimensional visualisation space for the neurons so that the neuron activities
can be visualised in a meaningful and interpretable way. The embedding
of the neurons within this visualisation space can be used to compare the
neurons, both within the same DNN and across different DNNs trained for
the same task. This paper will present the observations from using SCAN
to analyse DNN acoustic models for automatic speech recognition.

key words: deep neural network, visualisation, interpretability

1. Introduction

It is fascinating to see how Deep Neural Networks (DNN5s)
have significantly changed the way classification problems
are being approached in the recent years. Its success in ad-
dressing many practical real-world complex problems is cer-
tainly an impactful accomplishment that has opened up the
possibility for further innovations. We have been blessed
with the convenience of using the DNNs as a black box,
much to the liberation of letting the network learn to do the
‘right things’ as much as possible. From the engineering
perspective, it is certainly nice to be able to build end-to-end
systems [1], without having to worry too much about the de-
tails of the inner workings of the networks. Nevertheless, it
is also equally important, for the benefit of scientific discov-
ery and advancement, to study and understand the how and
why behind the success of the DNNs.

Many of the existing attempts to understand the DNNs
come from the vision community [2]-[5], which is not sur-
prising given the nature of the task. There has not been
much work from the speech community in analysing and un-
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derstanding the DNN acoustic models. The work in [6] at-
tempts to visualise how the speech features have been trans-
formed by each hidden layer in a 2-dimensional space using
t-distribution Stochastic Neighbour Embedding (t-SNE) [7].
t-SNE has also been used to visualise the outputs of multi-
lingual bottleneck layers [8], More recently, Nagamine et al.
investigated how DNN form phonetic categories in [9].

This paper introduces Sensitivity-characterised Activ-
ity Neorogram (SCAN), a novel approach for understand-
ing the inner workings of the DNNs. SCAN is based on the
earlier work presented in [10], which attempts to find out
“which part of the network is doing what.” SCAN works
by projecting the hidden unit activities onto a 2-dimensional
space for easy visualisation and interpretation, much like the
same way brain imaging techniques, such as Magnetic Res-
onance Imaging (MRI) [11], are used to study human brain
activities. SCAN uses an activity vector to characterise each
neuron in the network, in terms of its sensitivity (or selec-
tivity) to the different classes that the network is trained to
distinguish. Moreover, the activity vectors can also be com-
puted with respect to other attributes of interest. The result-
ing solution involves constructing a low-dimensional visual-
isation space, in which neurons are placed such that neurons
with similar functionality (those that exhibit similar activity
patterns) are close to one another. Consequently, meaning-
ful regions can be conveniently identified to yield an intu-
itive and interpretable visualisation of the DNNss.

SCAN is developed as a technique to assist with the
analysis and interpretation of the hidden unit activity pat-
terns of the DNNs. In this paper, SCAN will be used to
analyse DNN acoustic models that are trained to performed
Automatic Speech Recognition (ASR). DNN has been used
to improve acoustic modelling in several ways. In a hybrid
DNN/HMM system [12], [13], a DNN is used to predict the
posterior probability of the senones, replacing the Gaussian
Mixture Model (GMM) in the conventional GMM/HMM
systems. DNNs have also been used to extract features such
as bottleneck features [14], [15] and in building tandem ASR
systems [16], [17]. There have been a number of techniques
proposed to improve the robustness of DNN-based acoustic
models in terms of speaker adaptation [18]-[23] and noise
compensation [24]-[26].

The remainder of this paper is organised as follows.
Section 2 describes the DNN acoustic model used for the
SCAN analyses in this paper. Section 3 introduces the sen-
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sitivity measures and shows how these measures can be used
to better understand the inner workings of DNNs. Sec-
tion 4 introduces the proposed SCAN method for visualising
DNNs. Section 4.3 presents the experimental findings from
the various SCAN analyses. Section 5 gives a brief discus-
sion and Sect. 6 concludes the paper.

2. DNN Acoustic Modelling for ASR

This section will describe the DNN acoustic model used for
the analysis work presented in this paper. The DNN acoustic
model is trained using the multi-condition data from the Au-
rora 4 dataset [27]. There are 15.11 hours of speech (7137
utterances) in the multi-condition training set and 8.94 hours
of speech (4620 utterances) in the development set. There
are 7 types of noise conditions (including the clean condi-
tion) and 2 channel conditions.

The input features are given by splicing 11 frames
of the Linear Discriminant Analysis (LDA)[28] features.
Each LDA feature is a 40-dimensional vector projected from
39 x 7 Mel Frequency Cepstral Coefficients (MFCCs) [29]
features (including energy, delta and delta-delta over a 7-
frame window). The DNN model has a 440-dimensional
input layer and 7 hidden layers of 2048 dimension each.
The sigmoid activation function is used for all the hidden
units. The output units of this network correspond to 2031
senones. This model achieved 12.5% word error rates on the
Aurora 4 test set. All the acoustic models are trained using
Kaldi [30]. The 40 context-independent phones are used as
attributes for sensitivity measure and SCAN analyses.

3. Measuring Sensitivity

To understand the inner workings of DNNgs, it is important
to study the activations of the hidden units. One way of
doing so is to examine the sensitivity of the hidden units
with respect to some attributes of interest, such as the phone
classes that the DNN is trained to classify. A hidden unit is
deemed to be sensitive to a specific phone class if it has a
higher probability of being active when an acoustic feature
that belongs to that phone class is being fed to the network.

3.1 Sensitivity Measures

Let hl(.[)(t) be the activation of hidden unit i in layer / at time 7.
The sensitivity for each hidden unit with respect to attribute
s can be measured as follows:

2 ysOh (1)
S 2R ()

where y,(7) is the probability of associating attribute s with
the acoustic feature at time ¢ and S is the total number of at-
tributes. For example, to measure the sensitivity of the hid-
den units with respect to the phone classes, y4(#) can be ob-
tained using a forward-backward algorithm (soft alignment)
or a Viterbi algorithm (hard alignment). In this paper, the

a(s) = (1)
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Fig.1  Average activation of all the hidden units with respect to different
phones (sorted in ascending order). For clarity, only every other phone
labels are shown on the horizontal axis.

same hard alignments used to train the DNN are used com-
pute the sensitivity measures. Note that agl)(s) = 1 and

al(.])(s) > 0 for all s7. Therefore, agl)(s) effectively measures
the weightage of the hidden unit’s activations with respec-
tive to attribute s. A higher value of al(.l) (s) indicates that
the hidden unit is expected to have a higher value of activa-
tion when the acoustic frame belongs to attribute s, and vice
versa.

Sensitivity can also be measured for each hidden layer
or the network as a whole. The sensitivity for each layer
with respect to attribute s can be measured as the average
sensitivity measure of each hidden unit within that layer, as
given below:

N

1
TOIAS) @)

i=1

als) =

where N, is the number of hidden units in layer /. Likewise,
the sensitivity of the network as a whole with respect to at-
tribute s can be measured as the avenge sensitivity of each
hidden layer, as given below:

L

a(s) = 7 a0 )

i=1

where L is the number of layers in the network.

Figure 1 shows the average activation of all the hid-
den units with respect to different phones, a(s), for all the
context-independent phones, s, sorted in ascending order.
From the figure, it is clear that the network responds differ-
ently to various phone classes. Some phones require more
hidden units to be active than the others to achieve a good
classification performance. It is particularly interesting to
note that the network has a much higher average activation
with respect to silence (/SIL/). This suggests that the net-
work devotes many of its hidden units to the classification

"This is true for sigmoid units where hl(.l)(t) > 0. For other
activation functions, it may be necessary to rescale the activation
values.
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Fig.2  Plots of average activation versus layer for four groups of phones.

Table 1  Phone groups based on the trend of average activation across
different hidden layers.
[ Group | Phones |
1 SIL
2 P,F, TH,N,K, M, V,NG, B

T,DH, D, S,Z, HH, AH, W,

ER, OW, UW, IH, G, R, UH

L,CH, AA, AE, AO, 1Y, AW,
EH, SH, JH, OY, AY, Y, ZH, EY

3

4

of silence. This is not surprising given that, in a multi-style
data, the silence frames correspond to a variety of noise
and channel conditions. Besides, there are relatively more
silence frames in the training data compared to the other
phones.

If we look at the average activations for different lay-
ers, as depicted in Fig.2, the trend can be divided into 4
groups. The grouping of the phone classes are summarised
in Table 1. Group 1 consists of only the SIL phone, which
shows a very distinct trend compared to the rest. The net-
work respond to silence with a low average activation in
the first layer and this quickly increases with deeper lay-
ers. The second group of phones consists of stops, frica-
tives and nasals. These phones require roughly the same
average activations across all the layers. This indicates that
the network is steadily improving its ability to classify these
phones from one layer to another. Group 3 and 4 have a de-
creasing trend where more activities take place in the earlier
layers, with Group 4 having a sharper decrease. This sug-
gests that the network is able to classify the phones in these
groups, which are mostly vowels, at a much earlier stage.
This may be explained by the fact that vowels are much
easier to recognise in noisy conditions due to their stable
temporal structures. By contrast, stops, fricatives and nasals
are much more susceptible to distortion caused by noise. In
summary, the above analyses show that the network learns
to classify vowels at the earlier layers, followed by stops,
fricatives and nasals, and finally concentrates most of its ef-
fort in recognising silence and other background noise.
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3.2 Activity Distribution Profile

To gain a better insight on how the hidden units in a network
respond to different phone classes, Activation Distribution
Profile (ADP) is introduced to provide a convenient way of
visualising the distribution of the hidden unit activations in
each layer. An ADP with respect to an attribute s is a 2-
dimensional plot of the values of the following matrix:

1 2 L

a§]>(s> a§2>(s> a§L>(s>

a(2 )(s) a(2 )(s) a(z )(s)
ADP = sort . . .
1' 2. L'

ay)(s)  a(s) ay(s)

where sort(-) sorts a matrix column-wise in ascending or-
der. Each column of the matrix corresponds to a hidden
layer and each row corresponds to a hidden unit. Therefore,
each column of ADP, shows the sorted distribution profile of
the hidden units in each layer. It is easy to see from the ADP
plots the proportion of the hidden units being active in each
layer given a particular attribute.

Figure 3 shows the ADP plots with respect to differ-
ent phone classes. It is obvious to see that the /SIL/ phone
stands out as having a very distinct ADP plot compared to
the other phones. There is a large number of hidden units
responding actively to silence, with more hidden units in the
deeper layers. Stops, such as /T/, /K/ and /P/ as well as
nasals, such as /N/ and /M/ have a majority of the hidden
units being moderately active (light blue), with only a rel-
atively smaller number of very active hidden units. On the
other hand, vowels have more active hidden units in the first
hidden layer and many of the hidden units in the deeper lay-
ers are not active (dark blue).

3.3 Activity Vector and Entropy Measure

An activity vector can be used to summarise the Sensitivity-
characteristic of each hidden unit with respect to all the at-
tributes. The activity vector for hidden unit i in layer [ is
given by:

a’ =] P d'@) .. d's) ] @

This activity vector quantifies the function of each hidden
unit. If the hidden unit is highly sensitive to a particular
attribute, all except one of the elements of its activity vec-
tor will be close to zero. Similarly, hidden units which re-
spond to many phone classes will have larger values in the
respective elements. Therefore, given that al(/) is a probabil-
ity (sum-to-one) vector, the sensitivity of each hidden unit
to any attribute in general can be easily measured by com-
puting the normalised entropy:

-3, a”(s)loga’(s)
- Zs % IOg %

() _
E" =

where E;Z) is between 0 and 1. A lower entropy value means
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Fig.4 Plots of normalised entropies for hidden units in different hidden
layers. Hidden units are ordered according to ascending entropy values.

Fig.5 Diagram showing the architecture of the DNN model after the
hidden units are progressively pruned away based on the entropy measure.
Input layers are at the bottom and output layers are at the top.

higher information content, which indicates a higher sensi-
tivity to a given attribute. A hidden unit is insensitive to an
attribute when E;l) = 1. This happens when af,l) is a uniform
vector, i.e. a’(s) = 1/S.

Figure 4 shows the entropy profile for different hidden
layers of the DNN acoustic model with respect to the phone
classes. The horizontal axis corresponds to the 1024 hidden
units in each layer, which are sorted in ascending order ac-
cording to the entropy values. The vertical axis shows the
normalised entropy value for each hidden unit. There is a
notable increase in the number of insensitive hidden units
‘plateaued’ at the top of the graph, where the normalised
entropy is 1. This is clearly observed starting from layer 3,

%)

Frame Accuracy (

0 . 1 . 1 i
10 20 30 40 50 60 70 80 90 100

Percentile

Fig.6 Plot of frame accuracies at different levels of pruning on the
train and dev sets.

suggesting that these hidden units do not contribute much
to the final classification performance. In [10], it was found
these insensitive hidden units can be removed from the DNN
without severely affecting the classification performance.
Figure 5 shows the resulting architectures of the DNN af-
ter pruning away some of these hidden units according to
their entropy values. The left most architecture corresponds
to the case where 10% of the hidden units with the highest
normalised entropy values are removed. Moving from left to
right, each subsequent architecture corresponds to having an
additional 10% of the hidden units removed. The rightmost
architecture has 90% of the hidden units removed. From the
figure, many of the hidden units being pruned away initially
come from hidden layer 5. As the network is being pruned
more aggressively, many hidden units from hidden layers 6
and 7 are also removed.
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Figure 6 shows that the DNN can be compressed up to
60% of its original number of hidden units without severely
compromising the frame accuracy performance. As reported

n [31], after retraining the pruned model, it is possible to
remove up to 60% of the hidden units without a significant
performance degradation.

4. Sensitivity-Characterised Activity Neurogram
(SCAN)

In the previous section, we described how the activity of the
hidden units in the network can be analysed by measuring
their sensitivity with respect to different attributes. This sec-
tion will present the Sensitivity-characterised Activity Neu-
rogram (SCAN) method for visualising and interpreting the
activity vector of all the hidden units in a network. In the
following, we will describe the workflow for creating the vi-
sualisation space and how interpretable regions can be con-
structed within this space.

4.1 Visualisation Space

SCAN is a visualisation method that positions the hidden
units in a network on a 2-dimensional visualisation space
such that the hidden units form clusters according to their
sensitivity profiles. Hidden units that correspond to the same
attributes are placed closer to one another in this visualisa-
tion space. The hidden units are positioned such that those
that exhibit similar sensitivity measures are placed closer
together. Therefore, the visualisation space is specific to an
attribute, which needs to be estimated given some speech
data.

The workflow for constructing the visualisation space
is illustrated in Fig.7. To construct a visualisation space
for a DNN, the first step is to compute the hidden unit ac-
tivations, hl(.l)(t), of all the hidden units given a set of input
features. The corresponding alignments, y,(f), that maps the
each acoustic feature at time ¢ to attribute s are computed.
Next, the activity vectors, al@, are computed based on the
sensitivity measure using Eq. 1. Given these activity vectors,
the location of the hidden units in the visualisation space can
be obtained by applying the Student’s t-distribution Stochas-
tic Neighbour Embedding (t-SNE) projection method [7] or
other dimensionality reduction methods. Finally, the hid-
den units in the visualisation space are connected to form a
triangle mesh using Delaunay triangulation [32], The trian-
gle mesh is useful for colouring the visualisation space as
described in Sect. 4.3.

Figure 8 depicts the condensed plot of the hidden units
from all the layers of the DNN in the 2-dimensional visu-
alisation space. Each hidden unit is denoted by a circle
filled with colours that reflect the entropy value of that hid-
den unit. A darker colour corresponds to a lower entropy,
which indicates a more sensitive hidden unit. In general,
the more sensitive hidden units are mostly projected onto
the outer region of the space; while the less sensitive ones
concentrate in the middle. This is due to the fact that the
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Fig.7  The workflow for constructing the SCAN visualisation space.

Fig.8 Hidden units shown as circles filled with grayscale colours corre-
sponding to their entropy values with respect to the phones.

t-SNE projection attempts to place the highly sensitive hid-
den units (whose activity vectors are essentially close to a
‘one-hot’ vector) as far apart as possible from each other
as well as from the insensitive hidden units. Consequently,
these highly sensitive hidden units tend to be pushed to the
edge of the space, forming the ‘extreme’ points of the con-
vex hull. Less sensitive units are found in the inner region
of the space. The formation of the ‘hollow’ regions is the re-
sult of the gap created between the sensitive and insensitive
hidden units. The strips of hidden units within the ‘hollow
region’ are in fact the insensitive hidden units that form the
plateau of the entropy profile graphs in Fig. 4.

4.2 Interpretable Activity Regions

Since the position of the hidden units are such that units
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Fig.10  Projection of hidden units onto the visualisation space with respect to the phone classes.

Fig.9 Interpretable regions of the visualisation space with respect to the
phone classes. Some labels are omitted for clarity.

with similar sensitivity behaviour are placed closer together,
it is possible to partition the visualisation space into mean-
ingful and interpretable regions according to the attribute of
interest. Figure 9 illustrates the interpretable phone regions
in the visaulisation space. The detailed procedure for cre-
ating these interpretable regions are given in [10]. From
the figure, it is clear that the hidden units (from all the lay-
ers) form clear phone-dependent regions in the visualisation
space. For example, the top left region corresponds to si-
lence. Besides, regions that belong to similar phones, such
as /EH/ and /AY/, are found next to each other. The size
of the regions roughly corresponds to the number of hidden
units that are sensitive to the corresponding phones. Phones
with a larger region may be more difficult to classify and
therefore require more hidden units.

Figure 10 shows the projection of the hidden units for
the different layers of the DNN model in the visualisation
space. A common visualisation space is constructed for all
the hidden units across different layers so that they can be
easily compared and interpreted. In fact, as shown in [10], it
is possible to compare hidden units from different DNNs as
long as the same sensitivity measure is used to characterise
all the hidden units. There are several interesting observa-
tions that can be made from Fig. 10. The shape of the visu-
alisation space is given by the convex hull of the projection
of the hidden units in this space. In general, the shape of the
visualisation spaces are rather similar across different hid-
den layers. The distribution of the hidden units varies con-
siderably across different hidden layers. This suggests that
the functionality of the hidden units changes from one hid-
den layer to another. The hidden units of the first layer are
rather uniformly distributed over the entire space except the
‘hollow’ region at the top left and the middle of the space.

Fig.11  Examples of SCAN plots for phones /SIL/, /V/, /P/,and /EY/
(left to right).

In layer 3, there is a region with a higher concentration of
hidden units at the top. According to Fig. 9, this region cor-
responds to the /TH/ phone, which according to Table 1 and
Fig 3, have arelatively higher average activations in the mid-
dle layers.

4.3 Visualisation Using SCAN

With the interpretable visualisation space, it is possible to
easily visualise the activity patterns of the hidden units.
Each triangle in the Delaunay triangle mesh is coloured with
a linear gradient colour obtained by interpolating the colour
of the vertices. Since each vertex corresponds to one hid-
den unit, the vertex colour is chosen to reflect the activation
value of that hidden unit. In the following examples, the
activation values are indicated by the brightness of the red
colour.

Figure 11 shows four example plots from visualising
the hidden unit activations using SCAN. The left-most plot
shows the SCAN visualisation of a silence (/SIL/) frame,
where the active hidden units are mostly concentrated at the
top left corner of the visualisation space. This is expected
as the hidden unit in this region has a higher probability
of being active for silence, as depicted in Fig.9. The sec-
ond plot from the left corresponds to the phone /V/, with
active hidden units concentrated in the top region. This is
again consistent with the interpretable regions as shown in
Fig. 9. Similarly, the last two plots are for the /P/ and /EY/
phones, where visible active clusters can be observed in the
top-right and bottom-left regions, respectively.

SCAN can also be used to visualise in realtime the
evolution of the activation patterns frame by frame. This
allows the temporal changes in the activity patterns to be
monitored. Figure 12 shows an example of visualising the
evolution of the hidden unit activations from silence /SIL/
to /AA/. The plots clearly show the transition of the active
region from top left to bottom right.

5. Discussions

So far, we have described SCAN as a way of organising
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Fig.12  Examples of SCAN plots showing the evolution of the activation pattern from /SIL/ to /AA/

at 50 milliseconds intervals (left to right).

Fig.13  Hidden layer activation: unstimulated (left) and stimulated
(right).
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Fig.14  Phone-specific stimulation points for stimulated deep learning.

the hidden units in a 2-dimensional visualisation space, so
that active hidden units tend to be close to one another.
This shows that the activation patterns of the hidden units
are somewhat correlated. This also explains why the affine
transformation matrix in the hidden layers can be approxi-
mated using low-rank approximations [33]-[35]. In the low-
dimensional visualisation space, SCAN also establishes re-
lationships between the hidden units. Through Delaunay
triangulation [32], hidden units are connected to form a tri-
angle mesh in the visualisation space. These connections
identify the neighbours for each hidden unit, which can be
used as regularisation when training or adapting the DNNs.

Stimulated Deep Learning (SDL)[36] is another re-
lated approach that explicitly constrains the hidden unit ac-
tivations to form visualisable and interpretable regions. Un-
like SCAN, SDL lays out the hidden unit of each hidden
layer in a simple grid and applies constraints during training
to control the activation pattern of the hidden units. Fig-
ure 13 shows the activation patterns of two networks, the
left one corresponds to a standard (unstimulated) DNN and
the right one corresponds to a stimulated DNN. The lat-
ter shows a clear structured activation pattern as a result of
SDL. Phone-specific stimulation points (see Fig. 14) are ap-
plied to different positions in the grid such that the hidden
units that are closer to the stimulation points tend to be more
sensitive to the corresponding phones. It was found in [36]
that SDL also acts as a form of regularisation that improves
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the recognition performance.
6. Conclusions

This paper has presented Sensitivity-characterised Activity
Neurogram (SCAN), a novel technique for visualising and
understanding DNN in terms of the sensitivity patterns of
its hidden units towards some attributes of interest. SCAN
is used to analyse a DNN acoustic model trained on the
multi-condition data from the Aurora 4 dataset for automatic
speech recognition. By analysing the sensitivity measures of
the hidden units with respect to the phone classes, it is found
that there are more hidden units responding to silence, stops,
fricatives and nasals as they are much harder to recognise in
noisy conditions. Furthermore, by examining the entropy of
these activity patterns, it is possible to identify insensitive
hidden units and up to 40% of these hidden units can be re-
moved from the network without severely affecting the clas-
sification performance. SCAN constructs a 2-dimensional
visualisation space such that hidden units that exhibit simi-
lar activity patterns are placed closer together in this space.
Interpretable phone regions are constructed in this space to
yield a meaningful visualisation of the hidden unit activa-
tions. Some phone regions are bigger than the others, sug-
gesting that these phones are more difficult to recognise and
require more ‘attention’ from the DNN.
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