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SUMMARY The introduction of deep neural networks (DNNs) leads to
a significant improvement of the automatic speech recognition (ASR) per-
formance. However, the whole ASR system remains sophisticated due to
the dependent on the hidden Markov model (HMM). Recently, a new end-
to-end ASR framework, which utilizes recurrent neural networks (RNNs)
to directly model context-independent targets with connectionist temporal
classification (CTC) objective function, is proposed and achieves compara-
ble results with the hybrid HMM/DNN system. In this paper, we investigate
per-dimensional learning rate methods, ADAGRAD and ADADELTA in-
cluded, to improve the recognition of the end-to-end system, based on the
fact that the blank symbol used in CTC technique dominates the output and
these methods give frequent features small learning rates. Experiment re-
sults show that more than 4% relative reduction of word error rate (WER)
as well as 5% absolute improvement of label accuracy on the training set
are achieved when using ADADELTA, and fewer epochs of training are
needed.
key words: connectionist temporal classification, adaptive per-
dimensional learning rate method, end-to-end ASR

1. Introduction

In the last few years, deep neural networks (DNNs) have
led to great improvements in automatic speech recogni-
tion (ASR). DNNs in ASR systems are commonly used
for acoustic modeling based on a hidden Markov model
(HMM) [1], [2]. In the hybrid HMM/DNN framework,
DNNs, substituting the Gaussian mixture model (GMM),
are trained to estimate the posterior probabilities of HMM
states using cross-entropy criteria as the objective func-
tion. Despite the advances introduced by DNNs, the speech
recognition system still remains sophisticated due to multi-
ple training procedures of the HMM/GMM system, includ-
ing the decision tree for HMM states’ tying, the training of
GMM models and the alignment of data for training DNNs.

Recently, Graves et al. [3] presents an end-to-end ASR
framework, which transcribes audio data into texts directly
using the connectionist temporal classification (CTC) [4]
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objective function. In the CTC technique, no prior knowl-
edge of the labeling alignment is needed and the objective
function is to maximize the sum of all the possible align-
ments of labellings with the help of a forward-backward
algorithm, similar to that for HMMs. Another important
feature is that the modeling units are directly phones or
characters, resulting in simplification of the ASR system.
The decoder integrated the word-level language model into
weight finite state transducers (WFSTs) is introduced in [5],
which makes the performance under the new framework
comparable with that of the traditional HMM/DNN system
and speeds up decoding significantly due to the context-
independent (CI) phone modeling.

In [6], the role of the blank symbol is extensively dis-
cussed upon a similar challenge for handwritten recogni-
tion. Experiments and analyses suggest that the blank sym-
bol dominate the prediction in the early stage of training
since the number of the blank symbol is much larger than
that of other labels. As a result, it is beneficial to give less
importance to the error signal coming from the blank sym-
bol using adaptive per-dimensional learning rates, ADA-
GRAD [7], for instance, during the training.

Although there are many similarities between hand-
written recognition and ASR, the difference is also obvious.
For example, the number of frames in a spoken utterance is
always much larger than that of characters in a handwritten
sentence, which may result in different configurations in the
training stage. For example, the size of one mini-batch may
be different due to the constraint of video memory and the
number of update for ASR is larger. In this paper, we inves-
tigate to use adaptive per-dimensional learning rate methods
to improve the performance of ASR based on the end-to-
end framework, ADAGRAD and ADADELTA [8] included.
Followed the work in [5], deep bidirectional long short-
term memory (LSTM) recurrent neural networks (RNNs)
are used for acoustic modeling. The RNN is trained to learn
the CI phone labels given sequences of speech feature. A
word-level LM, a lexicon and frame-level CTC labels are
compiled into WFSTs separately, which are composed into a
comprehensive search graph in the end. We find that the in-
troduction of per-parameter learning rate methods not only
accelerates the training, but also leads to a higher training
accuracy rate, especially for short sentences.

The rest of the paper is organized as follows. Sec-
tion 2 describes the network architecture and Sect. 3 gives
a brief introduction to the CTC technique. The adaptive per-
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parameter learning rate methods are introduced in Sect. 4.
We report our experiment results in Sect. 5 and conclude our
work in Sect. 6.

2. Model Architecture

Unlike standard feedforward neural networks, RNNs can
use their internal memory to process arbitrary sequences of
inputs, which makes RNNs suitable for sequence modeling
tasks, such as handwritten recognition and speech recog-
nition. To tackle the vanishing gradient problem of train-
ing RNNs, LSTM units are served as the building blocks
of RNNs. LSTM RNNs have been shown to outperform
the state of the art DNNs for acoustic modeling in ASR [9].
Moreover, conventional RNNs are only able to use previ-
ous context, so the future context also deserves to be ex-
ploited and a deep bidirectional RNN (BRNN) is chosen as
our acoustic model.

Given an input sequence x = (x1, . . . , xT ), a BRNN
computes the forward hidden sequence

−→h from t = 1 to T :

−→
h t = σ(−→Whxxt +

−→
Whh
−→
h t−1 +

−→
b h) (1)

where σ is the hidden layer activation, −→Whx denotes the
weight matrix connected inputs with the hidden layer, −→Whh

is the hidden-to-hidden weight matrix, and
−→
b h is the bias

vector. A backward hidden sequence
←−h is computed from

t = T to 1 as well:
←−
h t = σ(←−Whxxt +

←−
Whh
←−
h t+1 +

←−
b h) (2)

At each frame t, the output of the current recurrent
layer is the concatenation of forward and backward hidden
outputs [

−→
h t,
←−
h t], which is the input to the next recurrent

layer.
As mentioned above, LSTM units are used to address

the vanishing gradient problem. In a forward LSTM layer,
the gates and memory cells activation are computed sequen-
tially from t = 1 to T , and the backward ones from t = T
to 1, similarly. The forward computation at time step t is
implemented as follows:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi) (3)

ft = σ(Wf xxt +Wf hht−1 +Wf cct−1 + b f ) (4)

ct = ftct−1 + it tanh(Wcxxt +Wchht−1 + bc) (5)

ot = σ(Woxxt +Wohht−1 +Wocct + bo) (6)

ht = ot tanh(ct) (7)

where σ is the logistic sigmoid function, and i, f , o, c are the
input gate, forget gate, output gate and cell activation vec-
tor, respectively. W.x weight matrices connect inputs with
the units and W.h matrices connect previous hidden outputs
with the units. W.c are diagonal matrices for peephole con-
nections. b. vectors denotes the bias vectors.

3. Connectionist Temporal Classification

Neural networks in the hybrid framework are typically

trained with the cross-entropy (CE) criterion given frame-
level alignments. However, this recipe depends on
HMM/GMMs and the alignments of speech data are irrel-
evant to most speech recognition tasks, where word-level
transcriptions matter. Connectionist temporal classification
(CTC) is an objective function that maximizes the likeli-
hood of a target sequence by effectively summing over all
possible alignments of the input sequence. Hence, neural
networks trained with the CTC objective function do not
need any prior alignments between the input and target se-
quences. Assume that the output layer of a neural network
in the hybrid framework contains K unique labels (charac-
ters, phonemes etc.). A blank symbol is added and useful
for the alignment.

Given a length T input sequence x, the output vector
yt is normalized with a softmax function and represents the
posterior probabilities of emitting labels at time t. A CTC
alignment p = (p1, . . . , pT ) is a frame-level sequence of la-
bels with a length of T . The probability of this alignment is
the production of posterior probabilities at each time:

Pr(p|X) =
T∏

t=1

y
pt
t (8)

A given transcription sequence z can be mapped to
many CTC alignments due to the blank symbol. The set of
CTC alignments corresponding to z is denoted as Φ(z). The
likelihood of z given the input sequence x is then calculated
as the sum of the probabilities of all CTC alignments:

Pr(z|x) =
∑

p∈Φ(z)

Pr(p|x) (9)

The sum operation in the equation above is computationally
intractable. Therefore, a forward-backward algorithm is in-
troduced to recursively solve the problem. The transcription
sequence z is firstly transformed into an augmented label
sequence l = (l1, . . . , l2U+1) after insert a blank symbol into
every pair of the original labels. A forward variable αu

t rep-
resents the probabilities of all CTC alignments which end
with label u at time t and can be computed from αu

t−1 and
αu−1

t−1 . Similarly, the probabilities of all alignments which
start with label u at time t and reach the end time T is de-
noted a backward variable βu

t . So Pr(z|x) is computed as:

Pr(z|x) =
2U+1∑
u=1

αu
t β

u
t

ylu
t

(10)

The objective ln(Pr(z|x)) now is differentiable to the
RNN output yt, and the derivative is derived as follows:

∂ln(Pr(z|x))

∂yk
t

=
1

Pr(z|x)
1

(yk
t )2

∑
u∈Γ(l,k)

αu
t β

u
t (11)

where Γ(l, k) returns the elements whose labels are k. These
errors are back-propagated through the softmax layer and
further into the RNN to update the model parameters.

4. Adaptive Per-Dimension First Order Methods

As the majority of the likelihood Pr(z|x) derives from the
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blank symbol in the CTC training, which will not appear in
the recognition results and contributes to the peaks of phone
or character posterior probabilities [6], [10], emphases on
phone or character labels seems to be beneficial for training.
Adaptive per-dimension first order method, ADAGRAD and
ADADELTA, are adopted to improve the recognition.

ADAGRAD is proposed in [7] and investigated in
[8], [11] for ASR, which demonstrates that this method fails
to improve the recognition compared to the momentum, a
simplest extention to the stochastic gradient descent (SGD),
with the CE objective function. However, a characteristic
of ADAGRAD that the informativeness of rare features is
emphasized during training is attractive in the CTC training.
The update rules for ADAGRAD is:

Δxt = − η√∑t
τ=1 g

2
τ

gt (12)

xt+1 = xt + Δxt (13)

where xt is the parameter of the model, η is a global learn-
ing rate and Δxt is the value to be incremented to xt and gt is
the gradient of parameters at the t-th iteration. As shown in
Eq. (12), large gradients have small learning rates and vice
versa, owing to the accumulation of history gradient mag-
nitudes in the denominator. Meanwhile, a disadvantage of
ADAGRAD is that the learning rates continue to decrease
and will become very small at the end of the training.

ADADELTA is presented in [8] to improve ADA-
GRAD. A decay constant ρ is added to prevent accumulat-
ing the sum of squared gradients over all time. In addition,
the update Δxt−1 also contributes to the current one Δxt re-
ferring with the Hessian approximation. The calculations
are:

E[g2]t = ρE[g2]t−1 + (1 − ρ)g2
t (14)

RMS [g]t =

√
E[g2]t + ε (15)

Δxt = −RMS [Δx]t−1

RMS [g]t
gt (16)

E[Δx2]t = ρE[Δx2]t−1 + (1 − ρ)Δx2
t (17)

where ε is added to better condition the denominator, E[g2]0

and E[Δx2]0 are initialized with 0.

5. Experiments

The experiments are conducted on a subset of Switchboard
corpus with a open-source toolkit Eesen [5]. The first 4000
utterances are selected for cross validation and our training
set contains about 110 hours of transcribed speech, which
are the first one hundred thousand utterances exclude the
validation set. The test set is the Switchboard (SWB) part
of Hub5’00. Deep LSTM RNNs are applied as the acous-
tic model, which involves 4 bi-directional LSTM layers
and each layer has 320 memory cells in both the forward
and backward sub-layers. Inputs of the acoustic model are
40-dimensional filterbank features together with their first

Fig. 1 Phoneme accuracy of each epoch on the training and validation
set

and second orders, amounting to 120-dimensional ones per
frame. 46 CTC labels, including 45 phonemes and the
blank symbol, are chosen as the outputs of the softmax
layer. Specifically, the training utterances are sorted by their
lengths for the parallel. The termination of the training is
as same as that described in [5], depending on the the im-
provement of the average label accuracy (LAC) on the vali-
dation set between two successive epochs. Since the labels
used in the CTC framework are phonemes, the average la-
bel accuracy is equivalent to the average phoneme accuracy
(PAC). The baseline system are trained with SGD and the
learning rate starts with 0.00004 as well as the momentum
is set to 0.9. The global learning rate for ADAGRAD and
ADADELTA is 0.01. The decay rate ρ and constant ε in
ADADELTA are 0.9 and 0.001, respectively. A trigram lan-
guage model (LM) is trained with the transcription of the
training speech and the decoding framework is based on
WFSTs.

The average phoneme accuracies of each epoch on
the training and validation set are firstly shown in Fig. 1.
A sharp increase at the initial stage using adaptive per-
dimensional methods is observed and can be attributed to
the parameter-specific learning rates. However, the PAC
of ADAGRAD rises slowly after several epochs and is sur-
passed by the baseline system. ADADELTA achieves higher
PAC all the time during training and similar phenomenon is
shown on the validation set after the first two epochs.

To further check the performance of adaptive per-
dimensional methods, the average phoneme accuracies of
the last epoch on the training set are reported in Fig. 2, which
are counted every one thousand utterances. The result us-
ing ADAGRAD or ADADELTA significantly outperforms
that using the momentum method at beginning. Since the
training set are sorted by length, this may be ascribed to
the fact that the percentage of the blank symbol is larger
when the utterance is relatively short. Nevertheless, the
average phoneme accuracies of ADAGRAD constantly de-
cline with the length of training utterances becomes longer,
which maybe results from the fact that ADAGRAD makes
the actual learning rate become smaller and smaller. As a re-
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Fig. 2 Average phoneme accuracy of the final epoch on the training set

Table 1 The training and recognition performance of each learning rate
method

Method
PAC%

WER%
Train Valid

momentum 89.55 79.94 20.5
ADAGRAD 86.78 79.44 21.5
ADADELTA 95.05 81.07 19.6

sult, the model updates little with the training goes on in an
epoch and the PAC of in an epoch decreases constantly. The
decay rate introduced in ADADELTA remedies the problem
and improve the training performance, resulting in an over-
all higher phoneme accuracies.

Finally, the word error rates (WER) and average
phoneme accuracies of the last epoch on the training and
validation set are listed in Table 1. Compared to the baseline
system, 4.4% relative reduction of WER is achieved using
ADADELTA, in contrast to the fact that using ADAGRAD
leads to a poor performance. Besides, 5.5% and 1.1% abso-
lute improvements of phoneme accuracy on the training and
validation set are obtained when ADADELTA is utilized.

6. Conclusion

In this paper, we investigate to use adaptive per-dimensional
learning rate methods to improve the recognition perfor-
mance based on an end-to-end ASR framework. Deep
RNNs are trained with CTC objective function for acoustic
modeling and the blank symbol introduced by CTC domi-
nates the output. Instead of momentum, ADAGRAD and
ADADELTA are exploited to give frequent features small
learning rates and emphasize infrequent ones. Experiment
results show that the ADAGRAD deteriorates the recogni-
tion, but that ADADELTA leads to improvement of both
WER and phoneme accuracy on the training set compared

with the baseline system, while ADADELTA proves to be a
robust learning rate method and makes little contribution to
WER in the traditional HMM/DNN system.
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