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SUMMARY This paper proposes a new quantization framework on ac-
tivation function of deep neural networks (DNN). We implement fixed-
point DNN by quantizing the activations into powers-of-two integers. The
costly multiplication operations in using DNN can be replaced with low-
cost bit-shifts to massively save computations. Thus, applying DNN-based
speech recognition on embedded systems becomes much easier. Experi-
ments show that the proposed method leads to no performance degradation.
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1. Introduction

The application of deep neural networks (DNN) in speech
recognition has brought a great improvement in perfor-
mance. DNN-based acoustic model outperforms conven-
tional Gaussian mixture model (GMM) in various tasks [1]–
[3]. However, DNN has much more parameters and requires
a larger amount of computation, which is therefore difficult
to be implemented on devices with lower computational ca-
pacity. All neurons of DNN are processing on the weighted
sum of its inputs. Multiplication is the dominating computa-
tion, which is not hardware-friendly. Compared with other
arithmetic operations, floating-point multiplication is much
more energy-consuming.

This issue has drawn extensive attention. The tech-
nique using low-rank matrix factorization to reduce the
number of parameters is proposed in [4], [5]. The full-rank
weight matrix is represented by the product of two low-rank
matrices, thus reducing the number of neurons as well as
multiplications. The method in [6], [7] tries to find out
the most critical weights based on some salience criterion
and prunes all other weights which are considered unimpor-
tant. After pruning, the weight matrix becomes sparse, and
sparse matrix-vector multiplication can be leveraged. Both
methods exploit the redundancy in DNN and try to limit the
number of free parameters. However, that would impact the
modeling capacity of DNN, so deterioration in performance
is inevitable [4]–[7].

As the energy cost of fixed-point arithmetic is much

Manuscript received February 4, 2016.
Manuscript revised April 29, 2016.
Manuscript publicized July 19, 2016.
†The authors are with the Key Laboratory of Speech Acous-

tics and Content Understanding, Institute of Acoustics, Chinese
Academy of Sciences, Beijing 100190, China.
††The author is with the Xinjiang Laboratory of Minority

Speech and Language Information Processing, China.
a) E-mail: xinganhao@hccl.ioa.ac.cn

DOI: 10.1587/transinf.2016SLL0007

smaller than floating-point, a fixed-point implementation of
DNN is introduced in [8]. All floating-point parameters—
including weights, biases and activations—are converted
into fixed-point integers using linear quantization. The
method can save memory cost and computation time. How-
ever, the large amount of multiplication operations still hin-
ders DNN from being applied on embedded systems, be-
cause the number of multipliers is usually limited on digital
IC hardware such as FPGA.

In this paper, we present a novel quantization method
to remove all multiplications. Differing from linear quan-
tization, the proposed method quantizes the activations of
DNN in a piecewise manner. Specifically, all activations are
quantized into powers-of-two integers. Thus all multiplica-
tions can be replaced by bit-shifts. This makes it convenient
to implement DNN on embedded systems since the demand
for multipliers is greatly reduced, if not eliminated. The
proposed quantization technique is orthogonal to the afore-
mentioned redundancy-removing methods and can be easily
combined with them.

The remainder of this paper is organized as follows.
The next section reviews DNN and its fixed-point imple-
mentation. The piecewise activation quantization method
is presented in Sect. 3. Experimental results are shown in
Sect. 4. Section 5 concludes the work.

2. Fixed-Point Implementation of Sigmoidal DNN

A general deep neural network is a feed-forward neural net-
work with more than one hidden layer. In speech recogni-
tion, DNN is used to estimate the posteriors given the ob-
servations. The vector of speech features f is propagated
through each layer as follows:

x(0) = f (1)

x(l) = σ(l)(W(l) · x(l−1) + b(l)) l = 1, · · · , L (2)

in which W(l) and b(l) are the weight matrix and biases of
layer l respectively; σ(l)(·) is the activation function. For hid-
den layers, the activation function is usually element-wise
sigmoidal function defined as:

σ(x) =
1

1 + e−x
. (3)

It is worth noting that the output of sigmoidal func-
tion ranges between 0 and 1. The small dynamic range of
sigmoid makes sigmoidal DNN suitable for fixed-point im-
plementation. Activations are linearly quantized into 8-bit
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unsigned integers that falls in the [0, 256] interval in fixed-
point implementation of DNN. Besides, weights are normal-
ized and converted into 8-bit signed integers [8]. However,
weights are quantized using high-precision data types such
as the 16-bit short integer to ensure the performance in prac-
tical application. In this work, the weights of DNN are all
converted into 16-bit short integers using linear quantiza-
tion.

3. Quantizing Activations into Powers-of-Two Integers

As mentioned in Sect. 1, fixed-point implementation doesn’t
reduce the amount of free parameters, or the number of mul-
tiplications. Application of fixed-point DNN on embedded
systems still bears huge computational load. To address the
problem, we propose to remove all the multiplications by
piecewise quantizing the activations. Instead of perform-
ing linear quantization on the activations, the activations are
converted into powers-of-two integers. This means the out-
puts of quantized sigmoidal function can only take values
from the set {0, 1, 21, · · · , 2N−2}, where N is the number of
quantization stages. The process is equivalent to the follow-
ing two procedures:

1) linearly quantizing the activations to the [0, 2N−2] inter-
val in the same way as [8];

2) binding each quantized activation to its nearest powers-
of-two integer.

The quantized sigmoid for the case N = 8 is illustrated in
Fig. 1. It can be viewed from Fig. 1 that the sigmoidal func-
tion is quantized into 8 stages. Under the proposed quantiza-
tion framework, computing in the DNN feed-forward mode
can be simplified by substituting bit-shifts for multiplica-
tions.

The activations are quantized in the decoding phase.
As the dynamic range of input features is large and uncer-
tain, quantization is only performed on intermediate nodes
after sigmoidal function. In our work, sigmoidal activations
are obtained without any approximation because computing
sigmoid function costs far less time compared with calculat-
ing the product of weight matrix and activation vector.

During the entire work, the weights are linearly quan-
tized into short integers as described in Sect. 2. We don’t
perform piecewise quantization on weights as [9], because
we find DNN is more susceptible to the quantization error of
weights than to that of activations, which is shown in Fig. 2.
Moreover, the convergence rate of retraining a network with
powers-of-two weights can be very slow.

Figure 1 shows that the input-output mapping of sig-
moidal function is changed by the proposed quantization
method. This will lead to a reduction of DNN’s classifi-
cation accuracy in speech recognition tasks. To remedy the
performance gap, we fine-tune the weights to better adapt to
the piecewise quantized activations. The fine-tuning process
is conducted on the converged floating-point DNN model in
a straightforward way. It is almost the same as the standard
backward propagation except that the floating-point activa-

Fig. 1 Curve of quantized sigmoid for N = 8 (in comparison with linear
quantization).

Fig. 2 The relative WER increase in speech recognition with regard to
the quantization error. In each case, only weight or activation is quantized
into powers of two while the other quantized linearly. Different quantiza-
tion error is obtained by modifying the value of N.

tions are converted in the following manner:

ỹ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 y ∈ (0, 2−N+1)

2−N+2 y ∈ [2−N+1, 3
4 × 2−N+3)

2−n+1 y ∈ [ 3
4 × 2−n+1, 3

4 × 2−n+2)

n = N − 2, · · · , 2
1 y ∈ [ 3

4 , 1)

(4)

where N is the number of stages into which the activations
are quantized and larger than 2. In experiments, since the
performance of piecewise quantized model is slightly worse
than the floating-point model, only a single sweep over the
training data has to be carried out.

4. Experiments

To evaluate the performance of the proposed method, exper-
iments were carried out on a Chinese large vocabulary con-
tinuous speech recognition (LVCSR) task. The DNN model
we used was trained with about 3000 hours of speech data,
including varied styles such as broadcast, conversation, and
telephone calls. 2 hours of speech data was used for testing.
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Table 1 Experimental results of piecewise quantized DNN on speech
recognition tasks. ‘-’ and ‘+’ denote that the result is obtained before and
after fine-tuning respectively.

method WER (%)
floating-point 18.3

linear quantization 19.0

piecewise
quantization

#stages - +

N=8 19.2 19.0
N=7 18.4 18.3
N=6 19.3 19.2

The input feature was 13-dimention perceptual linear
predictive (PLP) feature [10] with up to third-order deriva-
tives. The feature was augmented with previous and next
5 frames to form a 572-dimension vector, which acted as
the input to DNN. The DNN model has five hidden layers
with 2048 nodes in each layer. The output layer consists of
19508 nodes, corresponding to tied context-dependent pho-
netic states.

The floating-point DNN was trained to convergence
with the training data. We first applied fixed-point imple-
mentation on the DNN using linear quantization. Then the
activations of the fixed-point model was re-quantized into
power-of-two values. Different numbers of stages were tried
and fine-tuning was performed. All the above models were
used to perform speech recognition on the testing data and
word error rate (WER) was calculated. For all the models
tested, the decoding configuration stayed identical. Table 1
presents the results.

It can be noted the performance gap between piece-
wise and linear quantized model is fairly small. In the case
of N = 7, the piecewise quantized model even performs
as well as the original unquantized floating-point model in
terms of WER. N here can be treated as a hyper-parameter
that needs to be cross-validated. Meanwhile, we can observe
that the WER reduction brought by fine-tuning is rather lim-
ited (0.5% to 1% relative). We would like to ascribe this to
DNN’s insensibility to the quantization error of activations.
The fixed-point model with piecewise quantized activations
performs well enough, so there is not much room for im-
provement left to fine-tuning.

We also evaluated the speed performance of two quan-
tization frameworks. The platform on which we carried
out experiments is Cyclone IV E FPGA (EP4CE22E22C8).
This device has 132 embedded 9-bit multiplier elements
which can be used for calculating multiplications, and
22,320 logic elements reserved for bit-shifting or other op-
erations. As is expected, the number of multipliers is rather
small, which is quite common among FPGA-like embed-
ded platforms. In this experiment, only the speed of DNN’s
feed-forward process was tested. The result is shown in Ta-
ble 2. The speed performance is measured in the number of
speech frames processed by FPGA per second (FPS). The
clock frequency of the used FPGA is 50MHz.

As is verified by the experiment, since there are abun-
dant resources for bit-shifting operations on FPGA, piece-
wise quantized DNN can be easily designed to compute in

Table 2 Comparison of speed performance of two quantization frame-
works on FPGA.

method FPS
linear 109

piecewise 316

a more efficient parallel fashion and thus obtains a better
speed performance on FPGA than linearly quantized DNN.

5. Conclusion

In this paper, we present a more hardware-friendly quanti-
zation framework for deep neural networks. Under this new
framework, activations are converted into fixed-point values
using piecewise quantization instead of conventional linear
quantization. By quantizing the output of activation func-
tion into powers-of-two integers, the multiplication opera-
tions that dominate in DNN can be replaced by bit-shifts.
Thus, the computational resource demand can be alleviated.
The piecewise quantization is not performed on weights be-
cause DNN is more sensitive to the quantization precision of
weights. In experiments, the proposed quantization method
is found to be well compatible with speech recognition sce-
nario: the model with piecewise quantized activations per-
forms as well as the model with linearly quantized activa-
tions. Also, the accuracy gap between piecewise quantized
and the original floating-point models is negligible; this is
achieved before a fine-tuning process is conducted. Never-
theless, the performance can be further improved by fine-
tuning. Moreover, the speed superiority of the proposed
quantization method is verified on an FPGA platform. This
work makes it possible to deploy DNN-based speech rec-
ognizer on embedded systems with restricted computational
resources.
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