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SUMMARY Among various training concepts for speaker adaptation,
Speaker Adaptive Training (SAT) has been successfully applied to a stan-
dard Hidden Markov Model (HMM) speech recognizer, whose state is asso-
ciated with Gaussian Mixture Models (GMMs). On the other hand, focus-
ing on the high discriminative power of Deep Neural Networks (DNNs),
a new type of speech recognizer structure, which combines DNNs and
HMMs, has been vigorously investigated in the speaker adaptation research
field. Along these two lines, it is natural to conceive of further improvement
to a DNN-HMM recognizer by employing the training concept of SAT. In
this paper, we propose a novel speaker adaptation scheme that applies SAT
to a DNN-HMM recognizer. Our SAT scheme allocates a Speaker Depen-
dent (SD) module to one of the intermediate layers of DNN, treats its re-
maining layers as a Speaker Independent (SI) module, and jointly trains the
SD and SI modules while switching the SD module in a speaker-by-speaker
manner. We implement the scheme using a DNN-HMM recognizer, whose
DNN has seven layers, and elaborate its utility over TED Talks corpus data.
Our experimental results show that in the supervised adaptation scenario,
our Speaker-Adapted (SA) SAT-based recognizer reduces the word error
rate of the baseline SI recognizer and the lowest word error rate of the SA
SI recognizer by 8.4% and 0.7%, respectively, and by 6.4% and 0.6% in the
unsupervised adaptation scenario. The error reductions gained by our SA-
SAT-based recognizers proved to be significant by statistical testing. The
results also show that our SAT-based adaptation outperforms, regardless of
the SD module layer selection, its counterpart SI-based adaptation, and that
the inner layers of DNN seem more suitable for SD module allocation than
the outer layers.
key words: Deep Neural Networks, Hybrid DNN-HMM, Speaker Adapta-
tion, Speaker Adaptive Training

1. Introduction

Unavoidably, the development of pattern recognizers has to
cope with the training sample finiteness problem. The rec-
ognizers are trained using a finite amount of training sam-
ples in hand but must accurately work over (practically infi-
nite) unseen testing samples.

In the speech recognition field, this finiteness prob-
lem has been particularly investigated in the speaker adapta-
tion framework [1]–[6]. Assuming the problem’s existence,
speech recognizers are often trained in a speaker indepen-
dent (SI) mode and adapted to the unseen testing samples of
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new speakers.
In many speaker adaptation scenarios, only a limited

amount of speech samples are available. Since the limita-
tion of training samples makes it difficult to adapt the entire
recognizer, usually just some part of it is adapted. In this
partial adaptation scheme, SI recognizers are not necessar-
ily the best choice for the initial status for the adaptation. SI
training does not assume that part of the trained recognizer
will be replaced in the later adaptation stage. As one so-
lution to this inadequacy, Speaker Adaptive Training (SAT)
was proposed [5], [6]. If we assume that some part of the
recognizer will be replaced later, the remainder should be
trained from the start, based on the assumption of such a re-
placement. Following this understanding, SAT jointly trains
the speaker-oriented part of the recognizer and its remain-
der on the premise that the speaker-oriented part will be re-
placed in the adaptation stage.

In parallel with the advancement of speaker adaptation
technologies, the speech recognizer, which has long been
constructed by Gaussian Mixture Models (GMMs) and Hid-
den Markov Models (HMMs), is welcoming a new hybrid
structure of Deep Neural Networks (DNNs) and HMMs [7]–
[9]. However, despite the high utility demonstrated by DNN
in various tasks (e.g., [10]), the hybrid DNN-HMM has
not yet completely solved the sample finiteness problem in
speaker adaptation frameworks, i.e., insufficient adaptation
to unseen speakers.

Focusing on this situation, various speaker adaptation
methods for DNN-HMM recognizers have been extensively
studied [11]–[28]. A principal adaptation strategy in these
methods is to adapt only the DNN part without changing
the pre-trained HMM part. The methods, which also adopt
some restriction mechanisms in DNN training to avoid the
over-training problem [29], are categorized into the follow-
ing two main groups: 1) restricting the network’s high
feature representation capability using additional small-
size adaptable parameters [11]–[22], and 2) restricting the
network’s capability by incorporating some regularization
terms in the adaptation stage [23], [24]. The first group of
methods are further subdivided as follows: 1) adapting only
the linear networks inserted into an SI DNN [11]–[15], 2)
adapting such limited size augmented features as speaker
code [16], [17] or i-vector [18]–[20] in SI DNN, and 3)
adapting speaker dependent (SD) parameters embedded in
the node activation function of SI DNN [21], [22]. A com-
mon maneuver by the second group of methods is to secure
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a large DNN capability and control it with regularization.
Among a number of possibilities of implementing regular-
ization, its effect was studied using the regularization term
based on either the L2 norm of the difference between an
initial SI DNN and an adapted DNN [23] or the Kullback-
Leibler divergence between the outputs of an initial SI DNN
and an adapted DNN [24].

The first group of speaker adaptation methods for
DNN-HMM recognizers is probably efficient based on us-
ing a limited size of adaptable parameters. However, the
intrinsic value of DNN employment is to fully exploit the
DNN’s veiled power. In addition, the second group of meth-
ods simply used SI DNN as an initial condition for adap-
tation, although it straightforwardly treated DNN’s poten-
tial. In the light of the SI-DNN-based initialization, the first
group methods were also in the same situation as the second
group.

Motivated by the above analysis about the preceding
speaker adaptation methods for the hybrid DNN-HMM and
the advantages of the SAT concept, we proposed a new
SAT-based speaker adaptation scheme for the DNN-HMM
speech recognizer [30]. Regarding the employment of SAT
and DNN, our method shares a certain similarity with the
recent SAT-based DNN-HMM recognizers [25]–[28]. How-
ever, it is characterized by introducing modularity, more
precisely localizing SD module, in the DNN part. The
network weight matrix and bias vector of one layer in the
DNN is treated as the SD module and the DNN remainder
is treated as the SI module†. Based on the SAT concept,
multiple SD modules for training speakers and the SI mod-
ule are jointly trained over the training speech data of many
speakers, the trained SD modules are replaced by a new SD
module for a target speaker, and only the new SD module is
adapted using the speech data of the target speaker.

We previously outlined the formalization of our adap-
tation scheme and obtained its preliminary experimental re-
sults in the supervised adaptation scenario [30]. In this pa-
per, we detail the formalization, discuss its relation with
other SAT-based approaches, and show the effectiveness of
our method in supervised and unsupervised adaptation sce-
narios.

2. Preparation

2.1 Speaker Adaptation: General Framework and Conven-
tional Training Scheme

Speaker adaptation generally assumes that an acoustic
model in the speech recognizer consists of two types of pa-
rameter sets: a seed parameter set (Λ) and an adaptation
parameter set (gt for adaptation-target speaker t). Seed pa-
rameter set Λ determines the initial status of the acoustic
model before adaptation; gt adapts the acoustic model state
initialized by Λ for target speaker t.

†The matrices of multiple layers can be used as the SD module.
However, because a small-size SD module is clearly favorable for
memorization, we focus on the one-layer SD module.

Conventionally, the seed and adaptation parameter sets
are trained in the following two-stage manner.

First, in the training stage, the seed parameter set is
estimated in the SI training using the data spoken by many
speakers as follows:

ΛSI = arg min
ΛSI

ESI(ΛSI), (1)

whereΛSI is the seed parameter set prepared for the SI train-
ing and ΛSI is the ΛSI’s state that minimizes error function
ESI that represents the recognizer’s accuracy over the train-
ing data of many speakers††. No adaptation parameters are
involved here.

Next, in the adaptation stage, gt is optimized as

gt = arg min
gt

ESDt(ΛSI, gt), (2)

where ESDt is the error function defined over the speech data
of target speaker t. In the adaptation, ΛSI is used as the seed
status of the acoustic model and is fixed. The acoustic model
is improved using gt for target speaker t, or in other words,
it is adapted for speaker t.

2.2 Speaker Adaptive Training-Based Speaker Adaptation

As for the general speaker adaptation in Sect. 2.1, the SAT-
based framework uses both the seed and adaptation parame-
ters. However, unlike the conventional estimation of Eq. (1),
it jointly estimates seed parameter set ΛSAT and multiple
adaptation parameter sets G = (g1, · · · , gs, · · · , gS ), where
gs is an adaptation parameter set for training speaker s and
S is the number of speakers in the training data pool. This
joint estimation procedure is formalized as

(ΛSAT,G) = arg min
(ΛSAT,G)

ESAT(ΛSAT,G), (3)

where ESAT(ΛSAT,G) =
∑S

s=1 ESDs(ΛSAT, gs), and ESDs is
the error function defined over the speech data of training
speaker s. Here, ΛSAT is not fixed but trained while gs is
switched for every speaker s, and all of the adaptation pa-
rameter sets G are also trained.

In the adaptation stage, all of the adaptation parameter
sets in G are replaced with adaptation parameter set gt that is
newly prepared for target speaker t. Then, only gt is adapted
using his/her speech data as follows:

gt = arg min
gt

ESDt(ΛSAT, gt). (4)

Here, similar to Eq. (2), ΛSAT is used as the seed for adapta-
tion and is fixed.

In the joint estimation stage of Eq. (3), ΛSAT is opti-
mized on the premise that gt is adapted in conjunction with
the use of ΛSAT in the adaptation stage of Eq. (4). The con-
††Throughout this paper, overline represents the optimized sta-

tus of its corresponding parameter set.
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sistency between the seed model estimation stage and the
adaptation stage naturally helps ΛSAT work better than ΛSI

in the adaptation.
In the case of the GMM-HMM recognizer, the mean

vectors, the covariance matrices, and the mixture weights of
GMM are generally used as ΛSAT. In such cases, gt is the
transformation matrices (plus their corresponding bias vec-
tors) for the mean vectors and the covariance matrices and
are often adapted using Maximum Likelihood Linear Re-
gression (MLLR) [1] or feature space MLLR (fMLLR) [2]
methods.

2.3 Hybrid DNN-HMM Speech Recognizers

2.3.1 Overview

Our SAT-based speaker adaptation scheme uses the hybrid
DNN-HMM speech recognizer whose structure is illustrated
in Fig. 1. In this hybrid structure, the GMM part of the con-
ventional GMM-HMM recognizer is replaced by the DNN.
The adopted DNN is a standard MLP network whose node
has trainable connection weights and a trainable bias. We
denote the weight matrix and the bias vector between net-
work layers Ll−1 and Ll as Wl and bl. We also denote the
pair of Wl and bl as λl = {Wl, bl}. The example DNN in the
figure has seven layers {L0,L1, · · · ,L6}. For simplicity, we
omit the biases in all of the illustrations in this paper.

Given a speech input, the recognizer first converts it
to a sequence of acoustic feature vectors X = {xτ; τ =
1, · · · ,T }, where xτ is the τ-th acoustic feature vector† in
X and T is the length of X. Next, the recognizer estimates
posterior probability p(Wc|X) for the pair of X and each of
the possible word sequences {Wc; c = 1, · · · ,C} and classi-
fies X to the class with the largest posterior probability value
among the C classes. Clearly, the recognizer’s classification
accuracy depends on the estimation quality for p(Wc|X).

In the DNN-HMM recognizer, p(Wc|X) is estimated
by p(Wc|X){ΛDNN,ΛHMM}, which is a function of ΛDNN (train-
able parameters of DNN) and ΛHMM (trainable parame-
ters of HMM). Accordingly, the training seeks the state

Fig. 1 Structure of hybrid DNN-HMM speech recognizer

†The definition of x̃τ, used in Fig. 1, will be given in the next
subsection.

of p(Wc|X){ΛDNN,ΛHMM} that achieves the highest possible
classification accuracies on testing speech data by updating
ΛDNN and ΛHMM.

2.3.2 Computation of Posterior Probabilities

p(Wc|X){ΛDNN,ΛHMM} is computed in the following divide-
and-conquer manner. Based on the Bayes theorem, it is
replaced with p(X|Wc){ΛDNN,ΛHMM} and an estimate of prior
probability p(Wc), which is often calculated by such lan-
guage models as N-gram. Then p(X|Wc){ΛDNN,ΛHMM} is
calculated using such HMM probabilities as state output
probability estimates {p(xτ|θ)ΛDNN ; τ = 1, · · · ,T , and θ =
1, · · · ,Θ}, where Θ is the number of possible states of
HMM. Here, again based on the Bayes theorem, p(xτ|θ)ΛDNN

is replaced by scaled likelihood p(θ|xτ)ΛDNN/p(θ). State
posterior probability p(θ|xτ)ΛDNN is calculated by DNN,
and state prior probability p(θ) is estimated as p(θ)ΛHMM ,
based on the frequency of the state assignment produced by
HMM’s forced alignment.

Estimate p(θ|xτ)ΛDNN must maintain the nature of the
probability function. To meet this requirement, the DNN
part uses the softmax activation functions at its output nodes.

Similar to many recent HMM-based speech recogniz-
ers, the DNN-HMM recognizers usually adopt context de-
pendent acoustic models. In this situation, the number of
HMM states is too large to appropriately calculate state pos-
terior probability estimate p(θ|xτ)ΛDNN . To circumvent this
problem, the HMM states are often clustered into several
thousands of sub-phonetic units, i.e., senones, each repre-
senting the HMM tied-state. Following this strategy, in
the DNN-HMM framework, the estimate of state poste-
rior probability p(θ|xτ)ΛDNN is replaced with the estimate of
senone posterior probability p(k|xτ)ΛDNN that is calculated
using network output yτk, where k is the senone class index
(k = 1, · · · ,K), assuming that K is the number of senones.

In most cases of the recent hybrid DNN-HMM speech
recognizer, the concatenation of several acoustic feature
vectors x̃τ = {xτ−τc , · · · , xτ, · · · , xτ+τc } is used in p(θ|xτ)ΛDNN

instead of xτ, where τc is a small natural number. Accord-
ingly, p(k|xτ)ΛDNN is further replaced by p(k|x̃τ)ΛDNN .

2.3.3 Training Procedure

The DNN-HMM recognizer is basically trained using a set
of speech data spoken by multiple speakers in the SI mode.

The training procedure is twofold: one for the HMM
part and another for the DNN part. The HMM part is first
trained within the training for the GMM-HMM speech rec-
ognizer. The DNN part is subsequently trained using the
senone labels produced by the forced alignment with the
baseline GMM-HMM speech recognizer. These labels are
used as teaching signals to train the acoustic feature vec-
tor inputs. Using these labels, such an objective function
as Cross Entropy (CE) error is defined, and the DNN pa-
rameters are optimized under a condition that minimize the
defined objective function.
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Since the SI-training procedure for the DNN part is the
same as the initialization stage of our SAT-based DNN train-
ing, we minutely describe it in the framework of our pro-
posed method.

3. New Speaker Adaptive Training Localizing Speaker
Modules in DNN

3.1 Overview

In principle, when a speech recognizer is developed for rec-
ognizing such continuous speech samples as spoken sen-
tences, the whole recognizer must be optimized to increase
the recognition accuracy for such long speech inputs. How-
ever, because the number of possible long speech unit
classes is often astronomically large and collecting a rea-
sonable amount of training samples is almost impossible
for such an extremely large number of classes, most speech
recognizers are trained to aim at the accurate classification
of such short units as words, phonemes, and senones. Fol-
lowing this general training guideline for large-scale recog-
nizers, we set the evaluation criterion of our recognizer to
word recognition accuracy and train/adapt its DNN part to
increase its feature-vector-wise senone classification accu-
racy.

The SAT-based scheme consists of the following three
stages: 1) initialization, 2) SAT, and 3) speaker adaptation.
All of the training procedures in these stages adopt the crite-
rion of minimizing the CE error function between the DNN
outputs and the senone labels that are produced by the forced
alignment with the GMM-HMM speech recognizer trained
on the Boosted Maximum Mutual Information (BMMI) cri-
terion [31]. In the initialization stage, we train the whole
DNN part in the standard SI discriminative training fashion.
In the SAT stage, we localize the SD modules in the DNN
part and train the entire DNN while switching the SD mod-
ules along with the speaker change in the training data set.
Finally, in the speaker adaptation stage, we train only a new
SD module for a target speaker using his/her speech data.

3.2 Training Procedures

3.2.1 Initialization Stage

We assume that speech samples X = {Xn; n = 1, · · · ,N} are
available to train the DNN part, where Xn is the n-th training
sample and N is the number of such samples. The samples
of X are spoken by many speakers.

In Fig. 2, we illustrate our initialization procedure
for a 7-layer example of a DNN part, where λSI-DNN

l =

{WSI-DNN
l , bSI-DNN

l } (l = 1, · · · , 6). As mentioned before, no
bias vectors are depicted. Given training feature vector input
x(n)
τ of training sample Xn to input layer L0, the DNN part

emits network outputs {y(n)
τk ; k = 1, 2, · · · ,K} at output layer

L6. The largest output represents the senone classification
decision, which is evaluated using the correct class informa-
tion determined by the forced alignment with the BMMI-

Fig. 2 DNN structure and SI training procedure for initialization stage

trained GMM-HMM speech recognizer.
For discussion generality, we consider the initializa-

tion of L-layer DNN parameters ΛSI-DNN (= {λSI-DNN
l ; l =

1, · · · , L}). To accelerate the initialization training, we
preliminarily train ΛSI-DNN using the Restricted Boltz-
mann Machine (RBM) [32] in the greedy layer-wise man-
ner [10]. For later discussions, we denote the RBM-trained
state of ΛSI-DNN as ΛRBM (= {λRBM

l ; l = 1, · · · , L} =
{{WRBM

l , bRBM
l }; l = 1, · · · , L}). Next, we conduct the fol-

lowing regularization-incorporated CE error minimization:

ΛSI-DNN =

arg min
ΛSI-DNN

{
ECE(ΛSI-DNN;X) +

α

2
R(ΛSI-DNN)

}
, (5)

where ECE is the accumulated CE error defined as

ECE(ΛSI-DNN;X) = −
N∑

n=1

T∑
τ=1

K∑
k=1

t(n)
τk ln y(n)

τk . (6)

Here, t(n)
τk is the teaching signal for y(n)

τk that indicates 1 when

x(n)
τ belongs to senone class k but indicates 0 otherwise, R

is a regularization term, and α is a non-negative constant
regularization coefficient. In this minimization,ΛRBM works
as the initial status of ΛSI-DNN.

We adopt the regularization to avoid the over-training
problem that is often caused by large-size DNNs. The reg-
ularization procedure will be described in Sect. 3.2.4. Then
regularization-incorporated minimization is done using the
following Error Back Propagation (EBP) parameter update:

ΛSI-DNN ←

ΛSI-DNN − ε
∂
{
ECE(ΛSI-DNN;X) + α2 R(ΛSI-DNN)

}

∂ΛSI-DNN
, (7)

where ε is the positive scalar training rate.
We use the above estimated parameters ΛSI-DNN for a

baseline SI recognizer and also as an initial status of the
subsequent SAT stage.

3.2.2 Speaker Adaptive Training Stage

In Fig. 3, we illustrate the procedure of conducting SAT with
SD module allocation. Because of DNN’s multi-layer struc-
ture, the SD modules can be allocated to any of the interme-
diate layers. In the figure, as an example, we allocate SD
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Fig. 3 DNN structure and SAT training procedure for SAT stage

modules G2 = {g1
2, g

2
2, · · · , g

S
2 } to L2, where S is the number

of speakers in the training data set, gs
2 (= {W s

2, b
s
2}) is the

SD module parameters for training speaker s, and ΛSAT-DNN

(= {λSAT-DNN
1 , λSAT-DNN

3 , · · · , λSAT-DNN
L )} are the parameters of

the network layers other than the SD module layer, where
λSAT-DNN

l = {WSAT-DNN
l , bSAT-DNN

l }.
The figure shows two example cases of the training

procedure: one for using the speech data of Speaker 1
(s = 1) and another for Speaker 2 (s = 2). When using
the data of Speaker 1, only the nodes of the SD module for
Speaker 1 are connected with the nodes of the adjacent lay-
ers; the nodes of the other SD modules are disconnected
from the nodes in the adjacent layers. The green line de-
picts this situation, and the training is executed only along
this path. Similarly, the blue line depicts the situation when
using the data of Speaker 2. Each SD module is trained only
using its corresponding speaker’s data, but the other part of
the network, i.e., ΛSAT-DNN, is trained using the data of all of
the S speakers.

Again for discussion generality, we consider the case of
using SD module layer LlSD of the L-layer DNN. The SAT
procedure for this general setting is formalized as follows:

(ΛSAT-DNN,GlSD ) =

arg min
(ΛSAT-DNN,GlSD )

{
ESAT-CE(ΛSAT-DNN,GlSD ;X) +

β

2
R(GlSD )

}
,

(8)

where

ESAT-CE(ΛSAT-DNN,GlSD ;X) =
S∑

s=1

ECE(ΛSAT-DNN, g
s
lSD

;Xs). (9)

Here, ΛSAT-DNN = {λSAT-DNN
l ; l = 1, · · · , lSD − 1, lSD +

1, · · · , L}, GlSD = {gs
lSD

; s = 1, · · · , S }, gs
lSD

is the param-
eters of the SD module for training speaker s, Xs is the

Fig. 4 DNN structure and adaptation training procedure for speaker
adaptation stage

speech data spoken by training speaker s, and β is a non-
negative scalar regularization coefficient. The definition of
ECE(ΛSAT-DNN, g

s
lSD

;Xs) is basically the same as the accu-
mulated CE error of Eq. (6), except that SD module gs

lSD
is

switched here for every training speaker. The training aims
to find the optimal states of both ΛSAT-DNN and GlSD that cor-
respond to the minimum CE error situation achieved in con-
junction with the SD-module-based regularization. Here,
we define the regularization term only using GlSD , taking
into account the training data limitation for each training
speaker. The regularization details will be explained in
Sect. 3.2.4. With regard to the initial setting of ΛSAT-DNN

and GlSD , we initialize them using ΛSI-DNN, as described in
Sect. 3.2.1. The minimization in Eq. (8) is conducted using
the EBP parameter update rule.

The formula in Eq. (8) is basically the same as the orig-
inal SAT formula of Eq. (3) except for the presence of the
regularization term.

3.2.3 Speaker Adaptation Stage

In the adaptation stage, all of the adaptation parameter sets
in GlSD are removed and replaced with a new adaptation
parameter set gt

lSD
for target speaker t. Then, only gt

lSD
is

adapted using his/her speech data.
In Fig. 4, we illustrate the speaker adaptation proce-

dure, assuming we set the SD modules to L2 of the DNN
trained in the SAT stage. In the figure, gt

2 (= {Wt
2, b

t
2}) rep-

resents the SD module parameters for target speaker t, and

{λ
SAT-DNN
l ; l = 1, 3, · · · , L} represents the network parame-

ters optimized in the SAT stage. The inserted SD module
gt

2 is adapted to gt
2 using the speech data of speaker t. An

important point here is that only the inserted SD module is
adapted; the remaining DNN part is fixed.

In the scenario where the SD module layer is LlSD , the
adaptation stage is formalized as follows:

gt
lSD
=

arg min
gt

lSD

{
ECE(ΛSAT-DNN, g

t
lSD

;Xt) +
γ

2
R(gt

lSD
)
}
, (10)

where gt
lSD

is the SD module parameters for speaker t, Xt is
the speech data spoken by speaker t for adaptation, and γ
is a regularization coefficient. The regularized minimization
of ECE is conducted only with respect to gt

lSD
, just using Xt.
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Similar to the SAT stage, the minimization in Eq. (10) is ex-
ecuted with the regularized EBP training. The regularization
here will be described in Sect. 3.2.4.

The formula in Eq. (10) is basically the same as the
original SAT formula of Eq. (4) except for the presence of
the regularization term. Accordingly, as suggested by the
effectiveness of the original SAT scheme, the adaptation us-
ing ΛSAT-DNN is expected to work better than the adaptation
using ΛSI-DNN.

3.2.4 Regularization

To avoid over-training, we adopt regularization-incorporated
error minimization in all of our DNN training procedures.
Among various possibilities, we especially use the L2-norm-
based regularization term.

For the initialization stage of the SAT-based scheme or
the standard SI training, we define the regularization term as
follows:

R(ΛSI-DNN) =
L∑

l=1

(
‖WSI-DNN

l ‖2 + ‖ bSI-DNN
l ‖2

)
, (11)

which is often referred to as weight decay in the neural net-
work research field.

For the SAT stage, we adopt the following regulariza-
tion term:

R(GlSD )

=

S∑
s=1

(
‖W s

lSD
−W

SI-DNN
lSD

‖2 + ‖bs
lSD
− b

SI-DNN
lSD

‖2
)
, (12)

which was previously called L2 prior regularization [23].

This regularization softly ties GlSD to λ
SI-DNN
lSD

=

{WSI-DNN
lSD

, b
SI-DNN
lSD

}. In the SAT stage, each SD module is
trained using just one speaker’s data, an amount that is of-
ten limited. But the training of the remaining DNN part,
ΛSAT-DNN, can be done using the data of all of the training
speakers. Considering this difference in data size, we define
the regularization term only for GlSD .

For the speaker adaptation stage, we also define the L2

prior-based regularization term for the SD module of target
speaker t, gt

lSD
, as follows:

R(gt
lSD

)

= ‖Wt
lSD
−Wanchor

lSD
‖2 + ‖bt

lSD
− banchor

lSD
‖2, (13)

where gt
lSD

is softly tied to its anchor state, ganchor
lSD

=

{Wanchor
lSD

, banchor
lSD

}, such that it does not over-fit Xt.
ganchor

lSD
can be prepared in several different ways. Sim-

ple ways include using a network initialized by small ran-
dom numbers and using the SD module of the SI-trained

network, λ
SI-DNN
lSD

. Compared to the former, the latter would
better fit to the anchor for speaker adaptation (or adaptation-
oriented regularization): The latter module is already trained

for speech recognition. However, the SI training reflects
none of the SAT concept. Obviously, the anchor state should
import the SAT concept at least to some extent, since the
anchor is used for the adaptation of the SAT-based network.
Taking this into account, we adopt the following three-step
method: 1) remove GlSD from the DNN part trained by

Eq. (8); 2) insert λ
SI-DNN
lSD

into the SD module layer of the
DNN part; 3) re-train (in the SI training sense) the SD mod-
ule using all the training speech data, while fixing the re-
mainder of the DNN part, i.e., ΛSAT-DNN. The resulting state
of the SD module is used as ganchor

lSD
.

The anchor state produced in the above way is also used
as the initial status of the target speaker’s SD module in the
adaptation stage. This initialization is expected to be effec-
tive for successive adaptation, because the anchor state is
trained so as to utilize the optimized SAT-based network.

3.3 Relations with Preceding SAT-Based DNN-HMM
Speech Recognizers

In parallel with our proposed scheme, several speaker nor-
malization techniques for DNN-HMM recognizers have
been investigated [25]–[28]. These techniques adopted
canonical DNN modeling of a virtual representative speaker,
which is different from a standard SI-training-based DNN.
The canonical DNN represented one (even a virtual) speaker
in a compact form, and this nature is clearly common to the
SAT concept.

The design of the canonical DNN was based in
common on the speaker normalization applied to the in-
put features, although the normalization was done dif-
ferently. It was conducted using GMM-HMM recogniz-
ers [25], [26], DNN-HMM recognizers [28], and addition-
ally adopting a speaker normalization network whose input
was i-vector [27]. Compared with these techniques based on
input feature level normalization, our scheme, in which the
normalization (or adaptation) is embedded in the deep layers
of DNN, is characterized by a positive use of DNN power.

4. Experiments

4.1 Data Preparation

We tested our proposed method on the difficult, lecture
speech data of the TED Talks† corpus and prepared three
data sets: training, validation, and testing.

The training data set consisted of the speech data of
300 speakers; the data of each speaker were about 15 min-
utes long. The total length of the training data was about 75
hours††.

The validation data set consisted of the speech data of
ten speakers, each of whom was different from the speak-
ers in the training data set. This set was used for finding

†http://www.ted.com
††In our previous publication [30], we mistakenly reported that

this length was 150 hours.
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the optimal values of the hyper-parameters, which produced
high recognition accuracies over the set itself, such as the
learning rate and the regularization coefficient.

The testing data set consisted of the speech data of 28
speakers, which was used for the IWSLT2013 testing data
set [33]. The speakers in this testing data were different
from those both in the training and validation data sets. Each
speaker’s data ranged from 2.6 to 16.5 minutes, and the av-
erage length of the testing data was about 8.5 minutes.

4.2 Acoustic Feature Representation

The input speech was first converted to a series of acoustic
feature vectors, each of which was calculated through a 20-
ms Hamming window that was shifted at 10-ms intervals.
The acoustic feature vector consisted of 12 Mel-scale Fre-
quency Cepstrum Coefficients (MFCCs), logarithmic power
(log-power), 12 ΔMFCCs, Δlog-power, 12 ΔΔMFCCs, and
ΔΔlog-power, where Δ and ΔΔ denote the first and second
derivatives. The acoustic feature vectors had 39 dimensions.
Next, the 11 adjacent acoustic feature vectors were concate-
nated as a 429-dimensional input to the DNN part. Each el-
ement of the input vectors was normalized so that its mean
and variance became 0 and 1.

4.3 Evaluated Recognizers

To evaluate our SAT-based adaptation scheme, we compared
the following four recognizers: 1) the SAT-based DNN-
HMM recognizer (SAT recognizer), 2) its adapted version
(for a target speaker) (Speaker-Adapted SAT (SA-SAT) rec-
ognizer), 3) the SI-based DNN-HMM recognizer (SI recog-
nizer ), and 4) its adapted version (Speaker-Adapted SI (SA-
SI) recognizer). Here, the SI recognizer works as a baseline
case in the experiments, and the SI and SA-SI recognizers
are the counterparts to the SAT and SA-SAT recognizers,
both of which are based on our proposed scheme.

We adopted a simple seven-layer DNN as the baseline
SI recognizer. The whole network was first pre-trained by
layer-wise RBM training and successively trained using the
CE error minimization over the training data set (Fig. 2).

The SA-SI recognizer was produced by adapting one
of the SI recognizer’s intermediate network layers, which
corresponded to an SD module, using the speech data of an
adaptation-target speaker selected from the 28 testing speak-
ers. To avoid the over-training problem due to the limited
amount of adaptation data, we applied the regularization
term of Eq. (13) to the update of the weights and biases of

layer lSD, setting ganchor
lSD

to λ
SI-DNN
lSD

, when adapting the SI
recognizer to the SA-SI recognizer.

We built the SAT recognizer by the following proce-
dures, as described in Sect. 3. We adopted the baseline SI
recognizer as the initial status of the SAT recognizer and in-
serted 300 SD modules into the baseline recognizer. Here,
the number of SD modules is the same as that of the train-
ing speakers. We next generated a trained network along
the SAT-based optimization course of Eq. (8). Finally, we

completed the SAT recognizer by replacing the 300 used SD
modules with a new SD module, which was the anchor mod-
ule described in Sect. 3.2.4. This new SD module worked as
the initial status for successive adaptations.

The SA-SAT recognizer was produced by adapting
only the SD module of the SAT recognizer in the speaker-
by-speaker mode, where an adaptation-target speaker was
selected from the 28 testing speakers.

In all of our recognizers, the HMM part used the
context-dependent acoustic model and used the 4-gram lan-
guage model that was trained over the transcriptions of TED
Talks, News Commentary, and English Gigaword [34]. The
baseline GMM-HMM recognizer was trained with BMMI
training, which was used to obtain the senone alignment la-
bels for the DNN training and the adaptation. During the
DNN training, HMM’s state transition probability was fixed.
In the decoding phase, the DNN-HMM recognizers used
the scaled likelihood calculated by the DNN in place of the
state output probability calculated using the GMM, as de-
scribed in Sect. 2.3.2. In this experiment, the DNN module
in our recognizers had seven layers (Fig. 2) and used 429 in-
put nodes, 4909 output nodes, and 512 nodes for all of the
intermediate layers. Here, the number of output nodes was
the same as the senone classes. A sigmoid activation func-
tion was used for the input and intermediate layer nodes; a
softmax activation function was used for the output nodes.

As above, from the five intermediate layers, we se-
lected one as an SD module in the adaptation stage of either
the SA-SI or SA-SAT recognizer and elaborated the layer
selection effect in the speaker adaptation by changing a se-
lected layer from the 1st through the 5th intermediate layers.
This decision was motivated by our research interest to re-
veal the roles of the intermediate layers for (speaker) feature
representation.

4.4 Evaluation Procedures

In terms of the availability of reference word transcrip-
tions, we evaluated our proposed method in two different
experimental procedures: supervised adaptation and unsu-
pervised adaptation. In the supervised adaptation procedure,
we adapted the SD modules using the (correct) reference
transcriptions of the adaptation speech data. In the unsu-
pervised adaptation procedure, we did the adaptation using
transcriptions that were generated by decoding with the SI
recognizer in place of the reference transcriptions. Here,
we calculated the word confidence measure values based on
the confusion networks [35] for the decoded transcriptions.
Only the speech segments, whose measure values exceeded
a preset threshold, were adopted for the adaptation.

To circumvent the problem of a closed-form evalua-
tion, we adopted the four-times cross-validation (CV) ex-
periment paradigm where the speech data of every testing
speaker were divided into four groups. In this paradigm,
the validation of the adaptation result consisted of the SD
module adaptation using three of the four data groups and
the testing of the adapted SD module using the remaining
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data group. We repeated this validation four times by chang-
ing the combination of three groups for adaptation and one
group for testing. The recognition accuracies (word error
rates) in later discussions are the averages obtained by per-
forming this CV-based evaluation over the speech data of all
the adaptation speakers.

4.5 Mini-Batch-Based Error Minimization

In EBP-based CE error minimization for producing SI and
SAT recognizers, we repeated a training epoch, where ev-
ery sample in the training data set was used once for the
network parameter updates. To accelerate the experiments
with GPU’s high computation power, we adopted a mini-
batch mode minimization, which was a mix of the batch
and sequential modes that repeated the error calculation and
parameter updates over every set of some selected train-
ing samples. Especially in the case of using Eq. (8) for
the SAT recognizer, because we had to feed the training
speech data to the network while switching the SD mod-
ule, the mini-batch of speech data was required to be only
composed of the speech data of a single speaker. To meet
the requirements of the speech data preparation, we imple-
mented the SAT procedure in the following way. For every
training epoch, we first made mini-batches, each of which
consisted of the speech data of a single training speaker,
over the whole training data. Next we randomized their or-
der to avoid unexpected convergence to poor local optima
in the EBP error minimization and conducted error calcula-
tion and parameter updates while switching the randomized
mini-batches and the SD modules in the speaker-by-speaker
manner. Then we repeated the epochs Nepoch times, where
Nepoch was the maximum number of epoch repetitions.

4.6 Hyper-Parameter Settings

DNN training sometimes requires careful control of the
learning rate. Therefore we controlled it at each training
epoch using the following rule based on the frame-level
recognition accuracies over the validation data set. If the
recognition accuracy increased over the validation data set,
the learning rate was kept the same as in the previous epoch.
Otherwise, it was halved, and the network parameters, i.e.,
the weights and biases, were replaced with those that pro-
duced the maximum recognition accuracy in the preceding
training epochs, and the training for these replaced weights
and biases was restarted using the halved learning rate.

Especially in the SAT stage, we used the average
frame-level recognition accuracy obtained from the trial
adaptation using the validation data. At every training epoch
in this stage, we first adopted the resultant DNN (the SI
module plus the SD module) of the previous epoch as an ini-
tial network status for adaptation. Using the speech data in
the validation data set, we performed a trial adaptation while
switching the SD module and its corresponding speaker
data. During the adaptation, the SI module was fixed. Af-
ter the adaptation, we calculated the frame-level recognition

accuracy in the speaker-by-speaker manner. In the same
way as the evaluation of the trained recognizers, we re-
peated the trial adaptation and accuracy calculation in the
CV paradigm. The averaged frame-level recognition accu-
racy we obtained was used to control the learning rate at
every epoch.

For the SI recognizer, we set the initial value of the
learning rate to 0.004 and repeated 20 epochs, where the
learning rate was controlled based on the above update rule.
When producing the anchor SD module (for the SAT recog-
nizer) and the speaker adaptive trained network of Eq. (8),
we adopted the same settings as in the SI recognizer. For
the regularization terms, α in Eq. (5) was set to 0.0 based on
preliminary experiments: 0.1 for β in Eq. (8).

In contrast, in the adaptation stage where only the SD
module was updated, we simply set the learning rate to a
fixed value that was selected based on the frame-level recog-
nition accuracies over the validation data set. We selected a
learning rate of 0.005 for the adaptation of the SA-SI recog-
nizer and 0.001 for the SA-SAT recognizer. Both of these
adaptation procedures were repeated ten times (ten epochs)
with a regularization coefficient of 0.1, which was selected
again using the frame-level recognition accuracies over the
validation data set.

For each allocation of the SD module layer, the above
procedures for setting the hyper-parameters were repeated.
Accordingly, regardless of the SD module positioning, all of
the training in the initialization, SAT, and adaptation stages
was conducted with the tuned hyper-parameters that pro-
duced the highest frame-level recognition accuracies over
the validation data set.

5. Results and Discussions

5.1 Supervised Adaptation Procedure

Table 1 shows the results in the supervised adaptation pro-
cedure. It shows the recognition performances of the word
error rate of four evaluated recognizers: the SI recognizer,
the SA-SI recognizer, the SAT recognizer, and the SA-SAT
recognizer. Each error rate for the SA-SI and SA-SAT rec-
ognizers is the average value obtained by the previously de-
scribed CV paradigm. In the table, lSD is the index of the
layer to which the SD module was allocated. Because the
baseline SI recognizer did not have an SD module layer, the
same error rate value, 26.4%, is shown in all the correspond-
ing columns.

The SA-SI recognizer results show that the conven-

Table 1 Experimental results (word error rate [%]) in supervised adap-
tation procedure.

lSD SI SA-SI SAT SA-SAT

1 26.4 20.0 27.2 18.9
2 26.4 19.0 26.9 18.2
3 26.4 18.7 27.0 18.0
4 26.4 19.0 26.6 18.4
5 26.4 19.5 26.5 19.0
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tional way of adapting the SD module in the SI recognizer
produced clear improvements. Its error reductions from the
rates of the baseline SI recognizer ranged from 6.4 to 7.7
points. However, comparing the SA-SI and SA-SAT rec-
ognizers clearly demonstrates the effect of our SAT-based
scheme for DNN-HMM recognizers. Regardless of the al-
location of the SD module layer, the SA-SAT recognizer
outperformed the SA-SI recognizer. Moreover, the SA-SAT
recognizer successfully reduced the lowest error rate of the
SA-SI recognizer, 18.7%, to 18.0%, which was the best
among all of the obtained error rates.

To prove the effectiveness of our SAT-based scheme,
we conducted a matched pairs t-test for the difference in
word error rates between the SA-SAT recognizer and its
counterpart SA-SI recognizer. Here, each word error rate
was observed for one of the 28 testing speakers through the
CV paradigm. From the test results, we found that the error
rate reductions between the SA-SAT recognizer and the SA-
SI recognizer were significant with p < 0.01 when lSD was
set to 1, 2, 3, or 4, and with p < 0.05 when lSD was set to 5
[t-test].

The results of the SAT recognizer were not promising.
However, since the SAT scheme aims to increase the recog-
nition accuracy after the adaptation but not to construct a
high performance recognizer without the adaptation, these
high error rates are not really a problem.

As shown in Table 1, the effects of the recognizer train-
ing/adaptation methods are often evaluated using the aver-
age accuracies over multiple testing speakers; such evalu-
ation is obviously important. However, at the same time,
it is desirable that the methods accurately work for all of
the testing speakers or as many testing speakers as possible.
Such reliability (or stability) of the methods is also clearly
important. From this viewpoint, we compared the accuracy
of the SA-SAT and SA-SI recognizers in the speaker-by-
speaker manner and found that our proposed SA-SAT rec-
ognizer outperformed the SA-SI recognizer for 75% to 93%
of the 28 testing speakers†.

The table also shows another quite interesting finding.
The adaptation allocating the SD module to such inner lay-
ers as the 2nd or 3rd layer outperformed the allocation of
the SD module to the outer layers near the input or output
of the network, such as the 1st and 5th layers. This phe-
nomenon was commonly observed in both the SA-SI and
SA-SAT recognizers. The DNN part repeated the feature
transformation along with the data feed-forwarding from the
input layer to the output layer. Allocating the SD modules to
the inner layers allowed a complex feature transformation in
both the lower and upper layers. Such a well balanced trans-
formation is probably useful for extracting salient informa-
tion for recognition/adaptation, although its mechanism re-
mains hidden. Accordingly, we consider the use of DNN
more suitable for speaker adaptation (probably also for other
types such as speaking environment and transmission chan-

†The percentage changed according to the selection of the SD
module layer.

Table 2 Experimental results (word error rate [%]) in unsupervised
adaptation procedure.

lSD SI SA-SI SAT SA-SAT

1 26.4 21.4 27.2 20.4
2 26.4 20.6 26.9 20.0
3 26.4 20.7 27.0 20.1
4 26.4 21.0 26.6 20.3
5 26.4 21.5 26.5 21.0

nel adaptations) than conventional shallow neural networks
or any simple front-end architecture that has no deep layer
structure.

5.2 Unsupervised Adaptation Procedure

Table 2 shows the results in the unsupervised adaptation pro-
cedure. As in Table 1, Table 2 shows the recognition perfor-
mances in the word error rate of the four evaluated recogniz-
ers. Each error rate for the SA-SI and SA-SAT recognizers
is also the average value obtained through the CV paradigm.
To select the adaptation data used for the unsupervised adap-
tation, we set the threshold value for the confidence measure
to 0.5 based on the preliminary experiment results. In the
preliminary experiments, we tested several different values
for the confidence measure and found that the confidence
measure of 0.5 achieved a reduction in word error rate of 0.2
(from the rate obtained without the confidence measure) on
average for both the SA-SAT recognizer and SA-SI recog-
nizer. The effects of the confidence measure slightly varied
according to the selections of the SD module layers and the
recognizers.

In the unsupervised adaptation results, we identified a
trend similar to the supervised adaptation results. The SA-
SAT recognizer outperformed the SA-SI recognizer, regard-
less of the SD module layer allocation. Moreover, the SA-
SAT recognizer achieved the lowest error rate, 20.0%, which
was 0.6 point lower than that of the SA-SI recognizer. Com-
pared to the supervised adaptation, the accuracy improve-
ment in the unsupervised adaptation was not large: The ref-
erence transcription was not used in the adaptation training.
However, comparing the SA-SI and SA-SAT recognizers
also clearly demonstrates the effect of the SAT-based DNN-
HMM recognizer, even in the unsupervised adaptation pro-
cedure.

In the unsupervised adaptation case, we again con-
ducted the matched pairs t-test for the differences in the
word error rates between the SA-SAT recognizer and the
SA-SI recognizer. Here, each word error rate was obtained
for one of the 28 testing speakers through the CV paradigm.
The test results proved that the error rate reductions between
the SA-SAT recognizer and the SA-SI recognizer were sig-
nificant with p < 0.01 when lSD was set to 1 or 4, and with
p < 0.05 when lSD was set to 2, 3, or 5.

In addition, the adaptation allocating the SD module
to the inner layers also outperformed the case of allocating
the SD module to the outer layers even in the unsupervised
procedure.
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Fig. 5 Frame-level senone recognition accuracy [%] as a function of su-
pervised adaptation epoch.

5.3 Effects of SAT-Based Adaptation: Stability Analysis
of Adaptation

To deepen our understanding of our SAT-based adaptation,
we elaborate the SA-SI and SA-SAT recognizers produced
in the supervised adaptation procedure.

In the experiments of Sect. 5.1, we set the number of
adaptation epoch iterations to ten and gained higher perfor-
mances with our SA-SAT recognizer than with SA-SI rec-
ognizer. This setting was done from the viewpoint that fast
adaptation was more preferable. However, there is the pos-
sibility that the SA-SAT recognizer’s advantage was gained
by selecting a proper length of the epoch iteration by chance.
Actually, as a side effect, a short iteration occasionally in-
creases recognition accuracies. To scrutinize this point, we
ran the adaptation by setting the iteration number to 50.
Here, except for the number of adaptation epoch iterations,
we used the same hyper-parameter settings as in Sect. 5.1.

Figure 5 illustrates the frame-level senone recognition
accuracies (in the vertical axis), each of which is a function
of the epoch (in the horizontal axis), of the SA-SI and SA-
SAT recognizers. This senone recognition accuracy has a
close relation with the criterion used in the adaptation stage.
Each accuracy curve in the figure was obtained, for its cor-
responding recognizer, by averaging the accuracies over all
the experiment runs conducted by changing the SD module
layers in the CV paradigm.

The figure shows that the SA-SAT recognizer stably
outperformed the SA-SI recognizer in all the adaptation
epochs. The advantage of our SA-SAT recognizer is prob-
ably generated by the nature of the SAT-based adaptation
mechanism.

5.4 Effects of SAT-Based Adaptation: Comparison with
All Layer Adaptation

In the previous subsections, we demonstrated the supe-
riority of our proposed SAT-based adaptation scheme to

Table 3 Comparisons among module-based adaptation (SA-SI-L3 and
SA-SAT-L3 recognizers) and non-module-based adaptation (SA-SI-ALL
recognizer).

Recognizer # adaptation param. Word error rate (%)

SA-SI-L3 0.26 M 18.7
SA-SI-ALL 2.8 M 18.3
SA-SAT-L3 0.26 M 18.0

the SI-based adaptation scheme. In the SI-based adapta-
tion, we adapted only the SD module similarly to the SAT-
based adaptation. One may question whether the SAT-based
(module-based) adaptation is more effective than the sim-
ple (non-module-based) adaptation of the whole DNN of the
SI recognizer. To analyze this point, we compared the fol-
lowing three recognizers in the supervised adaptation pro-
cedure: (1) the SA-SAT recognizer allocating the SD mod-
ule in the third layer (SA-SAT-L3 recognizer), (2) the SA-
SI recognizer allocating the SD module in the third layer
(SA-SI-L3 recognizer), and (3) a new Speaker-Adapted SI
recognizer in which all of the trainable DNN parameters,
i.e., the connection weights and biases in all layers, were
used for adaptation (SA-SI-ALL recognizer). The SA-SAT-
L3 recognizer and the SA-SI-L3 recognizer were the best
(in terms of SD module layer allocation) SA-SAT and SA-SI
recognizers, respectively (Table 1). Furthermore, the SA-SI-
ALL recognizer was constructed, adopting the same train-
ing/adaptation procedures (e.g., the use of L2 prior regular-
ization and the CV paradigm) as those for the recognizers in
Table 1.

Table 3 shows the number of adaptation parameters and
the word error rates for the above three recognizers. In the
table, “M” represents million. Using a larger number of
adaptation parameters, the SA-SI-ALL recognizer gained a
word error rate reduction of 0.4 point from that of the SA-SI-
L3. However, the rate by the SA-SI-ALL recognizer did not
achieve the lowest word error rate, which was reached by the
SA-SAT-L3 recognizer at 18.0%. To analyze the effect of
the SAT-based (module-based) adaptation against the non-
module-based adaptation, we conducted the matched pairs
t-test for the difference in word error rates between the SA-
SI-ALL recognizer and the SA-SAT-L3 recognizer. The test
results proved that improvement of the SA-SAT-L3 recog-
nizer over the SA-SI-ALL recognizer was significant with
p < 0.05.

Although the t-test proved the statistical difference in
word error rates between the SA-SAT-L3 and SA-SI-ALL
recognizers, the difference was not so large. A point to note
here is that the SA-SAT-L3 recognizer used only 9 % (0.26
M) of the adaptation parameters of the SA-SI-ALL recog-
nizer (2.8 M). This leads to a dramatic reduction in the size
of adaptation parameters, which must be stored and adapted
for each target speaker. For example, let us assume that a
speech recognition system runs on some server and tries to
increase its discriminative power through speaker adaptation
for a huge number of system users (speakers). The system
is expected to handle many different speakers’ data simulta-
neously and thus must store on the server many adaptation
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parameter sets, each for a different speaker. Obviously, a
small size of speaker-dependent adaptation parameters is fa-
vorable in this common scenario. In addition, it is expected
that the use of such a small number of adaptation parameters
decreases the risk of the over-training problem, especially in
the cases where speech data available for adaptation training
are severely limited.

6. Conclusion

We proposed a new speaker adaptation scheme that applied
the SAT concept to the training of a DNN front-end that was
incorporated into a hybrid DNN-HMM speech recognizer.
We evaluated our proposed scheme with the TED Talks cor-
pus in supervised and unsupervised adaptation procedures,
and our experimental results clearly demonstrated its high
utility in both procedures. In addition, we revealed that the
SD module allocated into the inner layers worked better than
that allocated into the outer layers near the input and output
layers. This result suggests that allocating the modules in
the inner layers effectively generates salient information for
recognition, probably based on the large feature transforma-
tion capability gained by the well balanced use of upper and
lower layers.

In this paper, we adopted the L2 norm-based regulariza-
tion term that restricted the parameters to be trained so that
they could stay close to their (initial) anchorage states, e.g.,

λ
SI-DNN
lSD

in the SAT stage and ganchor
lSD

in the speaker adap-
tation stage. Since anchorage states can be considered a
kind of prior information for such successive operations as
search, using the above anchorage states is probably one
reasonable choice. However, it has no rationale and can
be improved by elaborating other types of anchorage states
or regularization terms. Our future study will include such
deep investigation. The effects of using larger networks and
shorter speech data for adaptation will also be important fu-
ture issues.
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