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SUMMARY The problem with distributed representations generated by
neural networks is that the meaning of the features is difficult to under-
stand. We propose a new method that gives a specific meaning to each
node of a hidden layer by introducing a manually created word semantic
vector dictionary into the initial weights and by using paragraph vector
models. We conducted experiments to test the hypotheses using a sin-
gle domain benchmark for Japanese Twitter sentiment analysis and then
evaluated the expandability of the method using a diverse and large-scale
benchmark. Moreover, we tested the domain-independence of the method
using a Wikipedia corpus. Our experimental results demonstrated that the
learned vector is better than the performance of the existing paragraph vec-
tor in the evaluation of the Twitter sentiment analysis task using the single
domain benchmark. Also, we determined the readability of document em-
beddings, which means distributed representations of documents, in a user
test. The definition of readability in this paper is that people can understand
the meaning of large weighted features of distributed representations. A to-
tal of 52.4% of the top five weighted hidden nodes were related to tweets
where one of the paragraph vector models learned the document embed-
dings. For the expandability evaluation of the method, we improved the
dictionary based on the results of the hypothesis test and examined the re-
lationship of the readability of learned word vectors and the task accuracy
of Twitter sentiment analysis using the diverse and large-scale benchmark.
We also conducted a word similarity task using the Wikipedia corpus to
test the domain-independence of the method. We found the expandability
results of the method are better than or comparable to the performance of
the paragraph vector. Also, the objective and subjective evaluation sup-
port each hidden node maintaining a specific meaning. Thus, the proposed
method succeeded in improving readability.
key words: distributed representation, word semantic vector dictionary,
paragraph vector, word2vec, Twitter, sentiment analysis

1. Introduction

Distributed representations named word2vec and paragraph
vectors, computed using simple neural networks with con-
text information as features, have been widely used [2]–
[5]. The paragraph vectors achieved state-of-the-art results
on sentiment analysis at the time of publication [5]. The
problem in engineering with the distributed representations
of words and paragraphs is that the meaning of the dis-
tributed representations is difficult to understand. Thus,
quality assessment of distributed representation learning has
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no choice but to rely on task accuracies using learned dis-
tributed representations.

In contrast to the distributed representations obtained
by learning, the authors proposed word semantic vectors,
constructed using a human expert with context information
as features [6]. The word semantic vector expresses the rela-
tionship between a word and feature words as a binary value
that is related or unrelated. The feature word corresponds to
each dimension of the word semantic vector, and it consists
of 266 conceptual classifications. The core words are com-
posed of 20,330 important words extracted using frequency
analysis of Japanese newspapers and encyclopedias. The
word semantic vector dictionary is a dictionary listing fea-
ture words related to the core words.

We proposed an integration method to learn feature
words expanded using the word semantic vector dictionary
with a paragraph vector model to solve the problem of word
sparsity in Twitter [7]. The problem of word sparsity means
that many of the words in short text to be analyzed are not
included in the vocabulary learning distributed representa-
tions. The integration of the word semantic vector dictio-
nary and paragraph vector learning showed that the accuracy
of sentiment analysis improves by learning context informa-
tion of a particular domain with expanded feature words us-
ing the dictionary. We showed that expanded feature words
for tweets can be used for error analysis of sentiment analy-
sis, but it was still difficult to read the features of distributed
representations.

This paper proposes a new method of automatically
learning readable distributed representations using the para-
graph vector models based on the word semantic vector
dictionary [1]. Word semantic vector dictionaries are more
like distributed representations rather than semantic lexi-
cons like WordNet [8] and FrameNet [9] because each core
word is defined as a fixed-length dense vector. In this paper,
the 266 feature words are taken as the hidden nodes of each
model. Then, the initial weights between the input word and
each hidden node, which is a seed vector, are given based on
the dictionary. The difference between the proposed method
which is called our method and the conventional method
which is the paragraph vector [5] is whether the seed vector
is generated from the dictionary reflecting human knowl-
edge or is random values. Our method uses the paragraph
vector models [5] for unsupervised learning, except for the
difference in the seed vector.

The main purpose to realize the readability of
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distributed representations is to enable social media min-
ing with specific concepts by unsupervised learning if it
can make clear which hidden nodes (specific concepts) are
strongly bound to words and documents. For example, we
can reduce the number of not-related tweets using the spe-
cific concepts automatically if each dimension of distributed
representations is readable.

In order to verify the hypothesis that the meaning of
each hidden node is maintained by giving an appropriate
seed vector based on the dictionary, the following tests are
conducted. First, we verify the hypothesis using a single do-
main benchmark for Japanese Twitter sentiment analysis in
Appendix A. Second, we evaluate the expandability of our
method using a diverse and large-scale benchmark in Ap-
pendix B. Moreover, we test the domain-independence of
our method using the Wikipedia corpus.

Using the single domain benchmark, we show the read-
ability of word and document embeddings in three ways:
First, we evaluate the readability of word embeddings using
the correlation coefficient between the seed vector and the
learned word vector. Even in new words, the meaning of the
hidden node is maintained to some extent. Second, the task
accuracy of our method is better than the performance of the
conventional method. Third, we present an evaluation of the
readability of document embeddings in a user test. A total
of 52.4% of the given feature words were related to tweets
where one of the paragraph vector models learned the docu-
ment embeddings for the top five weighted hidden nodes.

We demonstrated the readability of the document em-
beddings in a single domain benchmark. However, test-
ing the expandability of the proposed method is important.
We improved the dictionary for this purpose. The dictio-
nary consists of 264 feature words–not 266–and 20,330 core
words. The diverse and large-scale benchmark consists of
38,576 tweets labeled positive or negative for eight cate-
gories. The evaluation results show that the performance
of sentiment analysis is better than or comparable to the
conventional method’s while maintaining the correlation be-
tween the word vectors learned with 3 million tweets and the
seed vectors based on the dictionary.

Moreover, to evaluate the domain-independence of our
method using the Wikipedia corpus and a Japanese word
similarity dataset, we found that synonyms have similar vec-
tors while the top five weighted feature words of the core
word after learning are related to the core word. Therefore,
our method improves the readability of the distributed rep-
resentations, which are the weights of each hidden node for
words and paragraphs. The contributions of this paper are
as follows.

• We assigned each feature word in the dictionary to
one hidden node in neural networks and initialized the
weights of the neural networks by recursive extension
of the dictionary. When training unlabeled text data
using neural networks, each learned feature is usually
a black box. Because the proposed method learns the
weights of preselected feature words, we demonstrated

it improves the readability of word and document em-
beddings.
• We evaluated the expandability of the proposed method

by conducting a sentiment analysis task using a diverse
and large-scale benchmark and a word similarity task
using the Wikipedia corpus.

2. Related Work

Research on the integration of external semantic lexicons
and distributed representation learning has been active. The
following three research directions are being studied.

• Pre-processing. Feature word expansion on Twitter
of our previous proposal is part of this direc-
tion [7]. Tweet2vec [10] trained the CNN-LSTM
encoder-decoder model on 3 million randomly selected
tweets populated using data augmentation techniques,
which are useful for controlling generalization error for
a deep learning model. Data augmentation techniques
refer to replicating tweets and replacing some words
with their synonyms using WordNet [8].
• Learning process. RC-NET [11] is built upon the

Skip-gram model [3], the objective function of which
is extended by incorporating both the relational knowl-
edge (like is-a, etc) and the categorical knowledge (like
synonyms) as regularization functions. Bollegala et
al. proposed a global word co-occurrence prediction
method [12] using the semantic relations in WordNet
as a regularizer [13]. Our proposal in this paper is part
of this direction.
• Post-processing. Retrofitting [14] is a technique for

fitting learned word vectors to semantic lexicons. In
this paper, we used this technique to create initial
weights of core words.

Experiments have shown that the precision of distributed
representations of words has qualitatively improved the best
in [13] and that the accuracy of sentiment analysis has im-
proved in [10]. Both showed that they were state-of-the-arts
techniques using standard datasets on word similarity and
sentiment analysis. Similar studies have been done using
topic models based on LDA [15]. Topical word embeddings
(TWE) [16], in which “topical word” refers to a word taking
a specific topic, have been proposed to measure contextual
word similarity by extending the Skip-gram model [3]. Also
TWE outperformed the Skip-gram model in word similarity
tasks. TWE is also applied to tweet topic classification tasks
and performs better than paragraph vectors [17]. However,
no reports on the relevant literature describe an attempt to
give meaning to each hidden node.

One model of paragraph vectors (PV-DBOW) [5] uses
pre-trained word embeddings that reportedly improve task
performance [18]. Although this paper shows the possibil-
ity of learning proper document embeddings with good ini-
tialization of word embeddings, it does not demonstrate the
possibility of interpretation of hidden nodes.
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The point to emphasize is that topic models, for ex-
ample, can be used to assign topic numbers and related
keywords to each tweet, but people cannot understand the
meaning of large weighted features of tweet embeddings us-
ing any of the conventional methods.

3. Proposed Method

This paper presents a test of the hypothesis that the mean-
ing of each hidden node is maintained even after (the un-
supervised learning part of) three approaches: 1©assigning
specific meaning to each hidden node, 2©giving the strength
of the semantic and associative relationship with each hid-
den node as the initial weights of important words, and
3©unsupervised learning using word2vec and paragraph vec-
tor models. The neural network learns the concept automat-
ically for the hidden layer. Thus, the weights may adapt
to the context with the concept maintained by pre-setting
the appropriate conceptual classification to be learned to the
nodes of the hidden layer and by giving the suitable initial
value.

3.1 Word2vec and Paragraph Vector Models

Figure 1 presents two variants of word2vec and paragraph
vector models [5]. The distributed memory model of para-
graph vectors (PV-DM) predicts the target word vector of
the next word w (t) from the context vector obtained by
adding a paragraph ID to input words within the con-
text window. The continuous bag of words (CBOW) of
word2vec does not add the paragraph ID to the input layer,
but it is fundamentally the same as the PV-DM.

The paragraph vector with a distributed bag of words
(PV-DBOW) learns the paragraph vector to predict the con-
text word vectors of randomly selected surrounding words
within the context window. Skip-gram of word2vec is used
to learn the vectors of the target words in the PV-DBOW. In
Skip-gram, the target word vector is learned so that the inner
product of the target word vector and the context word vec-
tor of the surrounding words is larger than the inner product
of the context word vector of words other than the surround-
ing words.

3.2 Word Semantic Vector Dictionary

We selected 266 conceptual classifications that belong to six
major classes and 29 upper concepts as feature words in the
word semantic vector dictionary [6], as presented in Table 1.
For core words, we selected 20,330 words from encyclope-
dias, newspapers, websites, instruction manuals, and Kansei
words.

A human expert assigned feature words to each core
word based on the following criteria. Feature words were as-
signed from a logical and associative relationship. The log-
ical relationship refers to those in which the feature words
have direct relevance for core words, as shown in Table 2.
The associative relationship refers to those in which feature

Fig. 1 Word2vec and paragraph vector models.

Table 1 Classification of feature words.
Six large Examples of Examples of
classifications 29 upper concepts 266 feature words

Human· Human Human, Name, Male, Female, Child
Life Creature Animal, Bird, Insect, Microbe, Plant
Human Artificiality Tool, Mechanical·Component, Building
environment Traffic·Communication Communication, Traffic·Transportation
Natural Area Place name, Country name, Japan, City
environment Nature Land, Mountain, Sky, Ocean
Abstract Spirit·Psychology Sense, Emotion, Happiness, Sadness
concept Abstract concept State·Aspect, Change, Relationship
Physics· Motion Motion, Halt, Dynamic, Static
Substance Physical characteristics Warmth, Weight, Lightness, Flexible
Civilization· Humanities Race, Knowledge, Speech
Information Science Mathematics, Physics, Astronomy

Table 2 Grant criteria by logical relationship.

Logical relationship Core words Feature words

Class inclusion Autumn Season
Synonym relationship Idea Thought
Part–whole relationship Leg Human body

Table 3 Grant criteria by associative relationship.

Core words Feature words

Love Kindness, Warmth
Up Economy, Video
Leg Car, Traffic·Transportation

words are related to core words by association, as shown in
Table 3.

3.3 Model Setting for Testing the Hypothesis

In this section, we describe the setting to encode the initial
weights of the core words based on the strength of the rela-
tionship with each feature word, and we describe our test of
the hypothesis using Skip-gram as an example.

A method has been proposed for generating a word
vector by recursively expanding a definition sentence for a
word in a dictionary [19]. The word semantic vector dic-
tionary can be regarded as defining a core word with 266
types of feature words. Because feature words are also core
words, recursive extension is necessary. However, conver-
gence occurs when the feature word is expanded several
times because the definition sentence of the core word is
limited to 266 words. Also, a method has been proposed
for retrofitting word vectors according to related words in a
dictionary [14]. In that method, we generate a seed vector of
the core word by recursively expanding the dictionary using
retrofitting tools†.

When building a vocabulary from the corpus, the initial
vectors of the following two kinds are created first.

†https://github.com/mfaruqui/retrofitting



KESHI et al.: SEMANTICALLY READABLE DISTRIBUTED REPRESENTATION LEARNING AND ITS EXPANDABILITY
1069

Fig. 2 Example of retrofitting “Disease.”

• The 266 feature words are added to the vocabulary as
one-hot vectors with dimensions corresponding to re-
spective feature words set to 1.
• Other initial word vectors including core words ex-

tracted from the corpus are 266-dimensional zero vec-
tors.

The retrofitting algorithm aims at bringing word vec-
tors closer to the relationship of the word entries of the
lexicon as post-processing of learning of word vectors [14].
We applied this algorithm for retrofitting the aforementioned
initial word vectors, which are 266-dimensional one-hot or
zero vectors, into the word semantic vector dictionary. The
retrofitting algorithm is shown as the following online up-
date [14]:

qi =

∑
j:(i, j)∈E βi jqj + αiq̂i∑

j:(i, j)∈E βi j + αi
(1)

qi is the retrofitted word vector for the core word wi, q̂i is
the aforementioned initial vector for wi, and αi is the weight
of the initial vector; currently it is set to the number of given
feature words w j for wi. qj is the retrofitted word vector for
the given feature word w j, and βi j is the weight of the given
feature word w j for the core word wi; currently, the weight
βi j is set to 1. Equation (1) multiplies the initial vector q̂i

of the core word wi by the weight αi, adding the vectors ob-
tained by multiplying the retrofitted vector qj of the given
feature word w j by the weight βi j and by dividing it by the
sum of both weights. Running the online update for about
ten iterations with the retrofitted word vector qi as the next
initial vector q̂i increases the relationship between each core
word and 266 feature words from an average of 9 to an av-
erage of 100. The relationship is increased for each core
words to expand the feature words given to the core word
recursively. The size of the retrofitted word vector is nor-
malized to 1.

Figure 2 presents an example of retrofitting “Disease,”
which is a feature word and core word in the dictionary. The
points of this algorithm are the following.

• The retrofitted word vector is close to the original vec-
tor. In the case of “Disease,” the original vector is a
one-hot vector.
• When the feature words assigned to a retrofitted core

word are not expanded as core words, the weights of
the feature words are almost equal. When expanded,

Fig. 3 Skip-gram model setting for testing.

the weights decrease according to the number of
feature words to be expanded.

In the vocabulary, each word has two vectors. One is
an input vector, which is the weights between the input node
and each hidden node, and the other is an output vector,
which is the weight between each hidden node and the out-
put node. The retrofitted word vector was used as the seed
vector of the input vector. The initial weights of words other
than core words were set to 0. Also, the initial weights of the
output vector for all words including core words were set to
0, which is the default setting of gensim’s doc2vec library†.

Figure 3 presents an example of the Skip-gram set-
ting for testing the hypothesis. The input layer specifies
the target word. The output layer consists of three context
words appearing around the target word. The hidden layer
comprises the nodes corresponding to 266 feature words.
The weights of the target word for each hidden node are
retrofitted weights. Each weight is updated by back propa-
gation so that the probability of predicting the context words
increases when the target word is input. The objective func-
tion is the following [3], [20].

E = − logσ
(
v′w

T h
)
−
∑

w j∈Wneg

logσ
(
−v′wj

T h
)

(2)

Because the activation function of the hidden nodes is lin-
ear, the hidden layer outputting h is vwi

T . vw is an input
vector with initial weights that are generated by Eq. (1), and
v′w is the output vector of the word w. Wneg is the set of
words for negative sampling. The output vector is updated
as follows [20].

v′wj

(new)
= v′wj

(old) − η
(
σ
(
v′wj

(old)T h
)
− t j

)
h (3)

where t j is 1 when w j is the context word and 0 otherwise.
The initial output vector v′w is 0. Thus, the output vectors of
the context words become close to the input vector, which is
the seed vector, of the target word.

4. Verification of the Hypothesis with a Single Domain
Benchmark

In these experiments, we examined the relationship between
†https://radimrehurek.com/gensim/models/doc2vec.html
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Table 4 Hyper-parameter settings for learning word vectors.

Hyper-parameters Values

Dimensionality of the feature vectors 266
Number of iterations over the corpus 20
Learning rate Initial:0.025, Minimum:0.0001
Window size 5
Downsample threshold for words 1e-5
Number of negative sampling words 15

sentiment analysis using a single domain benchmark and
readability of tweet embeddings in a user test. We also
tested the hypothesis on whether or not weights obtained
based on learning and weights based on the dictionary are
correlated in a closed test and an open test, compared with a
control test.

We used the single domain benchmark of sentiment
analysis for Product B and the 560,853 unlabeled tweets
in Appendix A. For the 560,853 unlabeled tweets, only
noises such as the URL and the account name were deleted.
The evaluation benchmark of sentiment analysis consisted
of 11,774 tweets of one product brand labeled using crowd-
sourcing as either positive, negative, or neutral [7]. Japanese
morphological analysis, MeCab† and its dictionary mecab-
ipadic-NEologd††, which expanded MeCab’s default dictio-
nary by millions of new words and named entities from lan-
guage resources on the Web, were used to extract words
from tweets. We used the inflections of verbs and adjectives
as different words without transforming to their original
forms to let word embeddings learn their context. The num-
ber of words extracted from the corpus in five or more times
was 30,468, while the number of retrofitted core words was
6,814 words.

4.1 Learning Word Vectors by Our Method and Evaluation
of Correlation Coefficients

We updated word vectors using two variants of paragraph
vector models with unlabeled tweets only using gensim’s
doc2vec library. On the basis of the accuracy of the senti-
ment analysis of the final stage, we decided the values of
hyper-parameters for paragraph vector learning of the con-
ventional method. The hyper-parameter settings for learn-
ing the corpus are shown in Table 4. Our method used the
same hyper-parameter settings. Here, the size of the fea-
ture vectors was adjusted to the number of feature words,
266. When the number of dimensions of the feature vec-
tors exceeded 266, we could set the initial value 0 or the
random number for the part exceeding 266 in our method.
However, no difference occurred in accuracy between 266
dimensions and 300 dimensions for the corpus in the para-
graph vector of the conventional method. Thus, we utilized
266 dimensions. Both the PV-DM and PV-DBOW have the
same hyper-parameter settings. We used the sum of the in-
put vectors for the hidden layer of the PV-DM for the same
reason as with the hyper-parameter settings.

†http://mecab.googlecode.com/svn/trunk/mecab/doc/index.
html
††https://github.com/neologd/mecab-ipadic-neologd

Table 5 Example of retrofitted and learned word vectors for a core word
that is a feature word itself.

Generation method feature words and weights arranged in descending order
Retrofitted travel:0.97, traffic·transportation:0.12, hobby·recreation:0.1,
vector for home ·family:0.1, service industry:0.1, airplane:0.06,
“travel” human:0.05, car:0.05, overseas:0.05, Japan:0.05,

learned vector for travel:1.41, machine:0.65, image:0.61, company:0.55,
“travel” state·aspect:0.52, traffic·transportation:0.5, hobby·

by PV-DM recreation:0.43, education:0.40, facility:0.38, behavior:0.36,
learned vector for travel:1.45, time:0.45, custom:0.44, clothes:0.43,

“travel” state·aspect:0.43, Europe:0.42, low:0.42, image:0.41,
by PV-DBOW public system:0.40, machine:0.40,

Table 6 Evaluation results 1: Correlation coefficients between initial and
learned word vectors.

Control Test Closed Test Open Test
PV-DM/CBOW 0.224 0.608 0.340

PV-DBOW/Skip-gram 0.211 0.642 0.395

Table 5 shows an example of retrofitted and learned
word vectors for a core word “travel,” which is a feature
word itself. The retrofitted word vector for “travel” was
similar to a one-hot vector. The weight of the feature word
“travel” of the learned word vector “travel” was more than
twice the weight of other feature words in the PV-DM and
more than three times the weight of other feature words in
the PV-DBOW. Because our method learned the word vec-
tors with a smartphone corpus, “machine” and “image” had
higher weights in both of the learned word vectors.

Table 6 presents correlation coefficients between
retrofitted vectors and learned vectors in the closed and open
test, compared with those of the control test. The control test
shows the correlation between the word vectors after learn-
ing by the conventional method and the initial vectors, the
closed test shows the correlation for the core words used for
learning by the proposed method, and the open test shows
the correlation for the core words not used for learning by
the proposed method as follows.
Control test: We selected the core words (814 words) in
the top 2% high-frequency words (2343 words) for the eval-
uation because high-frequency words had a stronger influ-
ence on tweet vector learning than low-frequency words.
We evaluated the correlation coefficients between the initial
vectors as a control test using default random initialization
and the learned vectors.
Closed test: For the 814 core words, we combined all el-
ements of retrofitted word vectors with 0.013 or more as
one vector and similarly learned word vectors. A feature
word with a value of 0.013 or less corresponded to a re-
lationship according to a two-step recursion with the core
word. Therefore, we excluded feature words having a value
less than 0.013 from the calculation of the correlation co-
efficient because the relationship with the core word is not
high. Then, we calculated the correlation coefficients of the
two vectors. The results showed a stronger correlation com-
pared with that of the control test.
Open test: Let the word vectors learn for the unlabeled
tweets excluding the aforementioned 814 retrofitted core
word vectors. Subsequently, we calculated the correlation
coefficient between the aforementioned 814 retrofitted core
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Fig. 4 Procedures of sentiment analysis.

Table 7 Evaluation results 2: Macro-average F-score for predicting pos-
itive and negative tweets in 3-class sentiment analysis.

Dev. Set Test Set
Conventional Method 68.6 68.8

Our Method 70.5* 70.2**
vs. Conventional Method *p=0.0006<0.05 **p=1.9e-05<0.05

word vectors with 0.013 or more and the corresponding
814 learned word vectors. The results showed a weak
correlation.

4.2 Evaluation of Sentiment Analysis

We evaluated the tasks of sentiment analysis using the para-
graph vector of the conventional method and our method.
The experimental procedures are presented in Fig. 4. The
only difference between the methods was the initial weights
when learning the unlabeled tweets. Specifically, the evalu-
ation steps were the following.
[Step 1] In our method, we updated word vectors by having
it learn unlabeled tweets with the PV-DM and PV-DBOW
based on the retrofitted word vectors, as described in the
previous section. In the conventional method, we used the
same settings of the hyper-parameters shown in Table 4
for the PV-DM and PV-DBOW based on standard random
initialization.
[Step 2] In learning the paragraph vector of the training and
dev. set, let the word vectors learned in Step 1 be the initial
value of the word vectors. We combined the PV-DBOW and
PV-DM for each tweet and created a tweet feature vector.
We built a tweet classifier with a support vector machine
(SVM) using the labels of each training tweet as training
data.
[Step 3] Each tweet vector and its label of the develop-
ment set was entered into the classifier, and the error rate
[= 100−(Fpos+Fneg)/2] was measured. Bayesian optimiza-
tion automatically adjusted the parameters of the paragraph
vector learning so that the output of the objective function,
which is the error rate, was minimized [21].

After Step 2 and Step 3 were repeated until the error
rate converged, the hyper-parameter of the paragraph vector
learning was determined.

As presented in Table 7, we found that the evalua-

Table 8 Evaluation results 3: Readability of hidden nodes and macro-
average F-score of the corresponding 2-class sentiment analysis.

Readability of hidden nodes Sentiment Analysis
Tweet Vectors Top1 Top5 Top10 F-score
PV-DBOW Positive 64.5% 56.1% 46.6% 86.8
PV-DBOW Negative 66.8% 48.7% 41.5% 78.3
PV-DBOW All 66.1% 52.4% 44.1% 82.5
PV-DM Positive 56.4% 46.2% 36.9% 80.2
PV-DM Negative 67.3% 43.8% 37.8% 74.7
PV-DM All 61.9% 45.0% 37.3% 77.5
Control Test for Positive 16.1% 15.4% 80.2
Control Test for Negative 13.9% 13.9% 74.7
Control Test for All 15.0% 14.6% 77.5

tion results of our method were better than those of the
conventional method in the macro-average F-score [(Fpos +

Fneg)/2] of positive and negative prediction in three-
class classification, which is a rating measure utilized in
SemEval-2015 task 10 [22]. In this paper, we use the macro-
average F-score in percentages as shown in [22].

4.3 User Test for Readability

We conducted a readability user test of hidden nodes for the
learned tweet vectors. We prepared feature words for hid-
den nodes with top ten weights for 30 tweets, which were
estimated to be positive or negative by using the PV-DM
and PV-DBOW individually. The top ten feature words
were given for each tweet, and 30 user testers were asked
through crowdsourcing whether or not each tweet was as-
sociated with the ten feature words. Table 8 shows what
percentage of the Top 1, 5, and 10 weighted hidden nodes
of PV-DBOW or PV-DM tweet vectors that were classified
as either positive or negative were related to the tweets. For
the PV-DBOW, the percentage of the given feature words
were related to the tweets where one of the paragraph vec-
tor models learned the document embeddings was 66.1% for
the top weighted hidden node and was 52.4% for the top five
weighted hidden nodes. The PV-DM results were 61.9% for
the top weighted hidden nodes and 45.0% for the top five
weighted hidden nodes. Overall, the PV-DBOW readability
was better than that of PV-DM, though the PV-DM results
tended to be more readable for negative tweets compared
with those of the PV-DBOW. The third results show a con-
trol test. The control test assessed how user testers scored
on five or ten feature words randomly chosen for the tweets
classified as either positive or negative using PV-DM. The
reason is that none of the conventional methods which give
the meaning of features of tweet embeddings. A comparison
with the control test showed that our method apparently im-
proves the readability of distributed representation learning.

Table 8 also shows the macro-average F-score in 2-
class sentiment analysis using the corresponding positive
and negative vectors for reference. A common trend was
evident in the readability of the hidden nodes and sentiment
analysis.

For the five cases of the paragraph vector (PV-DBOW)
in the aforementioned readability user test, each tweet and
a list in descending order of the weight of the feature words
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are shown below.
Product B is amazing! (製品 B すげぇ) [power, strong, human, worth,

state·aspect, facility, education, positive,]

Product B is a godsend! (製品 B は神) [state·aspect, thought, human,

relationship, life and death, existence, power, strong,]

Oh, after all, the sound of Product B is something good and deep. (あー

やっぱり製品 B音いい wなんか深み？がある w) [sound, advertisement,

state·aspect, image, emotion, worth, music, power, sense,]

While listening to the music with Product B, I was surprised with how

good the sound quality was. (製品 B で音楽きいたら音質めちゃくちゃ

よくてビックリした w …) [state·aspect, music, facility, action, ethics,

service industry, emotion, quantity,]

Even if Product B is fully charged, the LED remains lit. (製品 Bって

充電終わっても led 点灯したまんまなんだ…) [brightness, machine,

luminescence, state·aspect, computer, activity, essence,]

For the first two similar tweets, the common feature words
“power,” “strong,” and “human” had higher weights. Other
tweets with the PV-DBOW tweet vectors that were classi-
fied as positive and the three feature words with the top ten
weights were as follows.
“After all Product B is the strongest. (やっぱ製品 B は最強だから)”

“Because Product B is excellent. (製品 B は優秀だから)”

In the following two tweets on the sound quality of smart-
phones, the common feature words “music” and “emotion”
had higher weights. In the last tweet on charging and LED
lighting, the feature words “brightness” and “luminescence”
had higher weights. Also, importantly, clear differences
emerged in the top feature words of these three groups’
tweets.

4.4 Discussion on the Benefits of the Readability

The results of these experiments to test the hypothesis re-
vealed the following benefits for the readability of dis-
tributed representations.

• By looking up the top five-ten weighted feature words
of the learned words and tweet vectors, you can deter-
mine whether or not the learning is proceeding well.
You can judge that the learning worked well if about
half (40%-60%) of the top five-ten weighted feature
words were related to words and tweets. Therefore,
the readability can be used for quality assessment of
distributed representation learning.
• As shown in Table 8, as the weight is the higher, the

readability is the higher. The readability of feature
words with the highest weights of tweets is 66.1% on
average. These weights represent the strength of the
relationship between each feature word and all tweets.
Conversely, if you extract the tweet with the highest
weight for each feature word in which you are inter-
ested, in general, the readability of the feature word for
the tweet will be much higher than 66.1%. Thus, you
can visualize and extract tweets using the conceptual
axis by applying the readability of distributed repre-
sentations. The conceptual axis can further filter the re-

Fig. 5 Application image of social media filtering using the conceptual
axis.

sults of the sentiment analysis for social media mining.
Each feature word itself or a combination of feature
words becomes a conceptual axis. The image of so-
cial media filtering using the conceptual axis is shown
in Fig. 5. Tweets can be visualized with a meaningful
arrangement along the conceptual axis by constructing
the conceptual axis with feature words.

5. Expandability Evaluation of the Proposed Method

Because we found support for the effectiveness of our
method with a single domain benchmark, we evaluated the
expandability of our method with a diverse and large-scale
benchmark described in Appendix B. Also, we improved
our dictionary for the purpose of testing the expandability
of our method. In this section, we describe the improve-
ment of the dictionary and report the evaluation results of
the diverse and large-scale benchmark. In addition to the
sentiment analysis task, a domain-independent test of our
method with a word similarity task was also performed us-
ing the Wikipedia corpus.

5.1 The Improvement of the Dictionary

The dictionary aims to increase the readability of word and
document embeddings by giving feature words as nodes of
the hidden layer of the neural networks. The requirements
of the dictionary for this purpose are as follows.

• Because the feature words correspond to each dimen-
sion of the paragraph vector, the number of feature
words must be a multiple of 4 with more efficient mem-
ory alignment.
• In the case of nodes of the hidden layer, the weights

of feature words given to many core words increase;
therefore, such feature words might be deleted.

Table 9 shows the top feature words given to the core
words in Japanese. The feature words “state·aspect” and
“relationship·relation” belonging to “abstract concept” in
Table 1 are given to many core words. In particular,
“state·aspect” is a feature word with larger weights in all
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Table 9 Top feature words given to core words

Feature words Number of core words

state·aspect (様子 · 様態) 5,188
relationship·relation (関係 · 関連) 4,460

power·degree (勢力 · 程度) 3,217
order·regularity (秩序 · 順序) 2,689

strong (強力) 2,645
positive (肯定的) 2,455

Fig. 6 Procedures of sentiment analysis for the expandability evaluation.

examples shown in Sect. 4.3, which indicates that the influ-
ence of the feature word is too strong. Feature words below
those shown in Table 9, when used for word expansion, play
an important role in estimating positiveness [7]. Therefore,
“state·aspect” and “relationship·relation” were deleted, and
the number of feature words was set to 264 kinds, which is
a multiples of 4.

5.2 Evaluation with the Diverse and Large-Scale Bench-
mark

We made seed vectors of Japanese core words using the dic-
tionary and conducted an evaluation on 2-class classifica-
tions of the diverse and large-scale benchmark in Appendix
B using two types of paragraph vector models. The eval-
uation flow of sentiment analysis using the benchmark is
shown in Fig. 6. The differences from the procedure shown
in Fig. 4 are that the hyper-parameter tuning was done man-
ually without using Bayesian optimization and that hyper-
parameters of bulk learning including seed vectors construc-
tion from the dictionary were also adjusted based on the
macro-average F-score of the development set. We divided
the corpus for bulk learning and the corpus for feature ex-
traction and cross-validation as follows.
Corpus for bulk learning: Total 3.1 M lines (Others: 2.2M
tweets, Unlabeled (in the single domain benchmark): 0.56M
tweets, Training set: 0.34M tweets, The dictionary: 20K
core words and their feature words)
Corpus for feature extraction and cross-validation: 2
class training set: 25,718 tweets, 2class dev. set: 6429
tweets, 2class test set: 6429 tweets

The hyper-parameter settings are shown in Table 10.
The seed vectors of the output vectors were also set from
the dictionary in this evaluation because the macro-average

Table 10 Hyper-parameter settings for learning word and paragraph vec-
tors.

Hyper-parameters PV-DM PV-DBOW

# of iterations in the dictionary (input vector) 10 10
# of iterations in the dictionary (output vector) 1 1
# of iterations for bulk learning 20 60
# of iterations for feature extraction 200 60
Word appearance frequency threshold 10 3
Window size (Conventional Method) 2 (5) 5 (5)
Downsample threshold for words 1e-6 1e-5

Table 11 Evaluation results 4: Correlation coefficients between seed
vectors and learned word vectors.

PV-DM PV-DBOW
Input Vector Output Vector Input Vector Output Vector

After bulk learning 0.541 0.682 0.494 0.526
After feature extraction 0.423 0.686 0.494 0.526

Table 12 Evaluation results 5: Macro-average F-score for predicting
positive and negative tweets in 2-class sentiment analysis.

PV-DM PV-DBOW
Conventional Method Our Method Conventional Method Our Method

Dev. set 86.1 87.1* 88.85 89.01**
Test set 85.4 86.5*** 88.02 88.19****
vs. Conventional Method *p=0.0019<0.05, ***p=0.0072<0.05 **p=0.17>0.05, ****p=0.13>0.05

F-score of the dev. set was improved. The number of iter-
ations in the dictionary was one, so the seed vectors of the
output vectors were non-symmetric with the input vectors.
We utilized the sum of the input nodes regarding the hid-
den layer of PV-DM because of the better macro-average
F-score of the dev. set.

Table 11 presents the correlation coefficients between
seed vectors and learned vectors in the closed test after bulk
learning of the corpus and after feature extraction of the
training and dev set. As for PV-DM, as shown in Fig. 1,
because the tweet ID was added to the context words, the
word vectors were also updated when the feature extraction
of tweets was done. However, as for PV-DBOW, the update
of word vectors was stopped when the feature extraction of
tweets was done because the extraction and the update of
word vectors are independent. Therefore, the correlation of
the word vectors of PV-DBOW is lower than that of the sin-
gle domain benchmark shown in Table 6, but they still corre-
late with the seed vectors. With regard to PV-DM, the corre-
lation of input vectors decreased as the scale of benchmarks
increased, but it was considerably higher than the correla-
tion of control tests shown in Table 6, and the correlation of
output vectors was maintained. Therefore, in both the PV-
DBOW and PV-DM, the meaning of the nodes in the hidden
layer was maintained.

Table 12 presents the macro-average F-score in 2-class
sentiment analysis. A comparison of the results of the single
domain small benchmark shown in Table 8 revealed that the
F-score improved by 9 points in PV-DM and by 5.69 points
in PV-DBOW in the new benchmark. In the evaluation of
the new benchmark, our method is still better than the con-
ventional method in the PV-DM, and it is comparable to the
conventional method in the PV-DBOW.

Also, as shown in the following examples, the top five
to ten weighted feature words were found to be related
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Table 13 Relationship between the correlation coefficients after feature
extraction and the task accuracy of the dev. set for the PV-DM.

Number of Bulk Learning iter=0 iter=1 iter=5 iter=10 iter=15 iter=20
Macro Average F-score 84.5 84.7 85.9 86.7 86.8 87.1

Correlation Coefficients (Input Vector) 0.845 0.831 0.751 0.650 0.534 0.423

Table 14 Relationship between the correlation coefficients after feature
extraction and the task accuracy of the dev. set for the PV-DBOW.

Number of Bulk Learning iter=0 iter=1 iter=2 iter=10 iter=40 iter=60
Macro Average F-score 86.06 87.90 88.44 88.69 88.80 89.01

Correlation Coefficients (Input Vector) 1.0 0.598 0.571 0.502 0.500 0.494

to tweets of diverse categories concerning robot cleaners,
printing services, and makers also having higher weights.
Robot cleaner B, Wonderful! The air in the room got really clean. (ロ

ボット掃除機 Bすげーわ部屋の空気がすごいきれいになった) [dwelling,

family, facility, environment, structure, newness, machine,]

I am feeling the Maker A’s love for robot cleaner A and . . . (A 社さ

んのロボット掃除機 A と政宗様への愛をひしひしと. . . ) [customer,

kindness, dwelling, art, peace, sound, company, human,]

It is really useful to create booklets with the printing service at conve-

nience stores. (コンビニプリントで小冊子作れるのほんと便利) [book,

power, worth, newness, manufacture, education,]

Oh dear! Maker B is allowed to marry same-sex within the company?

It is wonderful that companies promote it! (え！B社社内同性婚 ok！？企

業がすすめるってすごい！！) [company, commerce, worth, public system,

economy, international relation, social activity,]

Next, we examined the relationship between readabil-
ity, which here is the correlation coefficients between seed
vectors and learned word vectors, and the task accuracy. Ta-
ble 13 shows the relationship between the correlation coeffi-
cients after bulk learning and feature extraction, and the task
accuracy of the dev. set, which is the macro average F-score,
for the PV-DM. Also, Table 14 shows it for the PV-DBOW.

In the PV-DM, which learns the word order informa-
tion, the readability monotonously decreases according to
the number of bulk learning of 3.1 M corpus, and the task
accuracy peaks at 20 iterations. A trade-off relationship
exists between readability and task accuracy up to the 20
iterations.

In the PV-DBOW, which learns the context informa-
tion, the learning is rapidly performed by two iterations of
bulk learning. A trade-off relationship also exists between
readability and task accuracy, up to two iterations, but af-
ter that, the change in readability and task accuracy is small
until 60 iterations. The “iter = 0” in Table 14 is the case
where feature extraction of tweets was performed only us-
ing the seed vectors of the core words based on the dictio-
nary, and the F-score of the sentiment analysis was 86.06.
By adapting the word vectors to the domain using about 3.1
M corpus, the F-score has increased to 89.01.

The realistic number of bulk learning is ten iterations
for the PV-DM and two iterations for the PV-DBOW be-
cause both the readability and task accuracy are balanced.

5.3 Domain Independent Test

The original word semantic vector dictionary was devel-

Table 15 Statistical information on the learning of the Wikipedia corpus

Items Values

Number of paragraphs 1.19 M articles
Number of uniq words 0.55M (more than 10 articles appeared)

Size of word corpus 366.23M (more than 10 articles appeared)
Number of core words 15,866 (more than 10 articles appeared)

Required memory 2.94G
Required time for 3 iters 44 min (46 min) (Our Method (266 features)), 39 min (Conventional Method)

oped to embed the knowledge of the encyclopedia [6].
Recently, Wikipedia†, which is a free encyclopedia, pro-
vides a Japanese domain independent corpus. Also, the per-
formance of word embeddings is usually evaluated in a word
similarity task. Moreover, the first word-similarity dataset
in Japanese has been published [23]. The dataset consists
of four parts of speech, i.e., adjectives, adverbs, verbs, and
nouns, and it contains more than 4500 word pairs including
rare words in addition to common words. We evaluated the
word similarity task using the dataset for word embeddings
learned with the Wikipedia corpus. In addition, the words
of each part of speech were randomly chosen to show fea-
ture words with the top n weights and examples of the top n
synonyms using word embeddings of our method.

A word similarity task evaluated word embed-
dings constructed by our method and the conventional
method both learning the Wikipedia corpus using the PV-
DBOW/Skip-gram model. In the Japanese word similarity
dataset††, each pair of words had an average point of sim-
ilarity given by ten human annotators. The similarity be-
tween word pairs by each method was estimated by the co-
sine measure of the word vectors. If multiple words with
word vectors were extracted from one word in the dataset by
the Japanese morphological analysis, MeCab and its dictio-
nary mecab-ipadic-NEologd, the weighted sum of the vec-
tor of each word was calculated. The weights of the con-
stituent words were set to the reciprocal of appearance order
for adverbs and verbs, and the constituent words were set to
have equal weights for adjectives and nouns. Also, all con-
stituent words must have word vectors. The performance
was evaluated by calculating the Spearman rank correlation
coefficient between the word similarity in the Japanese word
similarity dataset and the word similarity estimated by each
method.

We removed all tags from the Wikipedia corpus††† and
modified it to one article per line. The experiments on the
relationship between the readability of the learned word vec-
tors and the task accuracies revealed that the number of re-
alistic bulk learning is two iterations for the PV-DBOW, as
shown at the end of the previous section. We confirmed that
Epoch 3 gives the best performance in the word similar-
ity task in both the conventional method and the proposed
method. So the number of learning iterations over the cor-
pus in PV-DBOW was set to three (Epoch 3). Statistical in-
formation on the learning of the Wikipedia corpus is shown
in Table 15. By changing 266 feature words to 264 feature
words, the learning time improved by about 2 minutes. The

†https://en.wikipedia.org/wiki/Wikipedia
††https://github.com/tmu-nlp/JapaneseWordSimilarityDataset
†††https://dumps.wikimedia.org/jawiki/latest/
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difference in the learning time with the conventional method
is mainly due to an increase in file IO.

The correlation coefficients shown in Table 16 were for
a closed test between the seed vectors based on the core
words of 15,866 words appearing in more than ten articles in
the Wikipedia corpus and the word vectors learned with the
Wikipedia corpus. Because the size of the word corpus of
the Wikipedia corpus is about five times that of the Twitter
corpus, the correlation coefficient decreased, but the learned
word vector was still correlated with the seed vector.

Table 17 presents the evaluation results on the word
similarity task using the Wikipedia corpus. The evalua-
tion results of our method were comparable to those of
the conventional method in the Spearman rank correlation
coefficient.

Both of the evaluation results showed that the core
words learned with the Wikipedia corpus are correlated with
the seed vectors based on the dictionary and that the evalu-
ation results of our method are comparable to those of the
conventional method in the word similarity task. Table 18
shows examples of the top n weighted feature words and the
top n similar words for core words of each part of speech
randomly selected. The boldface feature words are feature
words that are given to the core words in the dictionary and
that remained after learning the Wikipedia corpus. For ex-
ample, the feature word of a special word such as “educa-
tion” had a very high weight in a technical term such as
“degree.” For the top five weighted feature words of an ad-
verb such as “incomprehensible,” which is a rare word, three
feature words remained from the dictionary, and two rea-
sonable feature words were learned from the context. For
a verb such as “get drunk,” only one feature word “food”
remained, but others were appropriate feature words given

Table 16 Evaluation results 6: Correlation coefficients (closed test)

Input Vectors Output Vectors
PV-DBOW/Skip-gram 0.432 0.476

Table 17 Evaluation results 7: Word similarity task using Wikipedia cor-
pus.

Part of Speech Conventional Method Our Method
Adjective 0.3470 0.3334
Adverb 0.2311 0.2415

Verb 0.3323 0.3431
Noun 0.2888 0.2840

Macro Average 0.2998 0.3005*
vs. Conventional Method *p=0.91>0.05

Table 18 Example of Top n weighted feature words and similar words for core words

Core words excellent (素晴らしい) incomprehensible (不可思議) get drunk (酔う) degree (学位)
Top n worth: 0.658 idea: 0.729 traffic·transportation: 0.686 education: 1.763
weighted positive: 0.517 image: 0.679 emotion: 0.642 public system: 0.777
feature power·degree: 0.499 religion: 0.534 food: 0.644 special: 0.727
words machine: 0.473 phenomena: 0.450 idea: 0.562 possess: 0.668

physics: 0.341 sense: 0.427 power·degree: 0.484 physics: 0.548
Top n 素晴らしく: 0.757 strange: 0.685 drunk: 0.733 master: 0.849
Similar すばらしい: 0.754 mystery: 0.633 drunken sickness: 0.705 doctor’s degree: 0.827
Words 素晴らしかっ: 0.744 eerie (不気味): 0.622 gloom (憂さ): 0.703 bachelor’s degree: 0.806
based on すばらしく: 0.667 unusual:0.617 excessive drinking: 0.702 master’s degree:0.803
the word (thus far readings or inflection forms) knowledge (人智): 0.616 heavy drinking: 0.695 ph.d.: 0.793
vectors perfect: 0.640 Bilocation (超常現象): 0.607 merry drinker: 0.686 bachelor: 0.784

in learning from the context. Top n similar words based on
word vectors are appropriate in any of the aforementioned
cases. Therefore, our method is domain-independent.

6. Conclusion

We proposed a new method to give specific meaning to each
node of a hidden layer in neural networks using a word se-
mantic vector dictionary to enable the readability of word
and document embeddings.

First, using a single domain sentiment analysis bench-
mark, we found that the evaluation results of our method
were better than those of the conventional method in the
macro-average F-score. Also, we tested the readability of
tweet embeddings in a user test. A total of 52.4% of the top
five weighted feature words were related to tweets.

Next, we improved the dictionary, which is suitable for
distributed representation, and constructed a large-scale sen-
timent analysis benchmark consisting of eight categories to
evaluate the expandability of our method. In the evaluation
of the benchmark, we found that our method is still better
than the conventional method in the PV-DM and that it is
comparable to the conventional method in the PV-DBOW.
Compared to the results of the single domain benchmark,
the F-score improved by 9 points in PV-DM and by 5.69
points in PV-DBOW. Also, we found that the top five to
ten weighted feature words were related to tweets of diverse
categories.

Finally, word similarity tasks using the Wikipedia cor-
pus were evaluated. The evaluation results of our method
were comparable to those of the conventional method in the
Spearman rank correlation coefficient. Moreover, we found
the top five weighted feature words to be related to the core
words.

Also, our experimental results demonstrated that
weights obtained based on learning and weights based on
the dictionary are more strongly correlated in a closed test
and more weakly correlated in an open test, compared with
the results of a control test. As the word corpus used for
learning expanded, the correlation with the seed vector de-
creased, but the correlation was maintained as high as about
twice that of the default random setting.

The proposed method improved the readability of dis-
tributed representations because these distributed represen-
tations of words and paragraphs learned by neural networks
are weights for each hidden node with a specific meaning.
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Future research will be conducted to optimize 264 feature
words. Learning the Wikipedia corpus with our method and
displaying the top n weighted Wikipedia articles of each fea-
ture word will enable clarifying important feature words and
trivial feature words in user tests. We will also determine
whether or not our method is universal and applicable to
other languages using a standard English dataset of a sen-
timent analysis task, word similarity task, and word anal-
ogy task (see Appendix C). We can also evaluate related
work [11], [13] using WordNet as a regularizer of the learn-
ing process in our method. We believe that the performance
of the task of social media mining could be improved by
our method without any annotated data because the perfor-
mance of sentiment analysis and the readability of document
embeddings show similar trends.
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Appendix A: Single Domain Benchmark for Japanese
Twitter Sentiment Analysis

We made a single domain benchmark using crowdsourcing
to label each tweet for each product brand [7]. There are
four kinds of labels as follows.
Positive: Positive opinions are stated for the target product
brand in a tweet.
Negative: Negative opinions are stated for the target product
brand in a tweet.
Neutral: Opinions on the target product brand in a tweet are
neither positive nor negative.
Unrelated: Opinions on the target product brand are not
stated.

We allocated five workers to each tweet and assigned
labels for approximate 35,000 tweets. Table A· 1 shows the
configuration of benchmarks constructed using crowdsourc-
ing. Tweets with the same number of votes on multiple la-

Table A· 1 Configuration of the benchmark.

Dataset Positive Negative Neutral Total Unrelated
Product A

Training set 1122 1023 1065 3210
Dev. set 280 256 266 802
Test set 280 256 266 802

Total number 1682 1535 1597 4814 8216
Product B

Training set 3654 2375 2802 8831
Dev. set 608 396 467 1471
Test set 609 396 467 1472

Total number 4871 3167 3736 11,774 5998
Unlabeled tweets

560,853

http://dx.doi.org/10.1002/scj.4690271205
http://dx.doi.org/10.1145/219717.219748
http://dx.doi.org/10.3115/980451.980860
http://dx.doi.org/10.1145/2911451.2914762
http://dx.doi.org/10.1145/2661829.2662038
http://dx.doi.org/10.3115/v1/d14-1162
http://dx.doi.org/10.3115/v1/n15-1184
http://dx.doi.org/10.1109/wi.2016.0022
http://dx.doi.org/10.18653/v1/w16-1609
http://dx.doi.org/10.1007/3-540-36456-0_61
http://dx.doi.org/10.18653/v1/s15-2078


KESHI et al.: SEMANTICALLY READABLE DISTRIBUTED REPRESENTATION LEARNING AND ITS EXPANDABILITY
1077

Table A· 2 Number of labels given to tweets by crowdsourcing

Categories Number of tweets Positive Negative Neutral Positive&Negative Unrelated Number of labels
Smartphone A 130,650 2,906 5,188 16,054 594 68,158 92,900
Smartphone B 482,036 5,655 9,531 51,900 603 18,884 86,573
Smartphone C 1,155,034 3,543 6,176 45,568 408 28,844 84,539
Robot cleaner A 11,664 741 311 6,894 41 4,371 12,358
Robot cleaner B 307,156 954 1,089 20,654 55 48,092 70,844
Printing service 275,097 3,887 3,484 30,176 241 35,514 73,302
Maker A 187,584 744 4,421 40,950 75 26,358 72,548
Maker B 169,532 1,503 937 13,624 80 54,891 71,035
Total number 2,718,753 19,933 31,137 225,820 2,097 285,112 564,099

Table A· 3 Japanese Twitter Sentiment Analysis Benchmark

Dataset Positive Negative 2 class total Neutral Unrelated Total
Training set 10,100 15,618 25,718 137,089 180,186 342,993
Dev. set 2,525 3,904 6,429 34,272 45,046 85,747
Test set 2,525 3,904 6,429 34,272 45,046 85,747
Total number 15,150 23,426 38,576 205,633 270,278 514,487
Others 2,204,266

bels in the 1st place and the “unrelated” labels were removed
from the experiments in Sect. 4.

Appendix B: Diverse and Large-Scale Benchmark

We constructed a large-scale benchmark with diversity us-
ing crowdsourcing to test the expandability of our method.
Table A· 2 shows the number of tweets collected for each
category, which consists of five product brands, one ser-
vice and two makers, and the number of tweets labeled by
crowdsourcing. We collected tweets with keywords such as
product brands for 13 months from October 2014 to Novem-
ber 2015 regarding smartphones A and B and for 13 months
from January 2015 to February 2016 regarding other cate-
gories. We labeled the tweets of each category using crowd-
sourcing. Five workers were assigned to each tweet, and
labels were given by majority vote. In the case of ties in the
majority vote, multiple labels were assigned to one tweet.
Five kinds of labels were used, as follows.
Positive: Positive opinions are stated for specific features of
a target category in a tweet.
Negative: Negative opinions are stated for specific features
of a target category in a tweet.
Neutral: Opinions on a target category in a tweet are neither
positive nor negative in the sense of the aforementioned.
Positive&Negative: Both positive and negative opinions are
stated in a tweet.
Unrelated: Opinions on a target category are not stated.

Here, the point was to clarify positive and negative
judgment criteria as “specific features” for target categories,
like aspect-based sentiment analysis [24], to perform crowd-
sourcing work efficiently on large-scale tweets. Therefore,
the first two examples of Sect. 4.4, which have been usu-
ally considered positive, became neutral in the labeling this
time. Also, the latter three cases that express their opinions
on specific features “sound” and “charging” are subjects of
positive and negative judgment.

Table A· 3 shows the Japanese Twitter sentiment anal-
ysis benchmark created based on the result of labeling by
crowdsourcing. We classified tweets that are given multiple
labels including “positive & negative” labels in the “Others.”

Table A· 4 Specifications of the dictionary

number of core words Average feature word number
Japanese 20,330 words 8.77 feature words
English 21,912 words/phrases 11.73 feature words

Fig. A· 1 Example of the dictionary

The 2-class classifications of positive and negative were part
of a diverse and large-scale benchmark of 38,576 tweets,
even compared with the benchmark of SemEval [22]. In ad-
dition, the reliability of the benchmark was high because
the positive and negative classification standards were clear.
Furthermore, because the specific features of products, ser-
vices, and organizations were stated in the tweet, the test
was considered to be a benchmark to extract tweets that are
useful for product planning and quality support.

Appendix C: English Version of the Dictionary

Regarding English version construction, first, we translated
20,330 core words from Japanese to English words or En-
glish phrases using the neural machine translation API†. The
reason for using neural machine translation rather than a
Japanese-English dictionary was to translate difficult words
extracted from encyclopedia or newspapers into English
words and phrases used every day. As a result, they were
translated into about 14,000 unique English words/phrases
including translation errors. We employed three proofread-
ers using crowdsourcing to make the proofreading request
of translated English words and phrases while referring to
given feature words. The specifications of the dictionary
Ver. 2 are shown in Table A· 4. Figure 5 shows an example
of the dictionary. The core word is placed at the beginning
of each line, and the feature words are listed with a space
delimited. An English phrase is expressed by combining
English words and underscores. The problem with the En-
glish version is that because we only merged the results of
three proofreaders, it contains translation errors including
misspellings, and English core words translated from vari-
ous Japanese core words are given all the original feature

†https://www.microsoft.com/en-us/translator/
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words. For example, in Fig. 5, the feature words of the core
word “audio” merge the original feature words of the core
words “voice” and “audio.” That is why the average fea-
ture number of English words/phrases is larger than that of
Japanese, as shown in Table A· 4. Also, “audio training” is a
translation error of “kanji reading,” and “audiovisual sense”
is better than “audio visual” for given feature words. The
English version is planned to be improved after publication.
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