
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018
447

PAPER

PROVIT-CI: A Classroom-Oriented Educational Program
Visualization Tool∗

Yu YAN†a), Kohei HARA††, Takenobu KAZUMA†, Yasuhiro HISADA†, Nonmembers, and Aiguo HE†, Member

SUMMARY Studies have shown that program visualization(PV) is ef-
fective for student programming exercise or self-study support. However,
very few instructors actively use PV tools for programming lectures. This
article discussed the impediments the instructors meet during combining
PV tools into lecture classrooms and proposed a C programming class-
room instruction support tool based on program visualization — PROVIT-
CI (PROgram VIsualization Tool for Classroom Instruction). PROVIT-CI
has been consecutively and actively used by the instructors in author’s uni-
versity to enhance their lectures since 2015. The evaluation of application
results in an introductory C programming course shows that PROVIT-CI is
effective and helpful for instructors classroom use.
key words: program visualization(PV), educational PV tool, introductory
programming education, C language, classroom instruction

1. Introduction

Program Visualization (PV) is useful to illustrate informa-
tion inside computer programs during their runtime dynam-
ically or statically [1]. It is widely used in visual debugger
of Integrated Development Environment(IDE) [2]. On the
other hand, studies have shown that PV can also improve
beginner’s understanding of computer program [3], [4]. A
lot of educational PV tools have been proposed to sup-
port computer programming learning. For example, Je-
liot3, for full or semi-automatic visualization of Java pro-
grams [5], [6], has been used in distance education [7],
collaborative learning [8] and student programming exer-
cise [9]; VILLE, for visualization of Java and pseudo-code
programs, was used in lab session [10]; VIP is a profitable
visualization tool for students to learn introductory C++
programming [11]; UUhistle, for introductory Python pro-
gramming learning, can show program execution proceeds
and explore students’ mistakes by “visual program simu-
lation exercises”[12], [13]; On-line Python Tutor, a web-
based program visualization tool with digital textbooks and
example programs works on all modern web browsers for
students in exercise sessions or self-study [14]; The Teach-
ing Machine(TM) [15], [16] can visualize C++ and Java
program; A useful PV tool was proposed to promote stu-

Manuscript received April 20, 2017.
Manuscript revised August 30, 2017.
Manuscript publicized November 1, 2017.
†The authors are with Graduate School of Computer Science

and Engineering, The University of Aizu, Aizu-wakamatsu-shi,
965–0006 Japan.
††The author is with Maple Systems Co., Ltd., Tokyo, 104–0061

Japan.
∗This is a paper on system development.

a) E-mail: d8171106@u-aizu.ac.jp
DOI: 10.1587/transinf.2017EDK0002

dents’understanding of data processing algorithms [17].
In many universities like author’s university, a com-

puter programming course consists of lectures and exer-
cises. The exercise is performed in an exercise classroom
where each student uses a computer for self-study and the
instructor mainly deals with the questions from the students.
On the other hand, the lecture is performed in a lecture class-
room equipped with an instructor computer and a wall-size
projection screen for showing the desktop of the computer.
In the lecture classroom, students share the teaching materi-
als including example program source codes by the projec-
tion screen and are not requested to use their own computers.
However, IDEs and above educational PV tools have only
been used to support students in exercise or self-study and
there is no research showing that instructors, who play the
most important role in programming education, actively in-
tegrated those tools into their lecture classroom instruction.

There are impediments that lead to instructors’ dissat-
isfaction when they try bringing those tools into such lecture
classrooms:

• Those tools are designed for students to use in an ex-
ercise classroom or for self-study. It is difficult for in-
structors to show the execution of example programs
on the projection screen in the lecture classroom by
using them. For example, it takes additional time for
the instructors to load, type or paste example program
source codes into those tools; the layout of their graphi-
cal user interface and the visibility of their visualization
results are mainly for personal use and not suitable to
be shown on the projection screen;
• In some PV tools such as VILLE and the tool of lit-

erature [17], the instructors can control and customize
the visualization of the target example program for en-
hancing students’understanding of the program or the
algorithm. However, those tools require additional in-
formation such as “role information of variables”[18]
or “visualization policy” for the program. Therefore,
if those tools are applied to the lecture classroom, the
following problems will occur: the instructors need to
spend additional working time to define those informa-
tion for the program and it is not easy to show a varia-
tion of the program by instantaneously editing it.

In order to apply educational PV tools to enhancing in-
structions in the lecture classrooms, it is necessary to im-
prove those tools being classroom-oriented. Here, class-
room means the lecture classroom described above and

Copyright c⃝ 2018 The Institute of Electronics, Information and Communication Engineers

448
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

classroom-oriented PV tool should have following features:

• It is easy for instructor to use in the classroom;
• It only adds minimum work to instructor to use it;
• It does not show any unnecessary information on the

projection screen in the classroom;
• It offers visualization results with high enough visibil-

ity in the classroom to students;
• It does not require any change in the appearance of

original example program source codes and teaching
materials.

This article proposes a classroom-oriented PV tool–
PROVIT-CI(PROVIT for Classroom Instruction). The core
of it is PROVIT(PROgram VIsulization Tool), an ed-
ucational PV tool developed in author’s university [20].
PROVIT-CI has been experimentally used in a regular in-
troductory C programming course in author’s university and
its usefulness has been confirmed by the experimental appli-
cation.

The remainder of the article is structured as follows:
Sect. 2 reviews PROVIT; Sect. 3 describes PROVIT-CI in
details; Sect. 4 states an implementation of PROVIT-CI;
Sect. 5 describes the experimental application of PROVIT-
CI and discusses the evaluation results.

2. PROVIT

PROVIT is aimed at visualizing the processing of C program
execution to improve beginner’s understanding. It is devel-
oped by Java technology, thus, supported by multiple kinds
of operating system. It includes a C virtual machine [21], a
program code editor and Run Viewer for user to write, run
and check their C programs. Figure 1 shows Run Viewer of
PROVIT. It has a Code View, an Image View and a Console
View.

Run Viewer offers following basic functions for the
user to check his program:

• One step execution by clicking “Forward” button;
• Back to previous step by clicking “Backward” button;

Fig. 1 Run Viewer of PROVIT

• Continuative execution to breakpoint or the end of the
program by clicking “Go” button;
• Execution from the beginning of the program by click-

ing “Restart” button.

Following above functions, Code View displays the
source code of the program as follows:

• Indicate all steps that have been executed with light
blue color underlines for the user to trace the runtime
execution of the program;
• Indicate the step that will be executed in next one step

execution with a red color underline;
• Set or clear a breakpoint by clicking on any step of the

source code and the breakpoints are indicated by light
green rectangles.

Image View visualizes current status of the running C
program by graphically showing following information:

• Variable data type, variable name and its current value;
• Function name.

Console View simulates the console of the computer,
showing standard input and output of the program.

Although PROVIT has many useful visualization func-
tionalities, we found the following problems when PROVIT
was used in a regular programming course for the first year
students in author’s university:

• In this course, basic concepts about array data structure
such as dimension, size and zero-based indexing are
taught and then, students learn applications of large-
size 2-dimensional array. However, many students had
difficulty understanding them.
• In many example programs used in this course, return

values are directly referenced in expressions like:

if(scanf("%d", &a) != 1){

(do something)

}

However, in order to show a return value by using
PROVIT, the source code needs additional variable and
assignment statement such as:

int v = scanf("%d", &a);

if(v != 1){

(do something)

}

Therefore, the instructors have to change those exam-
ple programs when they want to use PROVIT.

3. PROVIT for Classroom Instruction (PROVIT-CI)

PROVIT-CI is an extension of PROVIT for instructors to use
in the lecture classroom described in Sect. 1 for teaching ba-
sic programming concepts and techniques. In order to solve
the problems of PROVIT mentioned in Sect. 2 and promote
students’ understanding during the lecture, PROVIT-CI has

YAN et al.: PROVIT-CI: A CLASSROOM-ORIENTED EDUCATIONAL PROGRAM VISUALIZATION TOOL
449

been enhanced as follows:

• In Run Viewer, a big virtual cursor is added to replace
the usual mouse cursor for student to easily trace the
elements which are being instructed on the views;
• In Code View, the red color underline is replaced by a

blinking red color underline;
• In Image View, variable’s role is shown by different

color: variable(s) which will be referenced at next one
step execution are marked by blue color background
and variable which will be changed at next one step
execution is marked by red color background. Fig-
ure 2 shows an example of variable visualization. Here,
step “i < y size” in line 58 of the program will be ex-
ecuted at next one step execution and variables “i” and
“y size” with blue color background will be referenced
in that execution;
• Information of completely executed functions is dis-

played in Image View if the return value of the function
will be referenced by other step. Figure 2 also shows
an example of function visualization. Here, “scanf()”
was repeatedly called at line 45 of the program and its
return value was referenced. The last 4 results of func-
tion call including the type of the return value were dis-
played;
• Array Viewer for visualization of array variable was

added. It can display the value in each element of
the array or show all the values in the array as a
monochrome image since in introductory program-
ming course array is usually used to process simple
image data. As shown in Fig. 2, the example program
which is taught to the first year students in author’s uni-
versity loads a monochrome image into the first array
and saves its inversion to the second array. Here, the
left Array Viewer shows the values in part elements of
the first array and the right one shows the whole data in
the second array as a monochrome image;
• All of three views of Run Viewer support zoom in or

zoom out operation to show the details of visualization
elements.

In order to save class time, PROIVT-CI is also designed
to provide convenient and easy operation for the lecture
classroom use, as follows:

Fig. 2 Run Viewer of PROVIT-CI

• PROVIT-CI supports standard input redirection. The
instructor can set text data or a path of a text file on
Console View for the example program being visual-
ized by PROVIT. Figure 2 shows an example of us-
ing standard input redirection where the program loads
image data by standard input from a text formate file
instead of keyboard and the content of the file is also
shown in Console View;
• PROVIT-CI offers two kinds of web service to the in-

structors: (1) Instructor can upload his example pro-
gram source codes and input data that they want to
use in the classroom to the web server of PROVIT-
CI before the lecture; (2) For each example program,
PROVIT-CI gives an PROVIT URL. When instructor
accesses to the URL from a web browser, PROVIT will
be launched directly showing its Run Viewer with the
example program in its Code View and the input data in
its Console View. The URL can be embedded in Pow-
erPoint slide or PDF file of teaching materials. There-
fore, instructor can quickly start PROVIT by the URL
embedded in on showing material.
• All operations of Run Viewer can be done not only by

pointing devices but also keyboard accelerators.

4. Implementation

PROVIT-CI is composed of a web server and PROVIT
URLs as client interface. On the client side, PROVIT is
launched by Java Web Start technology [22]. In the web
server, the body of PROVIT, C example programs, input
data needed for the C programs to read by standard input
function are placed. Each PROVIT URL corresponds to a
HTML file. An example of the HTML file is showed as
Listing 1.

Listing 1 Code example of PROVIT URL

<html><head>
< s c r i p t s r c=” . / web− f i l e s / d t j a v a . j s ”>
< / s c r i p t>< s c r i p t>
f u n c t i o n launchPROVIT (j n l p f i l e) {

d t j a v a . l a u n c h ({
u r l : ’ . / p r o v i t . j n l p ’ ,
params : {

s t a r t M o d e : ”run” ,
windowMode : ”modal” ,
sourceCode : ”programFileName” ,
i n p u t D a t a : ” inpu tDa taF i l eName ”

} ,
j n l p c o n t e n t : ’ ’
} ,
{

j a v a f x : ’8 .0+ ’
}

) ;
r e t u r n f a l s e ;

}
d t j a v a . ad dOn lo adC a l lba ck (launchPROVIT) ;
< / s c r i p t>
< / head>< / html>

450
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Fig. 3 A list of PROVIT URL [24]

The meanings of key elements in the HTML file are as fol-
lows:

• “./web-files/dtjava.js” and “./provit.jnlp” are automati-
cally generated by NetBeans [23] to start PROVIT as a
JavaFX application;
• Parameter “startMode” with value “run” controls

PROVIT to directly load the example program and the
input data showing them by Run Viewer;
• Parameter “windowMode” with value “modal” con-

trols PROVIT to show its window on the top of the
client computer screen and ready to be used by the in-
structor;
• “programFileName” indicates the source code file path

name of the example program;
• “inputDataFileName” indicates the path name of text

data file for the program to read as standard input.

Figure 3 shows an example of PROVIT URL list loaded in
a web browser. This list includes the PROVIT URLs for all
example programs used for a first-year programming course
in author’s university and for each program, there is follow-
ing information:

• Lecture Number;
• Lecture Description;
• Title of example program embedded with a hyperlink

to its PROVIT URL;
• Teaching material information corresponded to the pro-

gram.

5. Evaluation on Experimental Application

Since 2015, as an experimental application, PROVIT-CI has
been introduced to the classroom of a regular course, “Intro-
duction of Programming” in author’s university. This course
is given to 240 first-year students by 3 instructors from April
to July for 16 weeks every year. Each week has a 90 minutes
lecture teaching C language and computer programming.
Table 1 shows the main topics and basic concepts taught in

Table 1 Course distribution

Lec.# Topics and Concepts
1 Introduction, “Hello world”
2 Variable, I/O, Assignment, Arithmetic operations(a)
3 Variable, I/O, Assignment, Arithmetic operations(b)
4 If statement & Switch-case statement
5 While statement
6 For statement
7 1-Dimensional Array
8 Special Lecture by invited instructor
9 Midterm Exam

10 Program structure & Flowchart
11 2-Dimensional Array
12 Input redirection & Pipe; Image-Processing
13 Function(a)
14 Function(b)
15 Coding style
16 Final Exam

each week of the course. The teaching materials are made
by Microsoft PowerPoint.

Before the experiment, the following preparation was
done:

• All example program source codes that would be used
by the instructors in their lectures and input data for the
standard input of example programs were uploaded on
PROVIT-CI server;
• For each slide including an example program, a hyper

link of PROVIT URL corresponding to the program
was embedded for instructors to easily run the program
by PROVIT;
• Since the user interface of PROVIT is very simple,

there is no any instruction document about it being of-
fered to the instructors. Only a short explanatory meet-
ing about PROVIT’s operation was held for them.

The instructors were not forced to use PROVIT-CI.
Therefore, during the lectures, the instructors could show
their PowerPoint slides and explain the example program
source code on the slide as usual. When the instructor
wanted to run the program instantly and trace its execution
step by step, he only needed to click the hyper link em-
bedded on the slide to start PROVIT-CI which shows a full
screen window that overlays on the slide. After the explana-
tion was finished, the instructor could close PROVIT-CI and
show the original slide again.

Figure 4 shows an example of teaching material by
which the instructor showed the source code, compile com-
mand and execution result of an example program. Fig-
ure 5 shows the sight of a classroom where the instructor had
launched PROVIT-CI to explain the runtime behavior of the
same example program in Fig. 4. Unlike existing IDEs and
educational PV tools, PROVIT-CI can display the source
code and visualization results by high enough visibility to
the students.

During the experiment in 2015 and 2016, PROVIT-CI
was not used in several lectures because of following rea-
sons:

• Lecture 8,9,10,15 and 16 were not for teaching new

YAN et al.: PROVIT-CI: A CLASSROOM-ORIENTED EDUCATIONAL PROGRAM VISUALIZATION TOOL
451

Fig. 4 Example of teaching material(PowerPoint slide)

Fig. 5 PROVIT-CI used in a lecture classroom

contents that need to be explained by example pro-
grams;
• Some instructors could not access PROVIT server due

to network problems in their computer used in the lec-
tures;
• There is a preparatory work error of embedding

PROVIT URL into PowerPoint slides.

Instructor’s operations of PROVIT-CI were recorded as
log data during the experimental application and an evalua-
tion from the students about the effectiveness of PROVIT-CI
by a questionnaire was encouraged in 2016.

5.1 Functions Used in Each Lecture

Table 2 is one analysis result of instructor’s operation log
data: the situation that the instructors used PROVIT-CI’s
functions for teaching each lecture in 2015 and 2016. The
topics taught in each lecture are shown in Table 1 and the
functions are listed in Table 3. Here, the value in each cell
is the total number of times that the corresponding function
has been used at the corresponding lecture in 2015 and 2016.

From Table 2, the following turned out:

• The mostly used function was “To next step” for trac-
ing program execution. “Go”, “Restart” and “Set/Clear

Table 2 Frequency of use of PROVIT-CI’s function

Lec.#
Functions

1 2 3 4 5 6 7 8 9
1
2 84 2 1 1 7
3 81 1 6
4 5
5 168 2 2 4
6 467 2 24 4 5 3
7 562 4 3 2 19 6 8 1
11 831 2 4 1 25 8 2
12 307 78 1 8 21 8
13 155 1 6
14 166 1 3

Table 3 Main Functions of PROVIT-CI

No. Function
1 To next step(one step execution)
2 Back to previous step
3 Go(Continuative execution to breakpoint or

the end of program)
4 Restart(Execution from the beginning of the program)
5 Set/Clear break point
6 Array Viewer
7 Standard input redirection
8 Source code edit
9 Source code file load

break point” were also frequently used. Especially
“Go” was more frequently used in lecture 6 and lec-
ture 12 for teaching loop statements and applications of
large size array. Those functions can shorten the time
in explaining example programs;
• “Array Viewer” and “Standard input redirection” were

actively used in particular lectures for showing the de-
tails and the overview of array variables and automati-
cally reading data from standard input to an array vari-
able. Especially in Lecture 12 that all example pro-
grams use large size array variables, it is difficult for
the instructors to run those programs and show the re-
sults effectively during the lecture without PROVIT-CI;
• “Source code edit” was often used in the lecture class-

rooms. This function is important in lecture classrooms
for the instructors to easily and instantly show a vari-
ation of example program or make a correction of the
program;
• “Back to previous step” was expected to be used to re-

peatedly and easily show the change in variable’s value
caused by the execution of program. However, it was
used in only two lectures. That means this function is
not necessary in the classroom.

5.2 Accumulated Use Time

Table 4 and Table 5 show another analysis result of in-
structor’s operation log data: the time that instructors used
PROVIT-CI for each lecture in 2015 and 2016. Here, time
of “During Lecture” is the total time the instructors used
PROVIT-CI during a lecture; time of “Before Lecture” is

452
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

the total time the instructors used PROVIT-CI for checking
example programs, getting familiar with PROVIT-CI on the
day before the day when the corresponding lecture was per-
formed. The used time was counted only when PROVIT-
CI’s window was on the top of instructor’s computer dis-
play. In each cell of the tables, the total time in minutes
that PROVIT-CI was used and the number of instructor who
used PROVIT-CI for the corresponding lecture are shown.

From Table 4 and Table 5, the following can be under-
stood.

• PROVIT-CI was actively used in all the lectures in
which the instructors were able to use it. The first sev-
eral lectures were mainly for introducing basic con-
cepts and only one short example program was ex-
plained by using PROVIT-CI in each lecture. For show-
ing the execution of a short program by PROVIT-CI, 1
or 2 minutes was enough. In the other lectures, com-
plicated programs were introduced and repeatedly exe-
cuted thus PROVIT-CI was used longer in each lecture;
• The time of “Before Lecture” can be thought as

the only additional burden for the instructors to use
PROVIT-CI. This time was not so much, the average
of it was only 8.8 minutes. Moreover, in 2016, the
time spent before each lecture had been completely de-
creased.

5.3 Evaluation by Students

To confirm the usefulness of PROVIT-CI, a questionnaire

Table 4 Accumulated use time(in minutes) in 2015

Lec.#
Use time/Number of instructors

During Lecture Before Lecture
1
2 8.2/1 7.8/1
3 6.7/1 4.0/1
4 12.9/1
5 16.3/2 33.1/1
6 13.3/2 16.5/2
7 15.4/2 15.1/2

11 14.0/1 9.6/2
12 15.1/2 14.7/2
13 1.8/1 9.0/1
14 9.1/2 14.5/2

Table 5 Accumulated time(in minutes) in 2016

Lec.#
Use time/Number of instructors

During Lecture Before Lecture
1 5.7/2
2 2.3/1 2.8/2
3 1.7/1
4 1.9/1 4.9/1
5 2.7/1
6 27.9/3 5.9/1
7 19.0/2 4.2/1

11 19.9/2 1.5/1
12 8.3/2 1.0/1
13 12.3/2 1.0/1
14

asking whether PROVIT-CI has been or will be helpful for
understanding the example programs showed in each lecture
was given to all the students at the last lecture of the second
year(2016). Figure 6 presents the statistical results of the an-
swer. The numbers on the horizontal axis correspond to the
lecture number in Table 1. The answers according to lecture
2 and 3 are summarized together since the two lectures have
same topics and concepts. The same way for lecture 13 and
14. “A” means that the answerer thought PROVIT-CI was
or would be very helpful and “E” means that the answerer
thought PROVIT-CI was not or would not be helpful at all.

From Fig. 6, the followings can be understood:

• PROVIT-CI was highly accepted by the students. For
most of the lectures, more than 75% of students an-
swered that PROVIT-CI is helpful for improving the
understanding of the lecture;
• PROVIT-CI solved the problems of PROVIT described

in Sect. 2 by introducing new Array Viewer and visual-
ization of return value. Array Viewer can automatically
deal with the number of dimensions and the size of the
array. And it can easily show the relations between
the whole array and any particular element of the ar-
ray by simple operations. Visualization of return val-
ues helps the instructors to easily explain how to simply
make use of the return values without using additional
variables and assignment statements. Figure 6 shows
that PROVIT-CI was very useful for teaching array (in
lecture 7 and 11) and function (in lecture 13 and 14).
Thus, these new functionalities contribute to promoting
students’ understanding in lecture classrooms;
• In lecture 1 and lecture 5, PROVIT-CI was not used.

However, there were more than 65% of students
thought it could be helpful in these lectures if it was
used;
• PROVIT-CI used in lecture 12 got a lower evaluation

than in other lectures, less than 65% of students thought
it is helpful. In this lecture, all example programs were,
as applications of array variable, implementations of

Fig. 6 Evaluation result of PROVIT-CI by students

YAN et al.: PROVIT-CI: A CLASSROOM-ORIENTED EDUCATIONAL PROGRAM VISUALIZATION TOOL
453

monochrome image processing and PROVIT-CI’s Ar-
ray Viewer played an important role for the explanation
of those programs. The reason of the lower evaluation
is that the content of this lecture, based on the curricu-
lum, was originally designed without consideration of
using PROVIT-CI and the instructors, for the first time,
need to spend a lot of time to teach how to feed im-
age data to the programs by standard input redirection
and feed the output of the programs to an image viewer
tool by output redirection. And PROVIT-CI is not for
teaching those techniques.

5.4 Evaluation by Instructors

Instructors of this course confirmed that PROVIT-CI is ef-
fective to promote student’s understanding of the example
programs shown at lectures. According to the feedback from
the instructors, the following features of PROVIT-CI were
highly evaluated:

• Quickly start by PROVIT URL;
• Big virtual cursor;
• Operating by keyboard accelerators;
• Easy standard input redirection;
• Array Viewer.

The instructors also confirmed that PROVIT-CI requires no
additional information for the visualization of the example
programs.

Furthermore, the instructors declared that they will
continue to use PROVIT-CI in this course in the future and
that they hoped PROVIT-CI can be used in further courses
teaching more concepts such as pointer and structure.

5.5 Limitations and Ongoing Work

Although PROVIT-CI was not used in some lectures by any
instructor as shown in Table 5, Fig. 6 shows that students
considered that PROVIT-CI is useful for all lectures. There-
fore, it is necessary to consider using PV tools for more lec-
tures in classroom.

As shown in Table 4 and Table 5, PROVIT-CI could not
be used in not a few lectures. The main reason was that the
instructors could not connect their mobile computer to the
internet at classroom. Therefore, as a classroom-oriented
PV tool, only offering on-line service is not enough, service
for off-line use is also necessary.

At present, we are planning to add custom-made vi-
sualizations for more C language concepts such as pointer,
structure so that PROVIT-CI can be useful in more advanced
C courses. We are also considering services for the instruc-
tors to use PROVIT-CI at lectures without network environ-
ment and for the instructors out of author’s university to use
PROVIT-CI for their own lectures.

6. Conclusion

This study proposes a classroom-oriented educational pro-

gram visualization tool, PROVIT-CI, with several delicate
designs in its GUI and function for improving student under-
standing, offering more convenience and saving class time.
Three instructors in author’s university have actively used
PROVIT-CI to help them teach programming in the lecture
classrooms for two years. The results of the experimen-
tal application show that PROVIT-CI can effectively solve
the problems in trying to use existing PV tools to help lec-
ture classroom instruction. Though PROVIT-CI is only for
teaching programming by C language, the approach pro-
posed and the results achieved in this study are applicable
to other computer languages.

Acknowledgments

We would like to thank Prof. Kohei Otsuyama and Prof.
Hirohide Demura for applying PROVIT-CI to their lecture
classrooms and giving us valuable comments. We would
also like to thank Prof. Masayuki Tanimoto for giving us
very valuable advice on the preparation of this article.

References

[1] B.A. Myer, “Visual programming, programming by example, and
program visualization: a taxonomy,” Proc. ACM SIGCHI Bulletin,
vol.17, no.4, pp.59–66, April 1986.

[2] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J.
Bennedsen, M. Devlin, and J. Paterson, “A survey of literature on
the teaching of introductory programming,” Proc. ACM SIGCSE
Bulletin, vol.39, no.4, pp.204–223, Dec. 2007.

[3] G. Ebel and M. Ben-Ari, “Affective effects of program visualiza-
tion,” Proc. 2nd International Workshop on Computing Education
Research, Canterbury, United Kingdom, pp.1–5, Sept. 2006.

[4] M.J. Laakso, T. Rajala, E. Kaila, and T. Salakoski, “The impact
of prior experience in using a visualization tool on learning to
program,” Proc. IADIS International Conf. on Cognition and Ex-
ploratory Learning in Digital Age, Freiburg, Germany, pp.13–15,
Oct. 2008.

[5] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visualizing
programs with Jeliot 3.” Proc. Working Conf. on Advanced Visual
Interfaces, pp.373–376, Gallipoli, Italy, May 2004.

[6] N. Myller, R. Bednarik, and A. Moreno, “Integrating dynamic pro-
gram visualization into BlueJ: The Jeliot 3 extension,” Proc. 7th
IEEE International Conf. on Advanced Learning Technologies, Sen-
dai, Japan, pp.505–506, July 2007.

[7] O. Kannusmäki, A. Moreno, N. Myller, and E. Sutinen, “What a
novice wants: Students using program visualization in distance pro-
gramming course,” Proc. 3rd Program Visualization Workshop, The
University of Warwick, UK, pp.126–133, July 2004.

[8] N. Myller, R. Bednarik, E. Sutinen, and M. Ben-Ari, “Extending
the engagement taxonomy: Software visualization and collabora-
tive learning,” Proc. ACM Trans. Computing Education, vol.9, no.1,
March 2009.

[9] A. Pears and M. Rogalli, “mJeliot: a tool for enhanced interactivity
in programming instruction,” Proc. 11th Koli Calling International
Conf. on Computing Education Research, TBA, Finland, pp.16–22,
Nov. 2011.

[10] E. Kaila, T. Rajala, M.J. Laakso, and T. Salakoski, “Effects
of course-long use of a program visualization tool,” Proc. 12th
Australasian Conf. on Computing Education, Brisbane, Australia,
pp.97–106, Jan. 2010.

[11] A.T. Virtanen, E. Lahtinen, and H.M. Järvinen, “VIP, a visual inter-
preter for learning introductory programming with C++,” Proc. 5th

http://dx.doi.org/10.1145/22339.22349
http://dx.doi.org/10.1145/22339.22349
http://dx.doi.org/10.1145/22339.22349
http://dx.doi.org/10.1145/1345375.1345441
http://dx.doi.org/10.1145/1345375.1345441
http://dx.doi.org/10.1145/1345375.1345441
http://dx.doi.org/10.1145/1345375.1345441
http://dx.doi.org/10.1145/1151588.1151590
http://dx.doi.org/10.1145/1151588.1151590
http://dx.doi.org/10.1145/1151588.1151590
http://dx.doi.org/10.1145/989863.989928
http://dx.doi.org/10.1145/989863.989928
http://dx.doi.org/10.1145/989863.989928
http://dx.doi.org/10.1109/icalt.2007.165
http://dx.doi.org/10.1109/icalt.2007.165
http://dx.doi.org/10.1109/icalt.2007.165
http://dx.doi.org/10.1109/icalt.2007.165
http://dx.doi.org/10.1145/1513593.1513600
http://dx.doi.org/10.1145/1513593.1513600
http://dx.doi.org/10.1145/1513593.1513600
http://dx.doi.org/10.1145/1513593.1513600
http://dx.doi.org/10.1145/2094131.2094135
http://dx.doi.org/10.1145/2094131.2094135
http://dx.doi.org/10.1145/2094131.2094135
http://dx.doi.org/10.1145/2094131.2094135

454
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Koli Calling Conf. on Computer Science Education, pp.125–130,
Nov. 2005.

[12] J. Sorva and T. Sirkiä, “UUhistle: a software tool for visual program
simulation,” Proc. 10th Koli Calling International Conf. on Comput-
ing Education Research, Koli, Finland, pp.49–54, Oct. 2010.

[13] T. Sirkis̈, J. Sorva, “Exploring programming misconceptions: an
analysis of student mistakes in visual program simulation exercises,”
Proc. 12th Koli Calling International Conf. on Computing Education
Research, Koli, Finland, pp.19–28, Nov. 2012.

[14] P.J. Guo, “Online Python Tutor: Embeddable Web-Based Program
Visualization for CS Education,” Proc. 44th ACM technical Sympo-
sium on Computer science education, Denver, CO, USA, pp.579–
584, March 2013.

[15] M.P. Bruce-Lockhart and T.S. Norvell, “Lifting the hood of the com-
puter: Program animation with the teaching machine,” Proc. IEEE
Canadian Conf. on Electrical and Computer Engineering, Canadian,
pp.831–835, May 2000.

[16] M.P. Bruce-Lockhart and T.S. Norvell, “Developing mental models
of computer programming interactively via the web,” Proc. 37th An-
nual Frontiers In Education Conf., pp.S3H-3, Jan. 2007.

[17] K. Yamashita, R. Fujioka, S. Kogure, Y. Noguchi, T. Konishi, and Y.
Itoh, “Practices of algorithm education based on discovery learning
using a program visualization system,” Proc. Research and Practice
in Technology Enhanced Learning, vol.11, no.4, pp.15, Aug. 2016.

[18] T. Rajala, M.J. Laakso, E. Kaila, and T. Salakoski, “VILLE: a
language-independent program visualization tool,” Proc. 7th Baltic
Sea Conf. on Computing Education Research, pp.151–159, Koli Na-
tional Park, Finland, Nov. 2007.

[19] T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski, “Effectiveness of
Program Visualization: A Case Study with the ViLLE Tool,” Proc.
J. Information Technology Education, vol.7, pp.15–32, 2008.

[20] Y. Yan, H. Hiroto, H. Kohei, S. Shota, and A. He, “A C Programming
Learning Support System and Its Subjective Assessment,” Proc.
IEEE International Conference on Computer and Information Tech-
nology (CIT), pp.561–566, Xi’an, China, Sept. 2014.

[21] A. He, “C Virtual Machine for Educational Program Visualization
for Beginners,” Proc. IEICE Trans. Inf. & Syst., vol.J98-D, no.10,
pp.1292–1300, Oct. 2015.

[22] J. Zukowski, “Deploying software with jnlp and java web start,”
Technical Article, http://www.oracle.com/technetwork/articles/
javase/index-135962.html, accessed Aug. 2002.

[23] T. Boudreau, J. Glick, S. Greene, V. Spurlin, and J. Woehr,
NetBeans: The Definitive Guide: Developing, Debugging, and De-
ploying Java Code, O’Reilly Media, Inc, 2002.

[24] http://cleast.u-aizu.ac.jp

Yu Yan completed her Bachelor of Sci-
ence in Computer Science and Technology from
Harbin Normal University, Heilongjiang, China,
in 2013 and Masters of Science in Computer
Science and Engineering from the University
of Aizu, Fukushima, Japan, in 2015. She is
currently a Ph.D student in Graduate Depart-
ment of Computer and Information System, the
University of Aizu. Her research interests in-
clude Program Visualization (PV), Computer
Network, Computer Education and Personalized

e-Learning.

Kohei Hara completed his Bachelor of Sci-
ence in Computer Science and Engineering from
University of Aizu, Fukushima, Japan, in 2015
and Masters of Science in Computer Science
and Engineering from the University of Aizu,
Fukushima, Japan in 2017. He is an employee
of Maple Systems Co., Ltd. Tokyo, Japan. His
research interests include C language program-
ming exercise education for teachers and stu-
dents.

Takenobu Kazuma received the Bach-
elor’s degree in 2010 from the University of
Aizu, Fukushima, Japan and the Master’s de-
gree in Computer Science and Engineering from
the University of Aizu in 2012. Now he
is a Ph.D student in the University of Aizu.
His research interests include Computer Net-
work, Computer Education, Shape Recognition,
Human-Computer Interaction, Natural User In-
terface.

Yasuhiro Hisada received his PhD in Sys-
tems and Information Engineering from Toyo-
hashi University of Technology in 1993. Since
1993, he has been with the University of Aizu.
He is currently an associate professor at Divi-
sion of Information Systems, the University of
Aizu. His research interests are in biomedical
engineering and remote sensing.

Aiguo He now is an associate profes-
sor of computer science at the University of
Aizu, Fukushima, Japan. His research interests
include e-Learning, distributed control system,
computer network and software engineering. He
obtained his PhD at Nagoya University in 1988
and was working in Intelligent Vision & Image
Systems Corporation until 2000. He is a mem-
ber of IEEE CS, IEEJ, IEICE and IPSJ.

http://dx.doi.org/10.1145/1930464.1930471
http://dx.doi.org/10.1145/1930464.1930471
http://dx.doi.org/10.1145/1930464.1930471
http://dx.doi.org/10.1145/2401796.2401799
http://dx.doi.org/10.1145/2401796.2401799
http://dx.doi.org/10.1145/2401796.2401799
http://dx.doi.org/10.1145/2401796.2401799
http://dx.doi.org/10.1145/2445196.2445368
http://dx.doi.org/10.1145/2445196.2445368
http://dx.doi.org/10.1145/2445196.2445368
http://dx.doi.org/10.1145/2445196.2445368
http://dx.doi.org/10.1109/ccece.2000.849582
http://dx.doi.org/10.1109/ccece.2000.849582
http://dx.doi.org/10.1109/ccece.2000.849582
http://dx.doi.org/10.1109/ccece.2000.849582
http://dx.doi.org/10.1109/fie.2007.4418051
http://dx.doi.org/10.1109/fie.2007.4418051
http://dx.doi.org/10.1109/fie.2007.4418051
http://dx.doi.org/10.1186/s41039-016-0041-5
http://dx.doi.org/10.1186/s41039-016-0041-5
http://dx.doi.org/10.1186/s41039-016-0041-5
http://dx.doi.org/10.1186/s41039-016-0041-5
http://dx.doi.org/10.28945/3237
http://dx.doi.org/10.28945/3237
http://dx.doi.org/10.28945/3237
http://dx.doi.org/10.1109/cit.2014.23
http://dx.doi.org/10.1109/cit.2014.23
http://dx.doi.org/10.1109/cit.2014.23
http://dx.doi.org/10.1109/cit.2014.23

