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A Novel 3D Gradient LBP Descriptor for Action Recognition

Zhaoyang GUO†a), Xin’an WANG†, Nonmembers, Bo WANG†, Member, and Zheng XIE†, Nonmember

SUMMARY In the field of action recognition, Spatio-Temporal Inter-
est Points (STIPs)-based features have shown high efficiency and robust-
ness. However, most of state-of-the-art work to describe STIPs, they typi-
cally focus on 2-dimensions (2D) images, which ignore information in 3D
spatio-temporal space. Besides, the compact representation of descriptors
should be considered due to the costs of storage and computational time.
In this paper, a novel local descriptor named 3D Gradient LBP is proposed,
which extends the traditional descriptor Local Binary Patterns (LBP) into
3D spatio-temporal space. The proposed descriptor takes advantage of the
neighbourhood information of cuboids in three dimensions, which accounts
for its excellent descriptive power for the distribution of grey-level space.
Experiments on three challenging datasets (KTH, Weizmann and UT In-
teraction) validate the effectiveness of our approach in the recognition of
human actions.
key words: action recognition, spatio-temporal interest points, local bi-
nary pattern

1. Introduction

In the action recognition, discriminative descriptors are in-
dispensable and of vital importance. They are not only in-
variant to the variability disturbed by the noise, but also
have the ability which encodes spatio-temporal cues ef-
fectively. Among recent work in action recognition, ap-
proaches are generally divided into two classes according
to [1]: global representation, such as, space-time shape [2],
optical flow [3], and trajectory [4]; local representation, for
instance, local STIPs [5], [6]. In this paper, we focus on the
latter one and propose the 3D Gradient LBP descriptor and
perform human action classification along the pipeline of
Mattivi and Shao [7]. We observe that LBP-TOP which does
not take full advantage of the spatial information of cuboids
just with LBPXY , LBPXT , LBPYT . To make up this defect ef-
fectively, our method makes good use of the neighbourhood
information of cuboids through three dimensions which can
describe the distribution of grey-level space better. In ad-
dition, the introduced descriptor is 2 × 26 dimensions com-
pared with other descriptors such as the HOG-HOF descrip-
tor which is 162 dimensions.
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2. 3D Gradient LBP Descriptor

This section outlines the framework of action recognition
using 3D gradient LBP descriptor. The flowchart of action
recognition framework is shown in Fig. 1. First, the STIPs
are detected using a separable linear filter, and cuboids
which represent the local spatial-temporal information are
extracted from STIPs [8]. Next, the cuboids are described
using the 3D gradient LBP descriptor. The obtained result
is a sparse representation of video sequences. In addition,
all these data are clustered into a set of visual words. Then,
the histogram of these spatial-temporal word occurrence of
video sequences can be computed. For classification, the
non linear Support Vector Machines (SVM) or 1-Nearest
Neighbor (1-NN) is applied separately. Finally, a testing
video sequence is processed in similarly flow and finally
classified to the best decision.

The traditional LBP operator [9] labels the pixels of an
image by thresholding a circular neighborhood region. Un-
der the underlying idea, the LBPP,R generates 2P different
values on the radius of R, which represent the 2P different
binary patterns respectively. Mattivi and Shao [7] applied
and extended LBP and LBP-TOP as a descriptor of small
video patches used in local-feature approach for human ac-
tion recognition, which shown LBP-TOP to be suitable for
the description of the spatial-temporal cuboids. LBP-TOP
computes the LBP from Three Orthogonal Planes, noted as
LBPXY , LBPXT , LBPYT .

The framework of the introduced descriptor is depicted
in the Fig. 2. It is roughly divided into four steps to describe
a cuboid: (1) dense sampling in each point of a cuboid to
get 3D patches; (2) extracting the six planes of every 3D
patch and comparing the average value of each plane with
local feature in the threshold T ; (3) assigning the two dec-
imal values to represent the 3D patch; (4) recoding the two
decimal values with histograms for the cuboid respectively
and concatenating two histograms to describe every cuboid.

Fig. 1 Flowchart of our action recognition framework, which contains
STIPs detection, action description, and classification.
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After the feature detection, we obtain a set of cuboids,
which contain the spatial and temporal information. As the
first step, the gradient vectors of the cuboids need to be
computed efficiently. Next, dense sampling on every cuboid
needs to be conducted to obtain 3×3×3 3D patches. In order
to take advantage of the gray-level information of spatial ad-
jacent frames, 3D patches are carved into six planes around
central local feature V0, denoted as Plane f ront, Planerear,
Planele f t, Planeright Planeabove and Planebelow. The next
step is to calculate the average pixel values of these six
planes which represent the surrounding grey-level informa-
tion. These above steps correspond to the Step 3 to Step 7
in Algorithm 1.

In order to use the relationship between central local

Fig. 2 Framework of 3D Gradient LBP descriptor, which contains dense
sampling on a cuboid, representing 3D patches and concatenating his-
tograms for the cuboid.

Algorithm 1 3D Gradient LBP Algorithm

Require: Video V =
{
It

}F
t=1

, frame number F, cuboid number K, threshold
value T .

Ensure: Hist
1: Detect STIPs: P =

{
p(x, y, t)|(x, y) ∈ It , 1 ≤ t ≤ F

}
, local features{

hp(x,y,t)

}
;

2: Calculate the gradient cuboids g(x, y, t) from p(x, y, t);
3: for i = 1 to K do
4: Dense sampling on cuboid i to get 3 × 3 × 3 3D patches {Patch}m;
5: for j = 1 to m do
6: for p = 1 to 6 do
7: Plane(1, p) records average value of six planes for Patch j

according to the order of front, rear, left, right, above and
below ;

8: if g(x, y, t) − Plane(1, p) > T then
9: hist(1, p)← 1; hist(2, p)← 0;

10: else if
∣∣∣g(x, y, t) − Plane(1, p)

∣∣∣ ≤ T then
11: hist(1, p)← 0; hist(2, p)← 0;
12: else if g(x, y, t) − Plane(1, p) < −T then
13: hist(1, p)← 0; hist(2, p)← 1;
14: end if
15: end for
16: hist1 j = hist(1, 1) × 26 + ... + hist(1, 6) × 20 ;
17: hist2 j = hist(2, 1) × 26 + ... + hist(2, 6) × 20 ;
18: end for
19: hist1 records the histogram of hist1 j ( j = 1 : m);
20: hist2 records the histogram of hist2 j ( j = 1 : m);
21: end for
22: Hist← {hist1, hist2}.

features with around features more efficiently, LBP labels
these six planes by thresholding in each 3D patch, as shown
the following.

LBPPlane =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if V0 − Plane > T ;

0 if
∣∣∣∣V0 − Plane

∣∣∣∣ ≤ T ;

−1 if V0 − Plane < −T.

(1)

As a result, LBP vector for a 3D patch can be achieved
such as (1, 0, 0,−1,−1, 1). However, the storage space for
each 3D patch will be 36. In order to save storage and not
miss any worthy information, the vector can be divided into
two part as (1, 0, 0, 0, 0, 1) and (0, 0, 0, 1, 1, 0). In this case,
the storage space for each 3D patch may be reduced as 2×26

effectively. In addition, these two vectors are converted as
decimal values as 33 and 6. Next, the histogram statistic of
these two sets of the decimal values for one cuboid is ap-
plied separately such as hist1 and hist2 in Fig. 2. Finally,
two obtained histograms are concatenated to form the fi-
nal histogram which described the spatial-temporal cuboid,
namely that Hist = {hist1, hist2}. The part corresponds to
the Step 8 to Step 20 in Algorithm 1.

3. Experiments and Analysis

In the following section, we explain more implementation
details and parameters to verify the feasibility and superior-
ity of our method. Furthermore, we demonstrate the applica-
tion of our method to describe the spatial-temporal cuboids
in human action recognition.

3.1 Datasets

Our work is verified on three challenging human action
datasets: KTH dataset [10], Weizmann dataset [11] and UT-
Interaction dataset [12]. KTH dataset [10] in Fig. 3 con-
tains six types of different human action classes: working,
jogging, running, boxing, hand waving and hand clapping.
Each action class is performed several times by 25 sub-
jects. The video data were recorded in four different sce-
narios: outdoors, outdoors with scale variation, outdoors

Fig. 3 Datasets: KTH dataset (on the top), Weizmann dataset (on the
middle) and UT-interaction dataset (on the bottom).
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with different clothes, and indoors. The background is ho-
mogeneous and static in most sequences. KTH dataset is
divided into two parts: training set (16 peoples) and test-
ing set (9 peoples) following the experimental setup in [10].
Furthermore, the Weizmann dataset [11] in Fig. 3 contains
ten different types of human actions classes: bending down-
wards, running, walking, skipping, jumping-jack, jumping
forward, jumping in place, galloping sideways, waving with
two hands, and waving with one hand. Each action class
is performed once or twice by 9 subjects, and it contains
93 video sequences in total. As suggested by Scovanner
et al. [13], 8 subjects are used in training and the remain-
ing subject of the video sequences are used in testing. The
UT-Interaction dataset [12] in Fig. 3 contains 20 video se-
quences of continuous executions of 6 classes of human-
human interactions: hand shaking, hugging, kicking, point-
ing, punching and pushing. This dataset consists of two sets:
set 1 is composed of ten video sequences, which were con-
ducted in a parking lot with slightly different zoom rates;
set 2 is taken on a lawn in a windy day, where background
is moving slightly. In the implements, one among ten video
sequences is left in testing and the other nine are used in
training.

3.2 Implementation Details

During the detection part, the method proposed by Dol-
lar et al [8] is applied in our framework. The reason is
that Dollar’s detection method gives much better recogni-
tion accuracy compared with other existing methods, such
as Laptev’s method when only a small number of cuboids
are extracted from the original video data. For detection,
the parameters that need to be set are σ for the 2D Gaussian
smoothing kernel of the response and τ for the quadrature
pair of 1D Gabor filter in [8]. The parameter ω of the un-
derline frequency of cosine in the Gabor filter is related to τ
in the following relation ω = 4/τ. By repeated experiments,
the parameters σ = 2.8 and τ = 1.6 may be set to obtain
the superior results. Each experiment is repeated 10 times
with different random spits of the training and testing sets to
obtain the average result, which is more reliable.

Our descriptor is compared with other existing descrip-
tors in experiments. Gradient descriptor [8] is a concate-
nation of gradient values along the three dimensions. The
size of the vector is equal to the number of pixels in the
cube multiplied by the number of smoothing scales and the
number of gradient directions. For instance, the cuboid are
smoothed and the number of cuboid’s dimension is three
times of the cuboid’s volume. 3D SIFT in [13] relied on
the number of sub histograms and the number of bins which
used to represent θ and ϕ angles. As suggested in [13], we
used 2×2×2 and 4×4×4 configurations of sub-histograms,
and 8 × 4 histograms to represent θ and ϕ. HOG-HOF de-
scriptor [14] is a concatenation vector of HOG descriptor
(72 vector length) and HOF descriptor (90 vector length). In
our experiments, we implement the HOG-HOF referring to
Laptev’s codes [14]. And the 3D HOG descriptor was pro-

Fig. 4 Results of different descriptors with 1-NN and SVM on the three
datasets (KTH, Weizmann and UT-Interaction).

posed by Klaser et al. [15]. It is a spatio-temporal descriptor
of histograms of 3D gradient orientations and can be seen
as an extension of the popular SIFT descriptor to video se-
quences. Heikkila et al. [16] proposed a center-symmetric
LBP (CS-LBP) utilizing both the advantages of SIFT and
LBP. This paper extracts the CS − LBP2,8,0.01 and takes the
uniform weight in 4 × 4 grid according to the experimental
setup in [16].

The parameter T in 3D gradient LBP needs to be set in
experiments. Abundant self-contrast experiments are con-
ducted to get the superior value T . In this manner, it can
achieve the best recognition results when T is set to 6. More-
over, two classifiers are utilized in our framework. First, a
1-Nearest Neighbor (1-NN) classifier with the χ2 distance is
used as suggested in [8]. In addition, non-linear SVM with
rbf kernel [17] is applied.

3.3 Analysis

To validate the efficiency of the proposed descriptor, the
same detection part may be set with different descriptor.
Furthermore, to get a reference which can verify the cor-
rectness, the number of cuboids is fixed to 100 for all video
sequences. In order to achieve a fair comparison with de-
scriptors of the same length, descriptors are set in their orig-
inal dimension as well as in lower dimension after PCA.

Experimental results of different descriptors with 1-NN
and SVM on the datasets are depicted in Fig. 4. As the re-
sults show, the best performance is achieved with a code-
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Table 1 Descriptor length, computational time and correctness (%) in
1000 visual words.

Methods length Time (s) KTH Weizmann UT
Gradient+PCA 100 0.0060 90.51 92.48 89.32

HOG-HOF 768 0.0139 88.74 92.21 88.53
3D SIFT 640 1.1210 90.86 92.8 91.34
3D HOG 960 0.2256 90.9 91.3 91
CS-LBP 96 0.0115 90.37 92.76 90.5
DL-SFA - 0.0342 93.1 - -
HISTF - 0.0134 93.9 - -
STLPC - 0.0251 95 - -

Proposed 128 0.0078 92.25 92.88 91.42

book size ranging from 750 to 1250 visual words for the
most descriptors. In addition, the results are quite similar
when using 1-NN and SVM. However, the performance of
the same descriptor are different with various classifiers.

In Table 1, descriptor length and computational time
are shown for different descriptors of one cuboid. Among
the descriptors, the fastest method is gradient descriptor [8],
because the only operation need to be done is the concate-
nation of the gradient of pixels. 3D SIFT requires the most
time among all descriptors, since histograms have to be
conducted for different values of θ and Φ [13]. The com-
putational time for HOG-HOF is influenced by the choice
of the threshold, and a suitable threshold should be cho-
sen [14]. However, competitive advantages of our method
are achieved on descriptor length and computational time
compared with other descriptors in Table 1. DL-SFA [18]
applied directly to the whole video volume, which is very
time-consuming because the video sequences usually have
high resolution with a large number of frames. In [19], the
authors presented an extension of the Independent Subspace
Analysis algorithm to learn hierarchical invariant spatio-
temporal features (HISTF) from unlabeled video data. [20]
proposed STLPC method, which regards a video sequence
as a whole with spatio-temporal features directly extracted
from it, which prevents the loss of information in sparse rep-
resentations while consumes a large amount of time com-
pared with sparse representation methods based on detected
local interest points.

To compare with different descriptors, the number of
visual words is fixed to 1000, as shown in Table 1. For
the majority of descriptors, the correctness on the Weiza-
mann dataset are superior to the KTH dataset and the UT-
Interaction dataset, since it is related with the complexity
of dataset. On average of 1-NN and SVM, the performance
of 3D Gradient LBP is the best on KTH and UT Interac-
tion datasets. However, 3D SIFT has achieved the superior
on the Weizmann dataset. It has shown that the proposed
method is suitable for the datasets with more complex sce-
narios.

4. Conclusions

In this paper, we propose a novel local descriptor for human
action recognition. In order to make full use of the neigh-
bourhood information of cuboids from three dimensions, we

develop the traditional descriptor LBP and extend the de-
scriptor which focused on 2D images to 3D spatio-temporal
case. Experiments show that proposed method can achieve
the best result considering the accuracy and efficiency. In
future work, the mid-level features will be explored to see
if they can be combined with the local features aiming at a
higher accuracies.
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[16] M. Heikkilä, M. Pietikäinen, and C. Schmid, “Description of interest
regions with local binary patterns,” Pattern recognition, vol.43, no.3,
pp.425–436, 2009.

http://dx.doi.org/10.1016/j.trit.2016.10.001
http://dx.doi.org/10.1016/j.neucom.2015.03.097
http://dx.doi.org/10.1007/s11760-014-0677-9
http://dx.doi.org/10.1109/cvpr.2015.7299059
http://dx.doi.org/10.1016/j.imavis.2016.02.006
http://dx.doi.org/10.1016/j.cviu.2016.03.013
http://dx.doi.org/10.1007/978-3-642-03767-2_90
http://dx.doi.org/10.1109/vspets.2005.1570899
http://dx.doi.org/10.1109/tpami.2002.1017623
http://dx.doi.org/10.1109/icpr.2004.1334462
http://dx.doi.org/10.1109/iccv.2005.28
http://dx.doi.org/10.1109/iccv.2009.5459361
http://dx.doi.org/10.1145/1291233.1291311
http://dx.doi.org/10.1109/cvpr.2008.4587756
http://dx.doi.org/10.5244/c.22.99
http://dx.doi.org/10.1016/j.patcog.2008.08.014


1392
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

[17] A. Sargano, P. Angelov, and Z. Habib, “Human action recogni-
tion from multiple views based on view-invariant feature descrip-
tor using support vector machines,” Applied Sciences, vol.6, no.10,
pp.309–322, 2016.

[18] L. Sun, K. Jia, T.-H. Chan, Y. Fang, G. Wang, and S. Yan, “Dl-SFA:
deeply-learned slow feature analysis for action recognition,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp.2625–2632, 2014.

[19] Q.V. Le, W.Y. Zou, S.Y. Yeung, and A.Y. Ng, “Learning hierarchical
invariant spatio-temporal features for action recognition with inde-
pendent subspace analysis,” IEEE Conference on Computer Vision
and Pattern Recognition, pp.3361–3368, 2011.

[20] L. Shao, X. Zhen, D. Tao, and X. Li, “Spatio-temporal laplacian
pyramid coding for action recognition,” IEEE Transactions on Cy-
bernetics, vol.44, no.6, pp.817–827, 2014.

http://dx.doi.org/10.3390/app6100309
http://dx.doi.org/10.1109/cvpr.2014.336
http://dx.doi.org/10.1109/cvpr.2011.5995496
http://dx.doi.org/10.1109/tcyb.2013.2273174

