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Integrated Collaborative Filtering for Implicit Feedback
Incorporating Covisitation

Hongmei LI†, Xingchun DIAO†, Jianjun CAO††a), Yuling SHANG†, Nonmembers, and Yuntian FENG†, Member

SUMMARY Collaborative filtering with only implicit feedbacks has
become a quite common scenario (e.g. purchase history, click-through log,
and page visitation). This kind of feedback data only has a small portion
of positive instances reflecting the user’s interaction. Such characteristics
pose great challenges to dealing with implicit recommendation problems.
In this letter, we take full advantage of matrix factorization and relative
preference to make the recommendation model more scalable and flexible.
In addition, we propose to take into consideration the concept of covisi-
tation which captures the underlying relationships between items or users.
To this end, we propose the algorithm Integrated Collaborative Filtering for
Implicit Feedback incorporating Covisitation (ICFIF-C) to integrate ma-
trix factorization and collaborative ranking incorporating the covisitation
of users and items simultaneously to model recommendation with implicit
feedback. The experimental results show that the proposed model outper-
forms state-of-the-art algorithms on three standard datasets.
key words: collaborative filtering, implicit feedback, matrix factorization,
covisitation, relative preference

1. Introduction

Traditionally, collaborative filtering (CF) is one of the most
successful recommendation technologies, which aims at
predicting the ratings on items by considering users’ explicit
ratings on items, and make recommendations by ranking
items in the order of ratings [1], [2]. However, in many prac-
tical recommendation systems, most feedbacks are not ex-
plicit but implicit, such as clicks, collections, visitations and
so on. They are more convenient and effortless for people
to express themselves than explicit ratings. Compared with
explicit ratings, implicit feedbacks are more pervasive and
easy to collect, but this kind of data only contains a small
portion of positive examples, that is we only know users’
likes other than dislikes, which is imbalanced and presents a
new challenge to recommendation [3], [4], [7]. Hence, how
to tackle the massive, high-dimensional and only positive
data is an important issue in collaborative filtering.

Many popular algorithms for traditional CF, such as
matrix factorization (MF), have attracted many attentions
for its effectiveness and efficiency and variant MF tailored
for implicit feedback recommenders have been proposed.
MF aims at predicting users’ ratings for items and perform-
ing personalized ranking indirectly. For instance, Pan, et
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al. [4] proposed the frame based on weighted low rank ma-
trix factorization by treating all the missing data as negative
examples. Hu, et al. [5] propose a SVD model by treating
data as indication of positive and negative preference asso-
ciated with varying confidence levels. Notice that the above
methods all conform to the assumption that the unobserved
data are negative examples, which inevitably brings noises
into the very model and degrades learning efficiency due to
the consideration of both observed and unobserved data. In
order to address the issues, [6] proposed to weight the miss-
ing data based on item popularity, and enhanced the effec-
tiveness to some extent. Shi, et al. [9] proposed Collabora-
tive Less-is-More Filtering mode by directly optimizing the
ranking measurement, that is mean reciprocal rank.

Apart from the above methods designed for the item
prediction of indirect personalized ranking, the method
based on learning to rank aims at directly optimizing for
ranking. For example, Rendle, et al. [7] introduced an opti-
mization criterion for personalized ranking based on maxi-
mum posterior estimator derived from a Bayesian analysis
of the problem. Then, Rendle, et al. [8] introduced an im-
proving pairwise ranking learning method for item recom-
mendation from implicit feedback.

Owing to the favorable performance of both matrix fac-
torization methods and learning to rank methods, we pro-
pose a novel model utilizing their advantages to tailor rec-
ommendation with only implicit feedbacks. First, inspired
by [3], we propose to introduce relative preference degree
to represent and rank users’ feedback behavior. This is due
to the fact that a user selects an item other than the others
just because he/she has a relatively higher preference de-
gree towards to the item than others. Then, we translate
the recommendation problem into probability optimization
considering relative preference degree represented by matrix
factorization.

In addition, in order to enhance recommendation per-
formance, we also try to incorporate the information un-
derlying in user-item interactions implying the neighboring
relationships in the latent semantic space among items or
users. Here, we introduce the concept of item covisitation
proposed by [10], where the covisitation is defined as an
event in which two items are clicked by the same user within
a certain time interval. The covisitation of items reflects the
neighbor relationship to some degree. Inspired by that, we
also propose the concept of user covisitation, which implies
that the users visiting the same item during a certain time
span may have similar preference. After that, we try to in-
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corporate covisitation information into CF recommendation
model appropriately through the graph Laplacian based on
manifold learning [11]. To the best of our knowledge, there
is no similar work applying it to the personalized recom-
mendation with implicit feedback. To this end, we propose
the algorithm Integrated Collaborative Filtering for Implicit
Feedback incorporating Covisitation (ICFIF-C) to integrate
matrix factorization and collaborative ranking incorporat-
ing item and user covisitation information simultaneously
to model recommendation with implicit feedback.

2. Problem Definition and Notations

Assume i users give implicit feedbacks on j items, and the
feedbacks are available in preference matrix P ∈ {0, 1}n×m.
Pi j, denotes the implicit feedback of user i for item j. Pi j = 1
denotes the observed data representing a user has preference
on some certain item, and Pi j = 0 for the otherwise situa-
tion. U ∈ Rn×k and V ∈ Rm×k respectively represents latent
feature matrices of n users and m items with k dimensional
latent feature vectors. Our goal is to predict the preference
of users for items, and recommend a ranking list.

3. Integrated Collaborative Filtering Model Based on
Matrix Factorization and Relative Preference

3.1 Relative Preference Degree

Definition 1 Preference Degree (PD)
Inspired by matrix factorization, we assume that the

preference of user i on item j is determined by a small num-
ber of unobserved factors. Preference Degree PDi j is con-
ducted by nonlinearly combining user-specific factor vector
Ui with item-specific factor vector U j using sigmoid func-
tion, and it is formulated as

PDi j =
exp(UiVT

j )

exp(UiVT
j ) + 1

(1)

Where the rating PDi j is mapped to the interval (0, 1). How-
ever, the preference degree is somehow absolute, and may
be insufficient to exactly represent users’ preference to some
specific item. Intuitionally, a user selects an item just be-
cause he/she has a relatively higher preference towards the
item than others. Specifically, if preference degree of user
i on item j is far higher than others, user i would have a
higher probability to choose item j. So we give a definition
of relative preference degree.
Definition 2 Relative Preference Degree (RPD)

Relative Preference Degree RPDi j denotes relative
preference of user i towards the item j. It characterizes the
relative level of the overall preference degree on all the items
and is formulated as

RPDi j =
PDit∑m

t=1 PDit
(2)

Where m denotes all the items in the datasets, and
∑m

t=1 PDit

means overall preference degree on all the items.

3.2 Probabilistic Model for Collaborative Filtering

Given the relative preference degree, we then define the
probability distribution over all users formulated as

p(R|U,V) =
∏

(i, j)∈S
f (RPDi j|U,V) (3)

Where f (x) = 1/(1 + exp(−x)) is the sigmoid function. S
denotes the whole set of implicit feedbacks. We place zero-
mean spherical Gaussian priors on user and item factor vec-
tors as follows

p(U|σ2
U) =

n∏

i=1

N(Ui|0, σ2
UI) (4)

p(V|σ2
V ) =

m∏

j=1

N(V j|0, σ2
VI) (5)

Then, based on Bayesian theory, the log-posterior dis-
tribution over the user and item factors is given distribution
over all users formulated as

ln p(U,V|R) ∝ ln p(R|U,V) ln p(U) ln p(V)

= −
∑

(i, j)∈S
ln(1 + exp(−RPDi j))

− 1

2σ2
U

‖U‖2F −
1

2σ2
V

‖V‖2F +C0

(6)

Where ‖.‖2F denotes Frobenius norm, C0 is a constant that
does not depend on the parameters. Learning in this model
is performed by maximizing the log-posterior over the user
and item factors, and is equivalent to minimizing the objec-
tive function formulated as

min
U,V

E =
∑

(i, j)∈S
ln(1 + exp(−RPDi j))

+ λU‖U‖2F + λV‖V‖2F
(7)

Where λU , λV denotes the regularization parameter to avoid
overfitting. Compared with traditional CF method, our
method maximizes the probability of user’s relative prefer-
ence other than absolute rating. This kind of treatment, on
one hand, fits the initiation of users’ implicit feedback be-
havior, on the other, avoids introducing noise when assum-
ing negative examples.

4. Recommendation Model Incorporating Covisitation

4.1 Covisitation

Definition 3 Item covisitation
Item covisitationis an event in which two items are

clicked by the same user within a certain time interval. It
captures the simple intuition: “Users who viewed this item
also viewed the following items” [10]. For instance, in news



1532
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.7 JULY 2017

recommendation domain, the news browsed by a user in a
time period is likely to present the same or similar topic.

The scores of covisitation can be easily obtained from
users’ implicit feedbacks with timestamp. Concretely, each
element of the covisitation matrix CV represents the time
discounted number of covisitation instances, which can be
measured by the count of how often they were covisited by
the same user in a short time slot. The higher value of CV

means the more similarity or correlation between items.
The covisitation matrix is symmetric since we do not

care about the order. Inspired by Item covisitation, we also
propose to give the definition of User covisitation.
Definition 4 User covisitation

User covisitation captures the simple intuition: “users
visiting the same item during the same period of time may
have significant similarity with each other”. For instance, in
point-of-interest recommendation, users tend to have similar
preference visiting the same position in an approximate time
period. User covisitation matrix CU can be calculated in the
similar way as CV .

We can see that covisitation matrix could capture the
underlying relationship among items and users respectively.
It breaks limit of independency of users and items in tradi-
tional methods.

4.2 Recommendation Model with Graph Regularization
Incorporating Covisitation

To incorporate the covisitation relationship information into
the recommender system, we consider to integrate graph
Laplacian [11] into the optimization subject function formu-
lated as Eq. (7) by adding an extra regularization term, so
as to penalize the differences between the item-specific and
user-specific latent feature vectors when there exists covis-
itation between them. Graph Laplacian [10] is capable of
capturing the underlying relationships between the similar
objects based on manifold learning. Specifically, Item graph
Laplacian is defined as

LCV = diag(CV1) − CV (8)

Where 1 denotes a vector with all one elements. diag(.) is
a diagonal matrix. Then item graph Laplacian can be in-
tegrated into subject Eq. (7) by adding regularization term
tr(VT LCVV) into the minimization problem. Analogically,
user graph Laplacian can also be integrated into subject
function by adding regularization term tr(UT LCUU). The
minimization problem is formulated as

min
U,V

E =
∑

ln(1 + exp(−RPDi j))
Oi j

+ λU‖U‖2F + λV‖V‖2F
+ ηUtr(UT LCUU) + ηVtr(VT LCVV)

(9)

Where ηU and ηV denote regularization parameters. It can
be clearly observed that the covisitation information is nat-
urally embedded into regularization for the item-specific la-
tent factors and incorporated into the naive model. We call

our model as ICFIF-C. Then, we perform gradient descent
using learning rate α in U and V to minimize objective func-
tion given by Eq. (9).

5. Experimental Results and Analysis

In this section, we evaluate the effectiveness of the pro-
posed methods on two standard datasets: Movielens100K†
and Foursquare [12], which both contain time stamps of the
ratings. For Movielens100K, we relabel ratings 4 and 5 as
1 and remove other ratings below 4. For Foursquare, we
draw a subsample that every user has at least 10 checks and
each check has at least 20 users. We evaluate the perfor-
mance of different methods on the test set using two metrics:
Mean Average Precision (MAP) [4] and Area Under Curve
(AUC) [7]. The higher value of MAP and AUC means the
better performance.

For MAP, we randomly divide data into training and
test datasets with a 80/20 splitting ratio [4]. For AUC, we
use leave one out scheme to construct train and test set [7].
We compare our method ICFIF, ICFIF-C with two base-
lines: WMFM (Weighted Matrix Factorization Model) [4],
and IFRM (Recommendation Model for Implicit Feed-
back) [3].

In the setup of the experiments, the parameters U and
V are initialized by randomly sampling from norm distribu-
tion. Our ICFIF-C has five parameters:{λU, λV, ηU, ηV, α}.
In the process of selecting parameters, we adjust one pa-
rameter while fix the others. The ranges of parameters are:
λU ∈ {10−4, 10−3, 10−2, 10−1}, λV ∈ {10−4, 10−3, 10−2, 10−1},
ηU ∈ {10−4, 10−3, 10−2, 10−1}, ηV ∈ {10−4, 10−3, 10−2, 10−1},
α ∈ {10−3, 5 ∗ 10−3, 10−2, 5 ∗ 10−2, 10−1}. The resulting pa-
rameter values for Movielens100K under MAP are: λU =

λV = 10−2, ηU = 10−4, ηV = 10−3, α = 5 ∗ 10−3, and
λU = λV = 10−2, ηU = 10−3, ηV = 10−2, α = 5 ∗ 10−3

under AUC. The resulting parameter values for Foursquare
under MAP are: λU = λV = 10−2, ηU = 10−3, ηV = 10−4,
α = 10−3, and λU = λV = 10−2, ηU = 10−2, ηV = 10−3,
α = 10−3 under AUC. We evaluate the performance of
different methods on different datasets along with changed
number of latent features k ranging from 10 to 50. After
selecting the optimal parameters, we repeat each compared
experiment for 10 iterations and compute the average value
of results. The results on Movielens100K dataset is shown
in Table 1 and Table 2, and the results on Foursquare dataset
is shown in Table 3 and Table 4.

From the experimental results, we can obtain the fol-
lowing conclusions: 1) Generally, our method ICFIF-C per-
forms better than others with a stable and slightly increas-
ing performance along with feature numbers. The results
demonstrate the effectiveness of model incorporating covis-
itation information. 2) On both of the datasets, the recom-
mendation accuracy of ICFIF is better than the other two
traditional methods. This demonstrates the priority of our
integrated model in consideration of users’ relevant prefer-

†http://grouplens.org/datasets/movielens
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Table 1 The recommendation accuracy under MAP (%) on
Movielens100K dataset.

������Algorithm
Features

10 20 30 40 50

WMFM 12.4085 12.7356 12.7356 13.0462 13.0462
IFRM 13.0462 12.8066 12.8066 12.8066 13.1987
ICFIF 12.5901 12.8876 13.0514 13.1855 13.2707
ICFIF-C 12.6894 12.6894 12.6894 13.2601 13.3483

Table 2 The recommendation accuracy under AUC on Movielens100K.
������Algorithm

Features
10 20 30 40 50

WMFM 0.8551 0.8606 0.8644 0.2356 0.8644
IFRM 0.8597 0.8645 0.8677 0.8697 0.8701
ICFIF 0.8619 0.8659 0.8695 0.8718 0.8720
ICFIF-C 0.8628 0.8675 0.8718 0.8737 0.8746

Table 3 The recommendation accuracy under MAP (%) on Foursquare
dataset.
������Algorithm

Features
10 20 30 40 50

WMFM 8.3685 8.3685 8.8123 8.9302 9.0451
IFRM 8.4536 8.7099 8.9053 9.0566 9.0949
ICFIF 8.5000 8.7523 8.9387 9.1045 9.1434
ICFIF-C 8.6513 8.8711 8.9909 9.1581 9.2113

Table 4 The recommendation accuracy under AUC on Foursquare.
������Algorithm

Features
10 20 30 40 50

WMFM 0.7362 0.7408 0.7424 0.7447 0.7456
IFRM 0.7401 0.7444 0.7458 0.7469 0.7473
ICFIF 0.7448 0.7475 0.7480 0.7489 0.7492
ICFIF-C 0.7488 0.7521 0.7534 0.7547 0.7556

ence by matrix factorization. 3) On both of the datasets,
ICFIF-C performs better than other models, which demon-
strates the significance of incorporating item and user co-
visitation information. This phenomenon reveals that items
visited in some short period by the same user present certain
similarity which can be captured by item covisitation. Be-
sides, users visiting the same items in an approximate time
span present similar preference, and it can be rightly cap-
tured by user covisitation.

6. Conclusion

In this letter, we propose an integrated collaborative filter-
ing for implicit feedback incorporating covisitation, named
ICFIF-C. The proposed method can harness the advantages
of matrix factorization and relevant preference to fully fit
the scenario with only implicit feedbacks with great scala-

bility and flexibility. Furthermore, ICFIF-C can incorporate
covisitation and manifold structures to enhance the model.
Through the learning process, ICFIF-C can finally find the
robust latent factor vectors of users and items and perform
recommendation. The experiments on the datasets prove the
effectiveness of our proposed method.
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