IEICE TRANS. INE. & SYST., VOL.E101-D, NO.1 JANUARY 2018

239

[LETTER

SEDONA: A Novel Protocol for Identifying Infrequent,
Long-Running Daemons on a Linux System*

SUMMARY Measuring program execution time is a much-used tech-
nique for performance evaluation in computer science. Without proper
care, however, timed results may vary a lot, thus making it hard to trust their
validity. We propose a novel timing protocol to significantly reduce such
variability by eliminating executions involving infrequent, long-running
daemons.

key words: infrequent long-running daemon, execution-time measurement

1. Introduction

Measuring program execution time is a much-used tech-
nique for performance evaluation in computer science. De-
spite the importance of accurate and precise execution-time
measurement, how to achieve better timing has not been
well addressed. Surprisingly, there is considerable variabil-
ity in the measured time. The goal of this paper is to propose
a better timing protocol that can significantly reduce such
variability and thus enable better timing results without a
doubt of their validity.

Figure 1 compares the performance of the existing tim-
ing scheme, termed ORG, using elapsed time and our timing
protocol, termed SEDONA (Selective Elimination through
Detection of infrequent, 10ng-ruNning dAemons), to be
proposed shortly. For this comparison we used two kinds
of real-world programs, specifically insertion sort, termed
SORT and matrix multiplication (in column major), termed

leviation (ms) in log s

andard deviation (ms) i

st

ORG - ORG =
SEDONA -0 SEDONA -,

03,
T600K. 3200k Tooox1000 2000x2000 0x4000 80005000
Mar

(a) SORT - Standard Deviation (b) MM - Standard Deviation

05
00K 200K 00K
#of elem

Fig.1 Performance comparison on real-world programs.

Manuscript received February 10, 2017.
Manuscript revised April 7, 2017.
Manuscript publicized May 30, 2017.
"The author is with the School of Computer Science and Engi-
neering, Kyungpook National University, Daegu, 41566 Korea.
*This research was supported by the BK21 Plus project (SW
Human Resource Development Program for Supporting Smart
Life) funded by the Ministry of Education, School of Computer
Science and Engineering, Kyungpook National University, Korea
(21A20131600005).
a) E-mail: yksuh@knu.ac (Corresponding author)
DOI: 10.1587/transinf.2017EDL8025

Young-Kyoon SUH'Y, Member

MM. As illustrated in Fig. 1, SEDONA outperformed ORG
with regard to measurement quality by standard deviation.
To be more specific, we observed that as workload size in-
creased the performance gap between the two methods also
increased, reaching up to by six times.

There are several important specifics of our protocol.
First, we utilize process time (PT) rather than on elapsed
time (ET). The use of PT is preferred, as it takes into ac-
count the time taken for only a “process” (or program) of
interest. PT is defined as the sum of ticks (where one tick is
equal to 10 msec) in user and system mode. These tick mea-
sures are obtainable via taskstats C struct, provided by
the Linux NetLink facility [1]. Second, the protocol throws
out some executions that involve infrequent, long-running
daemon processes. We witness that such daemon processes
substantially impact the execution time of the process. By
eliminating those executions, the protocol greatly improves
the overall measurement quality, which would otherwise be
biased by them.

McGeoch introduced two basic methods of measur-
ing program time: elapsed time and CPU time[2]. Bryant
and O’Hallaron [3] presented two timing schemes of using
clock-cycle and interval counters. They proposed a mea-
surement protocol, called minimum-of-k, that for observed
elapsed ticks the minimum is chosen as the most accurate
one. Odom et al.’s work [4] focused on timing long-running
programs in a simulation framework via dynamic sampling
of trace snippets during program execution. But none of
these prior works considers the variability in timing and the
impact of daemons that may disturb the timing a lot.

Commercial software tools measure execution
time [5]—[7]. Since the tools’ source code is not disclosed,
there is no way of figuring out whether they can prevent such
a daemon from timing.

Our contributions are following.

e We show empirical evidence that measuring execution
time can be seriously affected by daemons.

e We present an algorithm to identify and eliminate such
daemons that are infrequent, long-running and thus im-
pact the timing of a given program.

e We propose a novel timing protocol that can consider-
ably reduce variance via the elimination.

e An evaluation on real-world programs shows a support
for the effectiveness of the protocol.

The rest is organized as follows. We next elaborate on the
proposed timing protocol. In turn we assess the performance

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

240

of the protocol using a popular industrial benchmark suite.
Finally, we summarize our discussion.

2. Proposed Scheme

In this section we propose our timing protocol. The proto-
col (1) utilizes PT (process time) to avoid absorbing timing
noise from other co-running processes and (2) identifies and
eliminates executions including daemon processes that are
infrequent and long-running via a cutoff measure.

Our SEDONA protocol consists of the three major
steps, as described in Fig.2. Note that this protocol (algo-
rithm) is applicable to any arbitrary Linux system and to any
compute-bound program.

2.1 Timing Configuration

Step A sets up the same timing environment as used in
our prior work[8], to eliminate known timing factors.
The environment requires (i) deactivating non-critical dae-
mons, (ii) switching on the Network Timing Protocol dae-
mon, (iii) turning off particular CPU features [9], [10], and
(iv) getting an up-to-date kernel installed.

2.2 Determining the Cutoffs

Step B consists of eight sub-steps, resulting in determining
the cutoffs for each identified infrequent, long-running dae-
mon.

In Step B-1, we run a simple program-under-test
(called PUT) many times, as shown in Fig.3. PUT runs a
nested for-loop with a specified task length (¢) (in seconds).
The ¢l value is used to compute the number of iterations (f)
for which that for-loop is performed to reach the specified

Algorithm The SEDONA Timing Protocol:
Step A. Set up the timing environment.
Step B. Determine the cutoffs.

B-1. Perform a single run of a simple program-under-test (PUT) (specif-
ically, PUT128) for many samples (specifically, 800).

B-2. Consider each pair of elapsed time measurements to be a dual-
PUT measurement and examine a scatter-plot to see if it it displays an
L-shape.

B-3. Zoom into the central cluster to ensure that it is symmetric (roughly
circular).

B-4. Compute the maximum and standard deviation of the process time
for each daemon encountered within the central cluster samples.

B-5. Identify for each sample in the L-shape infrequent, long-running
daemon executions.

B-6. Determine potentially periodic daemons based on the L-executions
and for each daemon compute the minimum process time from those
executions identified.

B-7. Perform Steps 1-B-6 above for a single run consisting of a small
number of executions (specifically, 40) of PUT16384.

B-8. Compute the cutoffs for each identified daemon.

Step C. Time an arbitrary compute-bound program.

C-1. Run the program ten times, collecting all the process times (PTs).
C-2. Discard any run involving daemon executions over the cutoffs.
C-3. Compute the average to get the PT of that program.

Fig.2 The SEDONA timing protocol.

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.1 JANUARY 2018

task length.

We assign a task length of 128 sec to PUT, termed
PUTI28 and run PUT128 800 times. We use 128 seconds
because that is long enough to perhaps experience an infre-
quent daemon. We execute PUT128 800 times to capture in-
frequent daemons that perhaps run every few hours or even
once a day. Note that we collect all daemon processes as
well as the PUT and their measures through the Netlink in-
terface from the kernel before and after each timing.

Figure 4 (a) plots all the 800 elapsed times (ETs) of the
run of PUT128. The plot clearly shows three rows; that is,
the top and middle rows represent over a dozen of outliers
far from the rest of the samples clustered in the bottom row.
We will now drill down into these outliers to show how to
reliably eliminate the indirect influence of some “infrequent,
long-running daemons” on PT (process time) of the PUT.

To identify such daemons, we use a novel scatter plot:
those of pairs of successive samples. So samples #1 and #2
form the first pair and samples #3 and #4 form the sec-
ond pair. Such a pair is termed “dual-PUT.” A sample of
dual-PUT256, for instance, consists of two consecutive (odd
and even) samples of PUT128: sample #1 of dual-PUT256
is equivalent to samples #1 and #2 of PUT128.

Figure 4 (b) presents such a scatter plot of 400 samples
of a run of dual-PUT256 constructed from a run of the 800

Algorithm PerformManyIncrements(t/):
t = t1 * CONSTANT
fork=1torby 1do
for i = 1 to UINT_-MAX-1 by 1 do
j+=1
end for
end for

Fig.3 Computation by a Program-Under-Test (PUT).

160000 170000
160000 170000

ET (ms)
L

140000 150000

130000
L

120000
L

T T T T
T T T T T 120000 130000 140000 150000 160000 170000

o 200 400 600 800
Odd Sample's ET (ms)

(b) Dual-PUT256 Samples

Herations.

(a) PUT128 with 800 Samples

128200 128400 128600
L

T T T T T T T
128200 128400 128600 128300 129000 129200 129400 128240 128245 128250 128255 128260

0dd Sample's ET (ms) Odd Sample’s ET (ms)

(¢) Zooming in on the L-shape (d) The Central Cluster

Fig.4 Successive scatter plots of PUT128 with 800 samples (equivalent
to Dual-PUT256 with 400 samples) in Steps B-1-3.

LETTER

PUT128 samples (Step B-2). The xy-plane corresponds to
the dual-PUT samples. For example, sample #2 of a run of
dual-PUT256 is plotted as a point with samples #3 and #4
of a run of PUT128 on the respective x and y axes. In that
sense the x (y) axis is named as “Odd (Even) Sample’s ET.”
There are two quite obvious outliers with ETs of 163,913
ms (rightmost) and 161,785 ms (uppermost), respectively.

We informally term this phenomenon of a scatter plot
of a dual-PUT run an “L-shape,” and attribute it to the pres-
ence of infrequent long-running daemons.

Figure 4 (c) zooms into the lower left region, focusing
on the tight cluster of samples. Interestingly, this plot con-
tinues to exhibit an L-shape, with perhaps a dozen or more
L-samples in the left and bottom arms of the “L”, and again
no samples in the upper right portion of the scatter plot.

We continue zooming until we get to Fig. 4 (d), which
shows a central cluster (Step B-3). We confirm the sym-
metry of the ET measurements in the central cluster: there
is no L-shape, and thus no L-samples, and thus no obvious
infrequent long-running daemons.

We then perform Step B-4, which computes the max-
imum process time and standard deviation of PT (process
time, note the switch in emphasis from ET to PT) of the
daemon processes (i.e. £lush-9:0) observed in the central
cluster samples in Fig. 4 (d).

Step B-5 identifies, for each daemon in the L-samples,
those that are actual long-running daemon executions. We
define such executions as those whose PT is over two
standard deviations above the maximum PT for that dae-
mon in the central cluster samples. In the running exam-
ple flush-9:0, jbd2/md0®-8, and md®_raidl are deter-
mined as infrequent, long-running. We also identify “ex-
tra” infrequent daemons: bash, grep, rhn_check, rhnsd,
rhsmcertd, rhsmcertd-worke, and sshd, those found
only in the L-samples but not in the central cluster.

For each of the infrequent daemons we use a heuris-
tic to determine the daemon’s periodicity: the daemon must
occur regularly in a sequence of samples. For instance,
rhn_check appears roughly every 112 samples (or almost
every four hours). Four others (flush-9:0, jbd2/md0-8,
md®_raidl, and rhn_check) all occur together and have a
periodicity of about every 559 samples (5x longer, or just
about 20 hours).

Next, we can compute for each so-identified infre-
quent, long-running daemon its minimum time in the
L-samples (Step B-6). This computation provides a rough,
initial distinction of a “long-running” daemon, or the val-
ley between the maximum PT from the central cluster
and the minimum PT from the L-samples, to differentiate
“short-running” from “long-running” executions of the dae-
mon. For those daemons (i.e. grep) never appearing in the
central cluster, this initial analysis concludes only that they
are infrequent.

In Step B-7 we repeat Steps 1-B-6, but instead with
the much-longer running PUT16384 (4.5 hours per sample
versus 2 minutes), to see if any of our identified infrequent
daemons are actually frequent at that much longer PUT ex-

241

Table1 Collected infrequent, long-running daemons and their final
cutoff process time (Step B-8).
Process Cutoff PT Cutoff PT Task Final
Name on PUT128 | on PUT16K | Time Cutoff PT
bash 1 msec — — 1 msec
flush-9:0 | 64 msec — < lhour | 64 msec

— 48 msec > l hour | 48 msec
grep 1 msec 12 msec — 12 msec
jbd2/md0-8 | 4 msec —_ < lhour | 4msec

— 11 msec > lhour | 11 msec
md®_raidl 35 msec — < lhour | 35msec

— 51 msec > lhour | 51 msec
rhn_check 281 msec — < 12min | 281 msec

— 12,828 msec | > 12min | 12,828 msec
rhnsd 2 msec — < 12min | 2 msec

— 12 msec > 12min | 12 msec
rhsmcertd | 1 msec 1 msec — 1 msec
rhsmcertd | 57 msec — < 12min | 57 msec
-worke — 119 msec > 12min | 119 msec
sshd 2 msec 23 msec — 23 msec

ecution time. We find some frequent daemon processes
appearing in both of the clusters of dual-PUT256 and
dual-PUT32768, each consisting of pairs of two successive
samples of PUT128 and PUT16384. That said, the cen-
tral cluster also contains other processes not seen in the
dual-PUT256 central cluster: grep, rhn_check, rhnsd,
rhsmcertd, rhsmcertd-worke, and sshd. But these dae-
mons were categorized in the dual-PUT256 analysis as in-
frequent, several having periodicities estimated at four or
twenty hours. When PUT128 had a “short” program time
(or, two minutes), daemons with a periodicity of hours are
infrequent. But with PUT16384 with a “long” program time
(or, 4.5 hours), some of those daemons are now frequent,
and appear in the central cluster.

In Step B-8 we compute the cutoff for each of those
infrequent, long-running daemons so identified, based on
the runs of PUT128 and PUT16384 as collected in Table 1.
Here is how to compute the cutoff. For the cutoff of such
a daemon with PUT128, we take the midpoint between the
maximum of that daemon’s PTs in the central cluster (or 0, if
absent) and the minimum of those in the L-samples. For the
cutoff of such a daemon with PUT16384, we do the same.
We then compute a “task time” as 5% of the inferred peri-
odicity. This 5% ensures that such infrequent daemons will
impact only a small percentage of the shorter PUTs, while
presumably being associated with much larger cutoffs for
the very long PUTs. We also include daemons that (a) were
identified as infrequent and long-running from PUT128 and
(b) were not identified as so in the PUT16384 L-samples,
but may have in the dual-PUT32768 central cluster. We then
take the maximum of the two cutoffs for the final cutoff PT
(the last column of Table 1).

2.3 Timing a Given Compute-Bound Program
Step C measures the execution time of a given compute-

bound program. In Step C-1, we execute that program ten
times [8], collecting all the process times (PTs). We then

242

Table2 Machine configurations.

oS Red Hat Ent. Linux (RHEL) 6.4 with a kernel of 2.6.32
CPU Intel Core i7-870 Lynnfield 2.93GHz quad-core processor
RAM | 4GB of DDR3 1333 dual-channel memory

HDD | Western Digital Caviar Black 1TB 7200rpm SATA Drive

drop any execution involving daemons of which PTs are
over their respective cutoffs in Table 1 (Step C-2). Finally,
Step C-3 calculates the PT of that program as the average
among the retained executions’ PTs.

3. Evaluation

We now evaluate the performance of the proposed timing
scheme, SEDONA, compared to that of the original tim-
ing scheme (ORG) based on elapsed time. Our experiments
were conducted on a commodity machine described in Ta-
ble 2.

As already seen in Fig. 1, we confirmed the validity of
our protocol with two real CPU-bound programs—insertion
sort and column-major matrix multiplication—with heavy
memory references.

To assess the performance of the protocol, we pro-
ceeded with SPEC CPU2006 benchmarks [11], providing
various compute-bound real applications. Note that in this
evaluation we could not obtain the results for 481 and 483
benchmarks. 481 threw some runtime error that we could
not resolve, and 483 incurred nontrivial I/O, which was out
of scope of this article. Hence, those two results are omitted
in Table 3.

Consequently, we affirmed from Table 3 that SEDONA
bettered ORG, on the standard deviation and relative error
across the very different SPEC benchmarks. Specifically, all
the benchmarks revealed a smaller standard deviation from
SEDONA as compared to that of ORG. Our timing protocol
quite effectively filtered out infrequent daemon executions
in the industrial workloads. The relative error of SEDONA
was also lower than that of ORG for almost every bench-
mark. Roughly a 10x margin between the two schemes re-
sulted from the 434 benchmark, for instance.

SEDONA also scaled well for the SPEC workloads,
with regard to growth of relative error as the execution time
lengthened. For the short benchmarks (e.g. 400, 403, 410,
434, 445, and 999: those taking under 100 sec), our scheme
outperformed the ORG method by about 3.5x, on average.
The SEDONA protocol continued its dominance against the
conventional technique for the medium-length benchmarks
(e.g. 447, 456, 470, and 473). Even for the long-running
benchmarks (e.g. 416, 436, and 454, both >1,000 sec), the
relative error of SEDONA was still lower than that of ORG.

To summarize, our proposed SEDONA protocol can
achieve better accuracy, precision, and scalability in mea-
suring the execution time of real compute-bound programs
than the ET-based existing method. The experimental re-
sults demonstrate the general applicability of SEDONA to
timing any CPU-bound program.

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.1 JANUARY 2018

Table 3 Performance evaluation on the SPEC benchmarks.
Execution Time (ms) S.tar.ldard Relative Error
ORG SED. Deviation (ms)
(in ET) (inPT) | ORG | SED. | ORG SED.

400 454 445 3 2 | 6x1073 | 3x1073
401 536,639 528,517 | 1,185 | 1,161 | 2x1073 | 2x1073
403 26,109 25,695 138 96 | 5%1073 | 4x1073
410 7,938 7,801 46 19 | 6x1073 | 2x1073
416 | 1,015342 | 999,846 | 965 876 | 1x1073 | 9x10~*
429 235,811 232,209 623 600 | 3x1073 | 3x1073
433 480,586 473,256 743 725 | 2x1073 | 2x1073
434 16,495 16,242 75 7 | 5%x1073 | 5%x107¢
435 990,575 975,445 947 900 | 1x1073 | 9x10~*
436 | 1,160,742 | 1,143,078 | 3,914 | 3,843 | 3x1073 | 3x1073
437 | 581,635 | 572,775 | 1,492 | 1,475 | 3x1073 | 3x1073
444 591,201 582,229 294 281 | 5x107* | 5x107*
445 84,435 83,164 91 28 | 1x1073 | 3x107™*
447 521,846 | 513,493 150 108 | 3x1074 | 2x10™*
450 341,030 335,848 99 91 | 3x107* | 2x107*
453 258,797 254,496 623 582 | 2x1073 | 2x1073
454 | 1,721,804 | 1,695,613 678 627 | 4x107* | 4x107*
456 410,533 404,328 85 50 | 2x107* | 1x107*
458 589,541 580,591 542 513 | 9x10~* | 9x10~*
459 | 798917 | 786,726 | 2,143 | 2,132 | 3x1073 | 3x1073
462 595,188 586,120 | 3,326 | 3,274 | 6x1073 | 6x1073
464 649,838 639,939 601 563 | 9x10~* | 9x10~*
465 895,754 882,106 883 797 | 1x1073 | 1x1073
470 349,830 344,510 143 94 | 4x107* | 3x107*
471 367,589 361,959 | 2,114 | 2,072 | 6x10™* | 6x107*
473 362,587 357,090 | 359 317 | 1x1073 | 9x10~*
482 654,208 644,223 | 2,436 | 2,392 | 4x1073 | 4x1073
998 128 127 0.6 0.6 | 4x1073 | 4x1073
999 128 127 0.8 0.6 | 6x1073 | 5%x1073

Averages | 852 815 | 3x1073 | 2x1073

4. Conclusion

We proposed a novel timing protocol called SEDONA, and
performed an empirical evaluation to show that it is more
precise and accurate than the extant method. This protocol
is generic, in that it can measure with reduced variance the
execution time of any arbitrary compute-bound program can
be timed with reduced variance on any Linux distribution,
via the protocol.

References

[1] Linux Programmer’s Manual, “Netlink—Communication between
kernel and user space (AF_NETLINK),” http://man7.org/linux/
man-pages/man7/netlink.7.html, accessed April 3, 2017.

[2] C.C. Mcgeoch, A Guide to Experimental Algorithmics, Cambridge
University Express, 2012.

[3] E.R. Bryant and D.R. O’Hallaron, Computer Systems: A Program-
mers Perspective, Addison Wesley, 2002.

[4] J. Odom, J.K. Hollingsworth, L. DeRose, K. Ekanadham, and S.
Sbaraglia, “Using dynamic tracing sampling to measure long run-
ning programs,” Proc. ACM/IEEE Conf. on Supercomputing, p.59,
IEEE, 2005.

[5] Intel, “VTune™ Amplifier 2017,” https://software.intel.com/
en-us/intel-vtune-amplifier-xe, accessed April 5, 2017.

[6] TimeSys Corporation, “Timesys LinuxLink,” http://www.timesys.
com/embedded-linux/linuxlink, accessed May 18, 2016.

[7]1 Wind River, “Wind River Workbench,” http://www.windriver.com/

http://dx.doi.org/10.1109/sc.2005.77

LETTER

(8]

[

products/product-notes/workbench-product-note.pdf, accessed Feb.
27, 2016.

S. Currim, R.T. Snodgrass, Y.-K. Suh, and R. Zhang, “DBMS
metrology: Measuring query time,” ACM Trans. Database Syst.,
vol.42, no.1, pp.3:1-3:42, March 2017.

Intel, “Intel Turbo Boost Technology 2.0,” http://intel.com/content/
www/us/en/architecture-and-technology/turbo-boost/turbo-boost-
technology.html, accessed Aug. 7, 2016.

243

[10] Intel, “Enhanced Intel SpeedStep® Technology.” http://intel.com/
content/www/us/en/support/processors/000005723.html, accessed
Sept. 4, 2016.

[11] C.D. Spradling, “SPEC CPU2006 benchmark tools,” SIGARCH
Comp. Arch. News, vol.35, no.1, pp.130-134, March 2007.

http://dx.doi.org/10.1145/2996454
http://dx.doi.org/10.1145/1241601.1241625

