
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017
2653

LETTER

A Novel Component Ranking Method for Improving Software
Reliability∗

Lixing XUE†, Member, Decheng ZUO†, Zhan ZHANG†a), and Na WU†, Nonmembers

SUMMARY This paper proposes a component ranking method to iden-
tify important components which have great impact on the system reliabil-
ity. This method, which is opposite to an existing method, believes com-
ponents which frequently invoke other components have more impact than
others and employs component invocation structures and invocation fre-
quencies for making important component ranking. It can strongly support
for improving the reliability of software systems, especially large-scale sys-
tems. Extensive experiments are provided to validate this method and draw
performance comparison.
key words: large-scale system, component ranking, reliability, inverse
pagerank

1. Introduction

With the continual increase of hardware performance, the
power of software becomes stronger and stronger, making
software systems large scale and very complex. This in-
cludes not only software systems running on local comput-
ers, but also cloud applications and embedded software. Un-
fortunately, massive components and intricate invocation re-
lationships bring a serious threat to the system reliability.
Nowadays, the demand for highly reliable systems is be-
coming indescribably big. How to efficiently improve the
reliability of large-scale systems has become a critical and
challenging research problem.

The first step toward improving the reliability of a
software system is to find out the important components
which have great impact on the system reliability. Tradi-
tionally, this can be achieved by building a Markov model
and then performing sensibility analysis [1]. But the state-
space-explosion problem hinders applying this method to
a large-scale system. Several approaches from other per-
spectives have been attempted. FTCloud [2], which is one
of them, employs a component ranking algorithm derived
from PageRank to identify important components and gains
desired results. However, this method focuses on only com-
ponents that are frequently invoked by other components,
but ignores components that frequently invoke other com-
ponents.

Manuscript received February 26, 2017.
Manuscript revised June 26, 2017.
Manuscript publicized July 24, 2017.
†The authors are with School of Computer Science and Tech-

nology, Harbin Institute of Technology, China.
∗The work was supported in part by Technology Fund

of State Key Laboratory of High-end Server & Storage (No.
2014HSSA05).

a) E-mail: zz@ftcl.hit.edu.cn (Corresponding author)
DOI: 10.1587/transinf.2017EDL8043

In contrast to FTCloud, we focus on components that
often invoke other components and propose a novel com-
ponent ranking method in this paper. This method per-
forms component ranking based on component invocation
relationships and invocation frequencies. After ranking,
each component is given a significance score and the ones
with high scores are considered important. We also pro-
vide extensive experiments to evaluate the impact of the
identified components and draw performance comparison
with FTCloud. The experimental results show that the pro-
posed method can effectively and efficiently identify impor-
tant components and it can gain better performance when
the system has more components which intensively invoke
others.

2. Method

The target of the component ranking method is to evalu-
ate the significance of components in a software system and
provide comparable results based on software structure and
component invocation frequencies. This method is proposed
according to the intuition that components which frequently
invoke many other components are also important. The
method can be divided into two main steps. Then, fault tol-
erance strategies are applied to the significant components.

2.1 Component Bayesian Graph Building

The structure of a software system, i.e. the component in-
vocation relationships, can be modeled as a directed graph
G, where a node ci in the graph signifies a component in the
software, and a directed edge ei j from node ci to node c j de-
notes a component invocation relationship, i.e. component
ci invokes component c j. Usually, this graph is named call
graph or call multigraph. In some works, such as [3], it is
also called component-based control flow graph.

Based on this graph, we assign a nonnegative weight
value W(ei j), which is no more than 1, to each edge ei j. We
are able to compute the weight value of edge ei j by

W(ei j) =
freq(ci, c j)

n∑
k=1

freq(ck, c j)

(1)

where freq(ci, c j) is the frequency of component ci invok-
ing component c j and n is the number of components in the
software. If ci does not invoke c j, freq(ci, c j) = 0. For each

Copyright c⃝ 2017 The Institute of Electronics, Information and Communication Engineers

2654
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

component c j which is invoked by other components, the
weights on its incoming edges satisfy

∑
i W(ei j) = 1. As a

matter of fact, the weight value W(ei j) can be regarded as
the posterior probability of ci invoking c j given that compo-
nent c j is executed. Meanwhile the calculation is similar to
Bayes’ formula, but using frequency statistics. Because of
this, we name this graph “component Bayesian graph”.

For a component Bayesian graph containing n compo-
nents, an n × n matrix W is able to be constructed by em-
ploying Eq. (1). Each entry wi j in the matrix is the weight
value of edge ei j, i.e. the value of W(ei j). If there is no edge
from component ci to component c j, i.e. ci does not invoke
c j, wi j = 0.

2.2 Component Ranking

In a software system, there are some components which are
often invoked by many other components. FTCloud consid-
ers this category of components to be important to the sys-
tem reliability, since the failures of these components will
have greater impact than others. In contrast to these com-
ponents, there must also be some components which fre-
quently invoke a large number of other components in the
same software system and we believe that they are impor-
tant to the system reliability too. Due to the fact that these
components often invoke many other components, we know
that they must be invoked frequently first. So their failures
have more impact on the system reliability [1]. From an-
other perspective, the components which frequently invoke
others intensively provide information to other components.
If they are unreliable, incorrect data will be certain to spread
out and negatively impact the system.

From an intuitive perspective, the important compo-
nents we focus on are the ones which have many edges out-
going to other important ones in the component Bayesian
graph. Illuminated by inverse PageRank of TrustRank [4],
we propose an algorithm to evaluate the significance of com-
ponents in a software system.

We consider a software system which has n compo-
nents and define a significance score S (ci) ∈ [0, 1] for each
component ci, i = 1, 2, · · · , n, with n ∈ N. The score S (ci)
for a component ci is able to be calculated by

S (ci) = α
∑

c j∈I(ci)

S (c j)W(ei j) + (1 − α)
1
n

(2)

where I(ci) is the set of direct successors of node ci in the
component Bayesian graph, i.e. the set of components that
are invoked by component ci, and α is a given parame-
ter which is in the range of [0, 1]. The significance score
of component ci is composed of two parts: one is the ba-
sic score of itself (i.e. 1

n) and the other one is the scores
derived from the components that are invoked by ci (i.e.∑

c j∈I(ci) S (c j)W(ei j)), which means significance propagates
along with the opposite directions of edges in the component
Bayesian graph. The parameter α is employed to balance the
two score values. Equation (2) indicates that if the signifi-
cance score of a component ci is higher, the values of S (c j),

W(ei j) and |I(ci)| should be large, implying that ci invokes
many other important components frequently.

The equivalent matrix equation of Eq. (2) is:
S (c1)
S (c2)
...

S (cn)

 = αW

S (c1)
S (c2)
...

S (cn)

 +
(1 − α)

n

1
1
...
1

 (3)

where W is the matrix of the weight values and has been
defined in last subsection. In this way, we can solve Eq. (3)
by computing the eigenvector with eigenvalue 1.

Through the above method, we are able to obtain the
significance scores of the software components. A compo-
nent with a higher score is considered to be more impor-
tant. Therefore, the components can be ranked. A specified
number (such as Top-K percent) of the most important com-
ponents can be identified. By improving their reliability or
adding fault tolerance mechanisms to them, the global reli-
ability can be greatly improved.

2.3 Fault Tolerance Strategies

Software fault tolerance strategies usually utilize function-
ally equivalent components to tolerate or handle compo-
nent failures and improve the system reliability, and they
are widely applied to critical systems, especially significant
components in the systems. Similarly to FTCloud, this pa-
per also introduces three common fault tolerance strategies,
which are described in the following with formulas for com-
puting the failure probabilities of the fault-tolerant struc-
tures. For a component, failure probability which is in the
range of [0, 1] is defined as the probability that a failure will
occur during an invocation.

• Parallel: Parallel strategy invokes n functional equiva-
lent components simultaneously and takes the first re-
turned result as the overall output. The failure proba-
bility f of a parallel structure can be achieved by:

f =
n∏

i=1

fi (4)

where n is the number of redundant components and fi
is the failure probability of the ith component.
• N-Version Programming (NVP): NVP [6] (also known

as multiversion programming) invokes n components
which are functionally equivalent but programmed in-
dependently, and determines the final result according
to the n responses by majority voting. The failure prob-
ability f of a NVP approach can be calculated by:

f =
n∑

i= n+1
2

F(i) (5)

where n is usually odd and F(i) is the probability that i
alternative components from all the n components fail.

LETTER
2655

Table 1 Experimental result of system failure probability.

For example, when n = 3, we have f = F(2) + F(3),
where F(3) = f1 f2 f3 and F(2) = f1 f2(1 − f3) +
f1(1 − f2) f3 + (1 − f1) f2 f3.

• Recovery Block (RB): RB [5] is a well-known strategy,
in which standby components will be invoked sequen-
tially if the primary one fails. The failure probability f
of a RB can be computed by:

f =
n∏

i=1

fi (6)

where n is the number of redundant components and fi
is the failure probability of the ith component.

In certain software, once n and each fi are determined
according to the cost and other constraints, we can obtain
the failure probability values of the three strategies and then
select the optimal one to improve the global system relia-
bility. An automatically algorithm for the selection can be
found in [2].

3. Evaluation

In order to evaluate the performance of identifying impor-
tant components which have great impact on the system reli-
ability, in this section we compare the following three meth-
ods:

• NCRID (the proposed component ranking method):
Top-K percent important components are identified by
the method in this paper and then their failure proba-
bilities are reduced to improve the global reliability.
• RandID: K percent components are randomly selected

and then their failure probabilities are reduced.
• FTCloud: Top-K percent important components are

identified by FTCloud [2] and then their failure prob-
abilities are reduced.

That is to say we utilize each method to select a group of K
percent components and compare the impact of these com-
ponent groups on the system reliability.

In NCRID and FTCloud, the parameter α is used to
balance the derived significance and the basic significance
of the component itself. In similar works [2], [7], [8], 0.85
has been proved as an optimal value. Thus, we also set this
parameter to be 0.85. Besides, to exclude the influence of
the different fault tolerance strategies and ensure fair com-
parisons, we assume that the failure probability (FP) val-
ues of the selected components are reduced to a given per-
centage after building fault tolerance strategies. In this way,

the comparisons are able to directly show us which method
is more effective in identifying important components that
have great impact on the global reliability. It is obvious
that this percentage can be set as any value in the range of
[0, 1]. According to the experimental results that we have
obtained under different failure probability values and set-
tings of node numbers, the difference between the original
overall failure probability and the improved overall failure
probability appears to be distinct when the value is set as
80% or less. In the experiments, we suppose that the failure
probability of each selected component is reduced to 80%
after applying any fault tolerance strategy to the component.

Due to the fact that the internal structures of a great
deal of common software, such as Linux Kernel, Mozilla,
Xfree86 and MySQL, can be abstracted as scale-free
graphs [9], [10], we use Pajek [11] - a network analysis tool,
to generate scale-free directed graphs as the structures of tar-
get software systems. We employ random walk to simulate
component invocation behaviors in software systems. For
each graph, we archive 10,000 invocation sequences and use
them to calculate the invocation frequencies. According to
the structures and frequencies, component Bayesian graphs
can be constructed.

3.1 Effectiveness

To evaluate the impact of the identified important compo-
nent on the system reliability, we generate three component
Bayesian graphs with different settings of node numbers
(i.e. 100, 500 and 1000) and compare NCRID and RandID
on them respectively under different Top-K and component
failure probability (FP) settings. There are three Top-K val-
ues, i.e. K = 1, 5 and 10, and three component FP settings,
i.e. 0.01, 0.5 and 0.1. The experimental results of system
failure probabilities are recorded in Table 1.

We can find that our method, NCRID, obtains better
failure probability performance in all settings. This obser-
vation shows that the important components identified by
NCRID have greater impact on the system reliability. In
other words, our method is effective in identifying impor-
tant components for improving the system reliability.

3.2 Impact of Top-K

To study the impact of the Top-K parameter on identifica-
tion results, we compare NCRID and RandID under differ-
ent Top-K values. We use the graph with 500 nodes and the
results are depicted in Fig. 1.

2656
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

Fig. 1 Impact of Top-K.

Fig. 2 Impact of component failure probability.

As the Top-K value grows from 10% to 90%, NCRID
consistently provides better reliability performance than
RandID under the different componentfailure probabilities.
Only when the Top-K reaches 100%, the two failure proba-
bility values are identical. This demonstrates that the Top-
K percent components identified by NCRID always have
greater impact on the system reliability, namely the Top-K
value do not affect the effectiveness of our method.

3.3 Impact of Component Failure Probability

To study the impact of the component failure probability pa-
rameter on identification results, we compare NCRID and
RandID under failure probability settings of 0.01 to 0.1 with
a step value of 0.01. The node number is 500, too. The
results are showed in Fig. 2.

Under different Top-K values (i.e. Top-1%, Top-5%
and Top-10%), NCRID consistently outperforms RandID
regardless of the component failure probability settings.
This phenomenon indicates that NCRID is free of the com-
ponent failure probability parameter.

3.4 Performance Comparison

Our method has been proved to be effective regardless of
component failure probability and Top-K values, so has
FTCloud [2]. Now, we want to make clear that for a given
software system, which one has better performance, namely
the identified important components have greater impact on
the system reliability.

Our method pays attention to the outgoing links of
components while FTCloud focuses on the incoming links.
It is reasonable to speculate that the distribution of in-
degrees and out-degrees in the component Bayesian graph
may affect the performance of them. Therefore, we tune
the parameters in Pajek to generate three 500-node directed
graphs and name them “IN”, “OUT” and “UNI”, respec-
tively. IN has a part of nodes whose in-degrees are high,
OUT has a part of nodes whose out-degrees are high and
the distribution of degrees in UNI is uniform. We compare
NCRID and FTCloud on them under three different compo-
nent failure probability (FP) values (i.e. 0.01, 0.05 and 0.1).
The experimental results derived from system IN, OUT and
UNI are drawn in Fig. 3(a), 3(b) and 3(c), respectively.

Overall, the performance of the two methods is not too
different. Regardless of the component FP value, FTCloud
outperforms NCRID in system IN, when Top-K value is
smaller while the performance of them is similar when Top-
K becomes big. Oppositely, in system OUT, NCRID outper-
forms FTCloud in most cases and only when Top-K is large,
they approach to each other. In system UNI, the two meth-
ods are neck and neck through all Top-K values, no matter
what component FP value is. In fact, only a small set of
components are expected to be ameliorated when improv-
ing the system reliability. We should pay more attention to
the smaller Top-K values.

We can draw a tentative conclusion that our method
outperforms FTCloud when the software system has more
components which frequently invoke others. Unfortunately,

LETTER
2657

Fig. 3 Performance comparison with FTCloud.

we cannot reveal the exact quantitative condition in a short
term. This has been involved in the future work. Besides,
how to combine the two methods into a stronger synthetic
method may become a part of the future work.

4. Conclusion

This paper proposes a novel component ranking method to
identify important components which have greater impact
on the system reliability. In this method, the rank of a com-
ponent is determined by the number of components that are
invoked by this component, the significance of these com-
ponents and how often they are invoked. Extensive exper-
iments shows that the method is effective and the ranking
results can provide strong support for improving the system
reliability.

References

[1] R.C. Cheung, “A User-Oriented Software Reliability Model,” IEEE
Trans. Software Engineering, vol.SE-6, no.2, pp.118–125, 1980.

[2] Z. Zheng, T.C. Zhou, M.R. Lyu, and I. King, “FTCloud: A Com-
ponent Ranking Framework for Fault-Tolerant Cloud Applications,”
Proc. 21st IEEE International Symposium on Software Reliability
Engineering, pp.398–407, San Jose, 2010.

[3] A. Mohamed and M. Zulkernine, “A Control Flow Representa-
tion for Component-Based Software Reliability Analysis,” Proc. 6th
IEEE International Conference on Software Security and Reliability,
pp.1–10, Gaithersburg, 2012.

[4] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating Web
Spam with Trustrank,” Proc. 30th International Conference on Very
Large Databases (VLDB), pp.576–587, Toronto, 2004.

[5] B. Randell and J. Xu, “The Evolution of the Recovery Block Con-
cept,” ed. M.R. Lyu, Software Fault Tolerance, pp.1–21, Wiley,
Chichester, 1995.

[6] A. Avizienis, “The Methodology of N-Version Programming,” in
Software Fault Tolerance, M.R. Lyu, pp.23–46, Wiley, Chichester,

http://dx.doi.org/10.1109/tse.1980.234477
http://dx.doi.org/10.1109/tse.1980.234477
http://dx.doi.org/10.1109/issre.2010.28
http://dx.doi.org/10.1109/issre.2010.28
http://dx.doi.org/10.1109/issre.2010.28
http://dx.doi.org/10.1109/issre.2010.28
http://dx.doi.org/10.1109/sere.2012.33
http://dx.doi.org/10.1109/sere.2012.33
http://dx.doi.org/10.1109/sere.2012.33
http://dx.doi.org/10.1109/sere.2012.33
http://dx.doi.org/10.1016/b978-012088469-8.50052-8
http://dx.doi.org/10.1016/b978-012088469-8.50052-8
http://dx.doi.org/10.1016/b978-012088469-8.50052-8

2658
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

1995.
[7] S. Brin and L. Page, “Reprint of: The anatomy of a Large-scale

Hypertextual Web Search Engine,” Comput. Netw., vol.56, no.18,
pp.3825–3833, 2012.

[8] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S.
Kusumoto, “Ranking Significance of Software Components Based
on Use Relations,” IEEE Trans. Software Engineering, vol.31, no.3,
pp.213–215, 2005.

[9] A.P.S. de Moura, Y.-C. Lai, and A.E. Motter, “Signatures of Small-
World and Scale-Free Properties in Large Computer Programs,”
Physical Review E, vol.68, no.1, ID.017102, 2003.

[10] C.R. Myers, “Software Systems as Complex Networks: Structure,
Function and Evolvability of Software Collaboration Graphs,” Phys-
ical Review E, vol.68, no.4, ID.046116, 2003.

[11] W. de Nooy, A. Mrvar, and V. Batagelj, Exploratory Social Net-
work Analysis with Pajek, Revised and Expanded Second Edition,
Cambridge University Press, New York, 2011.

http://dx.doi.org/10.1016/j.comnet.2012.10.007
http://dx.doi.org/10.1016/j.comnet.2012.10.007
http://dx.doi.org/10.1016/j.comnet.2012.10.007
http://dx.doi.org/10.1109/tse.2005.38
http://dx.doi.org/10.1109/tse.2005.38
http://dx.doi.org/10.1109/tse.2005.38
http://dx.doi.org/10.1109/tse.2005.38
http://dx.doi.org/10.1103/physreve.68.017102
http://dx.doi.org/10.1103/physreve.68.017102
http://dx.doi.org/10.1103/physreve.68.017102
http://dx.doi.org/10.1103/physreve.68.046116
http://dx.doi.org/10.1103/physreve.68.046116
http://dx.doi.org/10.1103/physreve.68.046116

