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DNN Transfer Learning Based Non-Linear Feature Extraction for
Acoustic Event Classification

Seongkyu MUN†, Minkyu SHIN††, Suwon SHON††, Wooil KIM†††, David K. HAN††, Nonmembers,
and Hanseok KO†,††a), Member

SUMMARY Recent acoustic event classification research has focused
on training suitable filters to represent acoustic events. However, due to
limited availability of target event databases and linearity of conventional
filters, there is still room for improving performance. By exploiting the
non-linear modeling of deep neural networks (DNNs) and their ability to
learn beyond pre-trained environments, this letter proposes a DNN-based
feature extraction scheme for the classification of acoustic events. The ef-
fectiveness and robustness to noise of the proposed method are demon-
strated using a database of indoor surveillance environments.
key words: acoustic event classification, transfer learning, deep neural
network, acoustic feature

1. Introduction

Acoustic event classification (AEC) is the autonomous
recognition of different events via sound. It has recently
attracted attention due to the increased variety of new ap-
plications and potential uses [1]–[4]. As pointed out in pre-
vious studies [2], [3], the acoustic features conventionally
used in AEC have been shown to overcome the limitations
of features based on the human auditory system, such as
Mel-frequency cepstral coefficients (MFCCs) and percep-
tual linear prediction (PLP). Unlike the fixed filter struc-
ture of features based on the human auditory system, the
extraction of conventional AEC features focuses on train-
ing suitable filters to represent acoustic events. In filter pre-
training, non-negative matrix factorization (NMF) [2], non-
negative K-SVD (singular value decomposition) [3] and sta-
tistical distribution [4] have been used to extract information
that can be used to discriminate target events.

The features obtained by the aforementioned ap-
proaches have shown better AEC performance compared to
the human auditory system based features. However there is
still room for improvement in two respects. First, AEC has
known issues with ‘weakly labeled’ databases (DBs) and a
deficit of target DBs [5] compared to other audio signal ap-
plications such as speech recognition, natural language pro-
cessing, and speaker recognition. These DB issues can lead
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to the insufficient or non-generalized pre-training of target
event filters. Second, the filtering processes of conventional
approaches are based on linear combination. In recent audio
detection [6] and signal enhancement [7] researches, non-
linear modeling has exhibited improved performance com-
pared to linear approaches. Based on the advantages demon-
strated by researches mentioned above, it can be inferred
that a filtering process which can model the non-linear re-
lationships among frequency bands may improve AEC per-
formance.

To address these issues, this letter proposes to use a
deep neural network (DNN), which is trained using trans-
fer learning, as an acoustic event filter. The ‘transfer learn-
ing’ scheme aims to transfer knowledge between the source
domain used for pre-training and the target domain of in-
terest. In computer vision, transfer learning overcomes the
deficit of target domain training samples by adapting layer
parameters that have been pre-trained for other large-scale
DBs [8]. The source domain DB is also referred to as the
background or development DB, and the size of the source
DB is generally larger than that of the target domain. The
success of transfer learning in visual object classification
(VOC) has been attributed to the effectiveness of transfer-
ring the neural network parameters from the source to the
target domain. Therefore, this approach may help to pre-
train the acoustic event filter more effectively using trans-
ferred parameters which have been already trained to ex-
tract discriminative acoustic information from large DBs.
Moreover, DNN-based filtering can effectively model the
non-linear relationships among frequency bands for AEC by
using nonlinear activation functions with a larger number of
parameters, compared to NMF or the distribution-based fil-
ters [2]–[4].

2. Proposed Feature Extraction for AEC

The acoustic event filter training and the AEC system are de-
picted in Fig. 1. Unlike the conventional method shown in
Fig. 1(a), the proposed method presented in Fig. 1(b) has an
additional training step in the source domain. The DNN fil-
ter is first trained in the source domain then transferred to the
target domain and adapted to target domain classes with ad-
ditional layers. After the training step, the DNN filter is used
to extract features in the AEC system. Details of DNN fil-
ter training are provided in Fig. 2. In the source domain, the
network is composed of three hidden fully connected layers
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Fig. 1 Comparison of the conventional and proposed feature extraction
methods

which use a Sigmoid activation function and a single output
layer with a SoftMax function. For filter training in the tar-
get domain, similar to the transfer learning in VOC [8], the
output layer of the pre-trained network is removed and two
hidden fully connected layers and a new single output layer
are added to enable adaptation. Because the transferred lay-
ers have been pre-trained to classify various classes within
the source domain, the layer outputs may capture the dis-
criminative features of different sounds [8]. In target domain
training, the outputs of the transferred layer are adapted to
target domain labels by using them as inputs for training
the additional two hidden layers. In summary, the parame-
ters for layers SL#1-3 are first trained in the source domain
then transferred to the target domain and fixed. Only the
additional adaptation layers (TL#1-2) are trained using the
target domain training data.

After the target domain training step, as depicted in
Fig. 3, the output layer and activation functions of the last
hidden layer (TL#2) are removed. This process is motivated
by bottleneck feature studies [1], [9], which follow a similar
approach in using DNN mid-layers and demonstrate effec-
tive performance. Finally, the five hidden layers from SL#1
to TL#2 are used as a DNN filter and the output values of
layer TL#2 without the activation function are used as the

Fig. 2 The proposed filter training process using a transfer learning
based DNN filter

Fig. 3 The proposed DNN filter and feature extraction after filter training

input features for the AEC system.

3. Experimental Settings and Results of AEC

For the source domain task, four acoustic DB sets (CLEAR-
OL, RWCP, UrbanSound, and ESC-50) were merged [10]–
[13]. Since each DB set has a different wave length for their
own classes, the wave length of each class was normalized
to about 800 seconds. Classes over 800 seconds were ran-
domly cut into 800 seconds and those under 800 seconds
were reproduced by filtering the room impulse response of
the office environment (estimated RT60 was 0.7sec) as if
they were re-recorded in office environments. A total of
93 classes were selected and the wave files were resampled
at 16 kHz and 16 bits resolutions. Detail descriptions are
shown in Table 1.

For the target domain task, an indoor surveillance DB
was used. The database consists of 15 events (a crying
child, breaking glass, water drops, chirping birds, a door-
bell, home appliance beeping, screaming, a dog barking,
music, speech, a cat meowing, a gunshot, a siren, an ex-
plosion, and footsteps). It was collected at various locations
by a portable recorder and employed the following datasets:
the BBC Sound Effects Library [14], Sound Ideas [15], and
the Sony Sound Effects Library [16]. Each event consisted
of 150 segments for the training set and 50 segments for the
evaluation set (each segment is a wave file of 3 seconds).
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Table 1 Source domain database description

To evaluate robustness in real life, two noises were chosen
from the ETSI background noise DB [17]. From the back-
ground noise DB, target class related components were ex-
cluded and noises were added to the event DB at 5, 10, 15
dB SNR.

For the source and target domains in DNN filter train-
ing, the training procedure periodically evaluated the cross-
entropy objective function on a subset of the training set
and a validation set (the training and validation set ratio was
4:1 for both the source and target training DBs). The initial
learning rates were set to 0.005 and the network was trained
until training cross-entropy was stabilized. The learning
rates were then divided by 10 and the training procedure
was repeated. The momentum parameter and weight decay
were set to 0.9 and 0.0005, respectively.

In order to select the input feature type of the DNN
filter, we conducted AEC experiments with various types
of input, such as magnitudes of discrete Fourier transform
(DFT) [2]–[4], [18], real and imaginary values of DFT [19]
and waveform [20]. Based on recent AEC research [21],
which used multiple frames for input, the evaluation was
performed by varying the number of frames for splicing.
The structure of DNN filter with output layer (lower part
in Fig. 2) was used for the experiment. Details of the feature
settings and experimental results are listed in Table 2. De-
spite conducting experiments with various hyper parameter
adjustments, waveform and real/imaginary value inputs did
not show better performance compared to the DFT magni-
tude input. While these raw (or relatively raw) features have
potential to improve performance, they have been consid-
ered to require a complicated network structure and a very
large number of weight parameters (2∼18M parameters for
waveforms [20], 24M for [19]) for achieving high level of
performance. It is noted that the main focus of this letter is
on the effectiveness of DNN filter based on transfer learning.
Hence, we will conduct additional experiments for various
types of input features through a future research.

As mentioned in the previous section, this letter used
DNN as feature extractor rather than classifier. This ap-

Table 2 Average acoustic event classification rate [%] on various input
features for the DNN filter with output layer (Fig. 2)

Table 3 Average acoustic event classification rate [%] on combination
of various feature transformations and classifiers

proach differs from the conventional usage of DNN which
performs whole process (from input features to output of
classification results) by a single network. As an alternative
approach to the conventional methods, we believed that the
proposed DNN mid-layer information extracting and com-
bining with various types of classifiers and feature trans-
formations could further improve the AEC performance.
Therefore, in order to evaluate the performance of the pro-
posed features with additional processes, we used Gaus-
sian mixture model (GMM), support vector machine (SVM)
and DNN for classifier comparison. Before classification,
discrete cosine transform (DCT) and principal component
analysis (PCA) were individually applied to features for re-
dundancy reduction and de-correlation [1]–[4]. The classi-
fication result of each segment is obtained by accumulating
the result (probability or SoftMax output of each class) per
frame. Details of the classifier settings and experimental re-
sults are listed in Table 3.

Based on the aforementioned two experimental results,
the best performance setting (3-spliced frames, SVM with
DCT) was selected and compared with other conventional
algorithms. This letter compares the average accuracy for
all events for the conventional and proposed methods. Ta-
ble 4 presents the segment-based classification accuracy. It
was found that the proposed method achieved higher accu-
racy than the other approaches in the clean and all noise
conditions. In comparison to the NMF [2] and K-SVD [3]
linear filter results, the proposed non-liner filter produced
a more noise robust performance. In addition, compared
with other DNN-based feature extraction methods, such as
the Deep Belief Network (DBN) feature, which is used for
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Table 4 Average acoustic event classification rate [%] for ETSI back-
ground noise using various features with SVM classifier

music genre classification [18], and the DNN bottleneck fea-
ture [1], the proposed method demonstrated improved accu-
racy by effectively utilizing the information transferred from
the source domain.

4. Conclusion

To improve AEC performance, this letter proposed a novel
DNN filter training framework employing transfer learning.
By utilizing the information transferred from the source do-
main, the proposed feature extraction was characterized by
improved AEC accuracy in indoor surveillance experiments.

Once DNN filter training has been completed in the
source domain, this DNN filter can be utilized in other do-
mains, repeatedly. Therefore, future work will investigate an
effective transfer learning scheme for various acoustic appli-
cations and determine how performance changes depending
on the configuration of the data.
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