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Computationally Efficient Reflectance Estimation for Hyperspectral
Images∗

Takaaki OKABE†a), Nonmember and Masahiro OKUDA†, Member

SUMMARY The Retinex theory assumes that large intensity changes
correspond to reflectance edges, while smoothly-varying regions are due to
shading. Some algorithms based on the theory adopt simple thresholding
schemes and achieve adequate results for reflectance estimation. In this pa-
per, we present a practical reflectance estimation technique for hyperspec-
tral images. Our method is realized simply by thresholding singular values
of a matrix calculated from scaled pixel values. In the method, we esti-
mate the reflectance image by measuring spectral similarity between two
adjacent pixels. We demonstrate that our thresholding scheme effectively
estimates the reflectance and outperforms the Retinex-based thresholding.
In particular, our methods can precisely distinguish edges caused by re-
flectance change and shadows.
key words: hyperspectral image, retinex, reflectance estimation, singular
values

1. Introduction

Recent advances in hyperspectral imaging allow us to ac-
quire rich spectral information. Unlike the traditional RGB
sensing, hyperspectral images can provide almost continu-
ous spectral information. The remote sensing technology
based on the hypersepctral imaging is now a powerful obser-
vation technique for investigating ground materials. In addi-
tion, the use of the spectral information improves capability
in image processing techniques like classification and target
detection and realizes many practical applications such as
environmental monitoring and food analysis [1]–[6]. In the
applications, the reflectance information is more preferable
than radiance acquired by image sensors, since colored il-
lumination and shadows often degrade the performance of
image processing, and thus it is important to develop re-
flectance estimation algorithms.

In the image processing literature, many methods
for the reflectance estimation have been proposed [7]–[21].
Barrow and Tenenbaum [13] introduced a method of intrin-
sic image decomposition, which separates reflectance and
shading components. The reflectance component involves
a specific object color that does not depend on scene illu-
mination, while the shading component mainly depends on
illumination and surface geometry. The intrinsic image de-
composition is a major challenge due to its ill-posedness, in
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which there are two unknown components for one observed
image, and hence many of conventional methods need time
consuming steps. This can be a significant drawback for
handling large data like the hyperspectral images. The well-
known Retinex algorithm originally proposed in [22] as-
sumes that large intensity changes correspond to reflectance
edges, while smoothly-varying regions are due to shading.
This traditional algorithm merely performs simple thresh-
olding, but it still works well both for grayscale and color
images [15].

In this paper, we introduce a simple and practical
method for reflectance estimation of hyperspectral images.
We show that the spectral information provides us with the
necessary information to determine the gradients of a re-
flectance image. Our method is realized simply by thresh-
olding singular values of a matrix calculated from scaled
pixels values. This allows us to employ effective threshold-
ing with low computational complexity. One of challeng-
ing tasks in the reflectance estimation is to distinguish edges
caused by the reflectance change and shadows. Experimen-
tal results show that our method can precisely distinguish
the two types of edges and outperforms the Retinex-based
thresholding.

Notation: For a hyperspectral image I, let the number
of spectral bands and the number of pixels in a band be M
and N, respectively. We denote the m-th spectral plain by
Im ∈ RN (m = 1, 2, · · · ,M), and its pixel value at a posi-
tion (x, y) by I(x,y,m) ∈ R. Let Dx and Dy be differential op-
erators w.r.t horizontal and vertical directions, respectively.
For any 2D matrix X, we denote the (x, y)-th element of X
by [X](x,y) ∈ R.

2. Reflectance Estimation by Gradient Thresholding

2.1 Lambertian Model

Colors captured by a sensor complicatedly depend on light
with various environments such as illumination, scene ge-
ometry, and materials. One of the simplest models for radi-
ance description is the Lambertian reflectance model. Under
the Lambertian circumstances, the radiance towards an ob-
server at a non-emissive point is expressed by

Î =
∫

r(λ)l(λ)dλ · cos θ,

where r(λ) is a surface reflectance (albedo), l(λ) is an illu-
mination, and λ is the wavelength. It also depends on the
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angle θ between the direction of an incident light and a sur-
face normal. Under the white illumination with a uniform
spectral distribution, it is rewritten as

Î =
∫

r(λ)dλ · K cos θ.

Now, the illuminance at a pixel (x, y) captured by a sensor
with the spectral sensitivity c(λ) is modeled as

Î(x,y) =

∫
r(λ)l(λ)c(λ)dλ · cos θ.

Assume that the camera sensor has a piecewise flat spectral
sensitivity in the range of the wavelengths [λm, λm+1], and
the illumination is also flat in the range, then the captured
illuminance in the m-th band Î(x,y,m) is given by

Î(x,y,m) =

∫ λm+1

λm

r(λ)dλ · K′m cos θ,

where K′m is a constant value determined by the sensitiv-
ity function and the illumination. Letting the reflectance
and the shading component be R̂(x,y,m) =

∫ λm+1

λm
r(λ)dλ and

Ŝ(x,y,m) = K′m cos θ, respectively, Î(x,y,m) is given by the prod-
uct of the two components,

Î(x,y,m) = R̂(x,y,m) · Ŝ(x,y,m).

By taking the logarithm of the images, R(x,y,m) = log R̂(x,y,m)

and S(x,y,m) = log Ŝ(x,y,m), the observed image is expressed
by the sum of the two images in the log domain as

I(x,y,m) = R(x,y,m) + S(x,y,m). (1)

2.2 Conventional Retinex-Based Thresholding

Our goal is to estimate the reflectance component R from the
observed image I. This estimation is inherently a challeng-
ing problem since the Eq. (1) is severely underdetermined.
One solution is to apply tractable prior knowledge to solve
the problem [11], [14], [15]. The well-kown Retinex al-
gorithm [22], which many conventional methods are built
upon, is based on a simple assumption that a reflectance
image has piecewise constant regions with sharp edges,
whereas the shading image smoothly varies between pix-
els. Based on the Retinex principle, sharp intensity changes
should be retained, while the small changes are factored out.
This is fulfilled simply by thresholding the gradients of the
observed log image

[DhRm](x,y) =

{
[DhIm](x,y) if

∣∣∣[DhIm](x,y)

∣∣∣ > Tr

0 otherwise
,

(2)

where Dh ∈ RN represents the difference operator along the
horizontal direction, and Tr is a threshold. The same proce-
dure is employed for the vertical direction.

3. Singular Value Thresholding

Varying illumination caused by light sources, shapes of ob-
jects, and terrains alters the amplitudes of spectra. Figure 1
shows the spectra of the two pixels in the same material.
The pixels are located in the regions separated by the edge
caused by the shadows, and thus the shape of the spectra is
similar, but they vary in intensity. To exploit the spectral
variation, we first find the scaling parameter n(x,y)

h , which
minimizes the mean squared error between the adjacent pix-
els

min
n(x,y)

h

M∑
m=1

(
Î(x,y,m) − n(x,y)

h Î(x+1,y,m)

)2
,

where M is the number of bands. The solution of the prob-
lem is given by

n(x,y)
h =

M∑
m=1

Î(x,y,m) · Î(x+1,y,m)

M∑
m=1

Î2
(x+1,y,m)

.

Next, we find the singular values of the matrix
[A(x,y)

h ]T A(x,y)
h , where A(x,y)

h is given by

A(x,y)
h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Î(x,y,1) n(x,y)
h · Î(x+1,y,1)

Î(x,y,2) n(x,y)
h · Î(x+1,y,2)

...
...

Î(x,y,M) n(x,y)
h · Î(x+1,y,M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix A(x,y)
h consists of the spectral values of horizon-

tally adjacent pixels at positions (x, y) and (x+1, y), and then
[A(x,y)

h ]T A(x,y)
h calculates the correlation w.r.t. the spectral in-

formation. The size of [A(x,y)
h ]T A(x,y)

h is 2×2, and its singular
values are deonoted by

√
λ− and

√
λ+ (
√
λ− ≤

√
λ+). Our

method assumes that the reflectances on two adjacent pix-
els are similar, the spectra of the two pixels are similar in
shape, even if those intensities are different (Fig. 1). When
the spectra of the two pixels are similar in shape (i.e. the dif-
ference of the two is close to constant), the smallest singular
value,

√
λ−, becomes small. In the ideal situation, one can

Fig. 1 (a) Spectra of two pixels separated by the edge caused by shadows
in (b).
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Fig. 2 Comparison with the conventional method [22].

distinguish edges of reflectance images from ones caused
by shadows by thresholding

√
λ−. Thus our method allocate

the edge at (x, y) to the reflectance edge if the ratio of the
smallest singular value is larger than a threshold Ts, which
is denoted as

[DhRm](x,y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[DhIm](x,y) if

√
λ−

‖A(x,y)
h ‖∗

> Ts

0 otherwise

, (3)

where ‖ · ‖∗ is the nuclear norm. The nuclear norm is defined
as the sum of the singular values of a matrix. In (3), the
smallest singular value is divided by the nuclear norm in
order to make the values independent to the intensities of the
pixels representing A(x,y)

h . The same procedure is employed
in the vertical direction.

4. Numerical Results

We compare our method with the Retinex-based threshold-

Table 1 Data set description used in the experiment.

Data Set Size (h × w × M(bands)) Spectral Resolution

(a) [23] 234 × 316 × 33 400 − 720nm (10nm)
(b) [24] 512 × 512 × 31 400 − 700nm (10nm)
(c) [24] 512 × 512 × 31 400 − 700nm (10nm)

ing in Sect. 2.2. Although there are many non-heuristic
methods on the reflectance estimation, many of them in-
volves time consuming iterative steps or optimization. On
the other hand, the Retinex-based thresholding has much
less computational complexity, and it still has higher perfor-
mances than other computationally efficient methods [15].
In both of our method and the Retinex, final results are re-
constructed from the gradient domain by solving the Poisson
equation. Table 1 describes the detail of the tested sample
images.

Figure 2 and Table 2 show the resultant images and
execution time. We manually adjusted the threshold and
adopted the largest threshold that preserves the sharp edges
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Table 2 Execution time.

Data Set Retinex Ours

(a) 0.1142 [s] 0.3615 [s]
(b) 0.3009 [s] 1.1074 [s]
(c) 0.2952 [s] 1.1089 [s]

of the reflectance in both of our and the conventional
method. The sharp edges due to the illumination remain in
the results of the Retinex, while our results relieve the influ-
ence of the sharp shadows and more precisely estimate the
reflectance and distinguish edges caused by the reflectance
change and shadows, especially for the regions circled by
red in Fig. 2.

5. Conclusions

We proposed the technique for the reflectance estimation
based on simple thresholding. Comparing with the conven-
tional Retinex, which allocate the edges to the reflectance
and shading based on the intensity of the edges, our method
achieves more convincing estimation.
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