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Multiple Matrix Rank Minimization Approach to Audio Declipping

Ryohei SASAKI™, Nonmember, Katsumi KONISHI'", Tomohiro TAKAHASHI',

SUMMARY  This letter deals with an audio declipping problem and
proposes a multiple matrix rank minimization approach. We assume that
short-time audio signals satisfy the autoregressive (AR) model and formu-
late the declipping problem as a multiple matrix rank minimization prob-
lem. To solve this problem, an iterative algorithm is provided based on the
iterative partial matrix shrinkage (IPMS) algorithm. Numerical examples
show its efficiency.

key words: audio declipping, signal resortoration, switched AR model,
sparse optimization, compressed sensing

1. Introduction

Distortion of the speech and music signals is caused by var-
ious factors, for example, impulse noise represented by a
click sound, clipping noise caused by thresholding and trun-
cating a signal whose amplitude is over the maximum quan-
tization width, packet loss in the IP telephone and so on.
This letter deals with an audio declipping problem that is
a signal degradation process in which an undistorted audio
waveform is truncated whenever the audio signal exceeds
the maximum input range of a digital acquisition system.
This distortion seriously deteriorates the sound quality.
Several approaches have been proposed for audio in-
painting and declippng, and they are roughly classified into
three approaches, 1) patch based approach, 2) dictionary
based approach, and 3) autoregressive (AR) model based
approach. The patch based approach was proposed in [1],
where missing signals are divided into some blocks and sub-
stituted by neighborhood known signals. This approach re-
covers signals for audio inpainting, however, does not work
for audio declipping. In the audio declipping problem, sig-
nals are declipped in all intervals, and hence there is no
proper reference signal to substitute. In [2], [3], dictionary
based declipping algorithms were provided. Though these
algorithms work well, their performances depend on dictio-
naries given in advance such as the discrete cosine transform
dictionary and a Gabor dictionary. The AR model based ap-
proach is proposed in [4], [6], [7]. In this approach, audio
signals are assumed to be modeled by the AR model and
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restored based on the model. Because the performance of
this approach depends on the estimated model order, matrix
rank minimization algorithms for audio declipping problem
have been proposed in [6] and [7] based on the fact that the
model order is equal to the rank of Hankel matrix generated
from audio signals. Although it is known that audio sig-
nals are not steady-state in practice and hardly modeled by
time-invariant AR model, they can be approximated by the
AR model in a short time, and therefore these algorithms
divide audio signals into multiple short time frames and re-
store signals in each frame. However, they achieve bad per-
formance when the property of audio signals changes in a
frame, which contradicts a single AR model assumption.
Their quality depends on a frame length, and the best frame
length is not constant but time-variant.

In order to improve the quality of matrix rank mini-
mization based audio declipping algorithms, this letter takes
a multiple AR model approach, where audio signals are as-
sumed to be modeled by switched models consisting of mul-
tiple AR models. This model enables us to restore audio sig-
nals well because the model provides the best length of sub-
frames even when the property of signals changes in each
short time frame. Based on this model, the audio declip-
ping problem is formulated as a multiple matrix rank mini-
mization problem, and a new audio declipping algorithm is
proposed by modifying the iterative partial matrix shrink-
age (IPMS) algorithm [9]. Numerical examples show that
the proposed algorithm has a good performance for mixed
speech signals.

2. Problem Formulation

This section introduces an audio declipping problem and
formulates it as a multiple matrix rank minimization prob-

lem.
M+N-1

Let us assume undistorted signals {x;};] are pro-
vided by the following AR model,
X = Z Xy + Ur, (D
k=1

where a; and v, denote the AR coeflicient and noise. Then
consider the audio declipping problem which is a problem
of restoring undistorted signals x, from the observed signals
y, given as follows,
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c if x,>C
Yy =gcx) =9 -C if x,<-C s 2)
x; else

where C is a given constant called a clipping gain. In this
problem, the AR coeflicients a; and the model order r are
unknown. To formulate the audio declipping problem, we
define Hankel matrix X € R™*N of {x,}M+N-1 by

Xij= Xisj-1, 3)

where M > N, and X; ; denotes the (i, j) entry of X. If there
are no noise, it holds that rank(X) = r since x; satisfies (1).
Based on the low-rankness of X, we formulate the audio de-
clipping problem as the following matrix rank minimization
problem,

Minimize rank(X) 4)
subjectto X € HNI cRMN >

where H < RM*N denotes the set of Hankel matrices de-
fined in (3), and 7 denotes the set of matrices defined by

X;;>C for (i, pell*
X;j <—C for (i, jell” . (5
X =Y;; for (i, Jell*ull-

I:{XGRMXN

IT* and I1~ denote the index sets of positive and negative
clipped signals in X corresponding to the clipping rules x; >
C and x, < —C, respectively. Because X is not exactly low-
rank matrix even if x; satisfies (1) due to noise and because
the matrix rank minimization problem is NP hard in general,
the objective function of (4) is often relaxed by the nuclear
norm of X, and we can restore the signals by solving the
relaxed problem if (1) holds.

While the assumption described by (1) is tight, the au-
dio signals in a short time frame can be approximated by the
AR model, and therefore some low-rank approaches restore
clipped signals by dividing signals into multiple short time
frames and declipping each frames [6], [7]. However, the
quality of declipped signals in these approaches depends on
a frame length, and the best frame length is not constant but
time-variant in the assumption that the signals are modeled
by a single AR model in each frame. In order to achieve
high quality of signal declipping, this letter assumes that the
audio signals in each frame can be described by multiple AR
models and formulates a signal declipping problems as the
following multiple matrix rank minimization problem,

Minimize Y-, rank(D;X)

- L (6)
subjectto Y D=1, Die D, XeHNI,

where L is a given constant, D denotes a set of diagonal ma-
trices whose elements are 0 or 1, and / denotes the identity
matrix with a proper size. This problem recovers X by di-
viding its row vectors into L groups and minimizing a rank
of each matrix. If all entries of X are known, this prob-
lem is equal to the generalized principle component analysis
(GPCA) [8].
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3. Main Results

This section provides an algorithm for the multiple matrix
rank minimization problem and applies it to the audio de-
clipping. Prior to the discussion of the proposed method, in
3.1, we will introduce the iterative partially matrix shrink-
age (IPMS) algorithm in [9], in which the proposed method
is based. After that, in 3.2, we formulate the relaxed prob-
lem for (6) and provide an IPMS based algorithm.

3.1 TIterative Partially Matrix Shrinkage

Let us consider the following problem,
Minimize rank(X) subjectto X e HN 1. 7

Several algorithms have been proposed in order to solve
this problem, and one of the most widely used algorithms
is the nuclear norm minimization approach, which gives a
low rank solution by solving the following problem,

Minimize || X||. subjectto X € HN T, ®)

where || X]|. denotes the nuclear norm of X, that is, the sum of
its singular values. Instead of minimizing the nuclear norm,
the IPMS algorithm provides a low rank solution by approx-
imately solving the following the sum of non-dominant sin-
gular values minimization problem,

Minimize ||X||., subjectto X € H N T, )

where || X]|. - is the sum of non-dominant singular values of
X defined by using its ith biggest singular value o;(X) as
IXIl., = 2. oi(X). The IPMS algorithm solves (9) by
iterating the following update schemes,

Stepl Z — 7,,(X).
Step 2 X « Py (P (2)).

where 7., (X) denotes the partial soft thresholding operator
which replaces the ith singular values of X with max(o; —
A,0)fori > r+ 1, P and P4 denote orthogonal projections
onto J and H defined respectively by

C if(i,j)€H+/\Xi’j<C
_ ) C it pell” AX;;>-C
{PI(X)}i,j - Yi,j if (i, J)¢H+ ull- s
X;; otherwise

D=t j Xk
min(N,i+j—1,M+N—-i—j+1)
and {-}; ; denotes the (i, j) entry of a matrix. Since (9) re-
quires the value of r regarding with a matrix rank, the IPMS
estimates a matrix rank r during iterations by using the
scheme,

{‘P‘H(X)}i,j =

r < argmin o; s.t. 0; > a0,
;\

where @ < 1 is a given constant. The details of the IPMS al-
gorithm are written in [9], and its performance is also shown
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in [10] comparing with other algorithms.
3.2 Multiple Matrix Rank Minimization Algorithm

Next we focus on a multiple matrix rank minimization prob-
lem (6). The nuclear norm relaxation cannot work to solve
(6) because it holds that

L
D IDiXl >
i=1

that is, a solution is always equal to the nuclear norm relax-
ation problem for a single matrix rank minimization, and the
formulation using D; does not work better than that without
using D;. Hence this letter applies the relaxation used in the
IPMS algorithm and provides the following problem,

= [IX1l.,

*

Minimize Y%, IDXll...

- L (10)
subjectto Y Di=1,Die D, XeHNI,

which is a multiple matrix version of (9) with the constraint
for declipping problem. In order to obtain an approximate
solution, this letter relaxes this problem as follows,

Minimize  %E, {yillZill., +$11Zi— DiXI}

. - (11)
subjectto Y., D;=1,D;e D, X € HNI,

and provides the following scheme which updates Z;, D; and
X alternately,

Step 1 Zi — Ty DX) fori=1,2,... L.
Step2 {Dj-, « argmin Y-, |Z - DiX|
Dy,...D eD
subjectto X D; =1
Step 3 X « argminY’, IZ - DX|%
X

subjectto X e HN T .

In Step 2, the jth diagonal element (d?); of D; can be ob-
tained analytically by

L (k) x> <z(.i) X'>
d? ! L 12
@), = ( Z <x,,xj>] TPETR (12)

where (-,-) denotes the inner product, and x; and z(.i) de-
note jth row vector of X and Z;, respectively. The above up-
date scheme gives (d”); in [0, 1] not {0, 1}. To obtain (d?);
which is nearly eqaul to O or 1, we introduce a heuristic soft
shrinkage technique used in the sparse optimization. Let d;
to be a vector in RX whose ith element is (d));. Then d;
should be a sparse vector, and therefore this letter proposes
an additional update scheme to make d; sparse as follows,

® 5
@Y. &), &hx
@), max{O,L 1 Z o |

= (xj,x;)

13)

To satisfy the constraint Zf‘:l D; = I, we use a projection
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Algorithm 1: Audio declipping algorithm based on
IPMS

Input :Y,H NI {D}: @, Qpin, s AT, €, lnax
11«0
2 XY
3 repeat
4 Xold — X
5 a — max(a/na, amin)
6 fori=1to Ldo
7 [U,o1,02, 0N, V] « svd(D;X)
8 r; < argmin o; S.t. 0y > @0y
r
9 Zi « Tyao, (DiX)
10 end
1 for(z(/)e {1,2,---, L} x{1,2,--- ,N}do
12 dV);

| <z(lf) x/) <Z(') x/)
maX(O,z( ~Xia KeTEDY +<x! x5 T

13 end

14| (dD)) e~ (@d);) X, @d®); foralli, j

-1
15 | X (2, D?) (Zh Diz)
16 X — Pynr(X)
17 t—t+1

until || X — X4/ |IX||F < € OF tyay < L
Output: X

—
=]

defined as (d™); « (d™);/ Yf_,(d®); after obtaining D; by
(13). Note that the update scheme (13) does not always give
(d?); in {0, 1} while empirical results show that the number
of binary elements is increased by (13). Finally, a multi-
ple rank minimization based signal declipping algorithm is
obtained as shown in Algorithm 1. Algorithm 1 requires ini-
tial values of D; except to satisfy all D; = %I since there is
no update when the initial values of all entries (d”); satisfy
(d?); = 1/L. Because audio signals do not often switch
their AR model, random values are not suitable for initial
values of D;. This paper gives the initial values as the fol-
lowing window function, which changes smoothly accord-
ing to i and j.

(d<">)j=exp{ (;— ’_1)) 2 }

where o = 10/L, and then each initial value of {D, }L e
obtained by normalizing (d”); such that 3., (d?); = 1.

4. Numerical Examples

This section demonstrates numerical examples to show
the declipping quality of Algorithm 1 comparing with the
rank minimization approach using null space based alter-
nating optimization (NSAQO)[7], the orthogonal matching
pursuit (OMP) based algorithm [2] and persistent empir-
ical Wiener (PEW) algorithm [3]. In all examples, sig-
nals were range-normalized as max(Jyx]) = 1, and we
compare the performance using the clipping level C =
0.2,0.3,0.4,0.5,0.6,0.7,0.8. In Algorithm 1, each signal
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Mixed Speech @ 16kHz
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Fig.1  Average SNR of Algortithm 1 with L = 1,2,3,4,5 for 10 mixed
speech signals.

Single Speech @ 16kHz
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Fig.2  Average SNR for 10 single speech signals for clipping levels C =
0.2,0.3,---,0.8.

is separated into short-time frames (1024 samples) and re-
stored sequentially using 75% overlap with the previous
frame, and we use N = 128, @ = 1, @pin = 5.0 x 1073,
e = 1.01, 2 = 1.0x 107", 7 = 1.0x 107}, € = 1073
and £, = 3 x 10°. We utilize the speech data sets sam-
pled at 16kHz consisting of 5 different audio containing both
male and female voice, which are available at the web site’,
and the algorithms are evaluated by the signal-to-noise ratio
(SNR).

First we examined Algorithm 1 with L = 1,2,3,4,5.
Figure 1 shows the results of declipping 10 mixed speech
signals. We can see that multiple matrix rank minimization
achieves better performance than single matrix rank mini-
mization (L = 1) for almost all clipping levels and that the
best performance is achieved at L = 3. Next Algorithm 1
with L = 3 was compared with other algorithms, and Figs. 2
and 3 show the results of single speech signals and mixed
speech signals, respectively. As can be seen, the proposed
algorithm has a high accuracy for both the single and mixed
signals as compared to NSAO based algorithm and OMP
algorithm. Though PEW algorithm recovers single speech
signals the best of all, the proposed algorithm achieves the

Thttp://www.small-project.eu/software-data/
AudiolnpaintingToolbox.zip/view.html
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Mixed Speech @ 16kHz
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Fig.3  Average SNR for 10 mixed speech signals for clipping levels C =
0.2,0.3,---,0.8.

best declipping for mixed speech signals of 0.2 < C < 0.7.
These results indicate that the proposed algorithm works
well for declipping mixed signals. Because mixed speech
signals have less sparsity and because PEW algorithm uti-
lizes the sparsity of signals in the time-frequency its perfor-
mance for mixed speech signals is worse than that for single
speech signals.

5. Conclusion

This letter proposed a new AR model and matrix rank min-
imization approach to audio declipping problem. Assuming
that audio signals are modeled by multiple AR models, the
problem is formulated as a multiple matrix rank minimiza-
tion problem. To solve this problem, an iterative algorithm
was proposed based on the IPMS algorithm. Numerical ex-
amples show that the proposed algorithm can recover the
mixed speech signal efficiently.
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