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Learning Deep Relationship for Object Detection∗

Nuo XU†, Nonmember and Chunlei HUO†a), Member

SUMMARY Object detection has been a hot topic of image processing,
computer vision and pattern recognition. In recent years, training a model
from labeled images using machine learning technique becomes popular.
However, the relationship between training samples is usually ignored by
existing approaches. To address this problem, a novel approach is pro-
posed, which trains Siamese convolutional neural network on feature pairs
and finely tunes the network driven by a small amount of training samples.
Since the proposed method considers not only the discriminative informa-
tion between objects and background, but also the relationship between
intraclass features, it outperforms the state-of-arts on real images.
key words: object detection, Siamese convolutional neural network, re-
mote sensing images, relationship learning

1. Introduction

Object detection has historically been one of the most im-
portant topics in various domains, such as image processing,
pattern recognition, remote sensing, and so on [1]. In recent
years, satellite remote sensing has entered an unprecedented
new stage, and the improved spatial resolution images taken
by very high resolution satellites such as QuickBird 2 make
it possible to detect objects from satellite images.

Generally, object detection can be modeled as a clas-
sification problem, and it consists of two key steps: fea-
ture representation and feature classification [2]. Due to
the low separation between objects and background, detect-
ing objects from high resolution images is more difficult.
With the development of deep learning techniques, learning
features from data is promising for discriminating objects
from the clutter background. For instance, Cheng proposed
learning rotation-invariant HOG [3] and rotation-invariant
CNN(convolutional neural networks) [4] to describe objects.
Cao [5] tried to use the region-based CNN to detect aircrafts
under complex environments. Diao [6] suggested combin-
ing unsupervised feature learning and visual salience, where
feature learning is performed by deep belief networks.

Despite the novelties of existing approaches, most of
them rely mainly on the semantically-labeled data and ig-
nore the relationship between training samples, where the
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relationship means the similarity and difference between co-
herent training samples with respect to the labels and fea-
tures. To simultaneously improve the separability between
objects and background and uncover the subtle relationship
hidden between features, a novel object detection approach
is proposed in this paper. Compared with related works, the
novelty of the proposed approach lies in relationship repre-
sentation and deep relationship learning.

2. The Proposed Approach

The rationale of the proposed approach is to take advantage
of relationship representation to capture the difference be-
tween interclass features (i.e., objects and background) and
the similarities within intraclass features. Below, we will
elaborate the proposed approach step by step.

2.1 Relationship Representation

As stated before, one of key difficulties of object detec-
tion is the low separability between objects and background.
In other words, learning differences between interclass fea-
tures and learning similarities between intraclass features
are helpful for feature classification. However, traditional
object framework such as SVM focuses purely on maximiz-
ing differences between objects and background, and it ne-
glects the similarities within objects or background. For this
reason, we learn the relationship between feature pairs in-
stead of individual features.

Motivated by Siamese network [7], we use the label of
feature pair to describe the relationship between individual
features, and the relationship is learned by minimizing the
following contrastive loss function:

E =
1

2N

N∑

n=1

(zndn + (1 − zn)max(m − dn, 0)) (1)

Where dn = ‖an − bn‖22. N is the total number of train-
ing feature pairs. zn is the label of the paired data, zn = 1
means that the original features an and bn share the same
label, zn = 0 means an has different label with bn. m is a
margin, which is set to be 1.

Training feature pairs are generated by randomly com-
bining original training samples, i.e., pi j = (xi, x j, zi j),
where {(xi, li)} is the original training set, xi and li denote
the feature and label of the ith training sample, respectively.
zi j is determined by the consistency between li and l j, i.e.,
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Fig. 1 Siamese CNN for pre-training.

zi j = 1 if li = l j. It is worth noting the differences between
labels zi j and li, li means the feature xi is object or back-
ground, while zi j means whether xi has the same label with
x j. In other words, zi j contains the relationship about intra-
class similarity and interclass difference.

2.2 Deep Relationship Learning

In this paper, relationship learning is implemented within
deep learning architecture. As shown in Fig. 1, deep rela-
tionship learning network consists of two identical basic net-
works, each of which individually learns the features from
patches and shares the parameters. For convenience, we de-
scribe main operators as follows:

Xl = {Xl
v | v = 1, · · · , sl}, l = 0, · · · , r1

Xl
v = f1(

sl−1∑

u=1

(Xl−1
u ∗ Kl

uv)), l = 1, · · · , r1 (2)

Where Xl represents the output after the lth convolution
layer. f1(·) is ReLU operator, whose role is to learn sparse
features and remove the irrelevant noise. At the lth convolu-
tion layer, there are sl convolution kernel groups, and each
group has sl−1 convolution kernels Kl

uv of size 5× 5. Xl con-
tains sl maps Xl

1, X
l
2, · · · , Xl

sl
. In this paper, the deep network

consists of three (r1 = 3) convolution layers (CL).

xl = f2(wl · xl−1 + bl), l = r1 + 1, · · · , r2 (3)

After the pooling layer, two fully-connected layers
(FL) are stacked, whose neurons are 128 and 2 respectively.
The role of fully-connected layers is dimensionality reduc-
tion. The matrix Xr1 is reformulated to be the vector xr1 by
column-wise rearrangement as shown in Fig. 1. In Eq. (3),
f2 is an ordinary linear function, f2(x) = x. The outputs xr2

and yr2 are equivalent to an and bn in Eq. (1).
In this paper, a pair of 7 × 7 patches X0 and Y0 is used

as the input, and s0 = 3 represents RGB maps. s1, s2 and
s3 denote the number of convolution kernel groups at each
layer, and s1 = s2 = s3 = 24, which also represent the
number of convolution kernel groups at each layer.

The training procedure can be divided into two steps:
pre-training and fine-tuning [8]. Pre-training is trained on
feature pairs and solved by Adadelta [9] algorithm. As
shown in Fig. 2, fine-tuning is to adapt the pre-trained model

Fig. 2 Fine-tuning. Fine-tuning is performed on the original training
samples for object detection task.

Fig. 3 Training images and test images. (a) Some training images. (b)
Test images.

for original training samples {(xi, li)}. Cross Entropy loss
function is chosen for fine-tuning, and the parameters of
the CL in fine-tuning network are initialized by the ones
achieved in pre-training, while the parameters of FL are set
randomly. A smaller initial learning rate is applied on the
CL to adjust parameters progressively.

2.3 Object Detection

In object detection step, the patch feature centered at each
pixel in the test image is extracted, and its label is deter-
mined by the finely-tuned network. Since Siamese CNN is
trained on paired features, it is helpful for considering the
relationship between individual features and improving the
performance.

3. Experiments

3.1 Experiment Setting

Aircraft is one of the most important objects, and we eval-
uate the proposed approach in the context of aircraft detec-
tion. Training images are shown in Fig. 3 (a), which consist
of 17 pan-sharpened multispectral remote sensing images
with the size of 600 × 600 pixels. Test images consist of 5
remote sensing images of the same sizes.

To demonstrate the effectiveness of the proposed ap-
proach, three SVM-based approaches are used for compar-
ison: SVM [10], D-SVM (Doublet-SVM) [11], Fk-SVM
(FkNN-SVM) [12]. For these three approaches, DAISY [13]
feature is used since it’s a fast dense local image feature de-
scriptor. D-SVM is used to learn the shallow relationship
by a single-layer architecture, while Fk-SVM trains SVM
to learn the local spatial relationship. For convenience, the
proposed approach is abbreviated as SCNN.

To investigate how relationship learning help improve
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Fig. 4 Results comparison of different approaches. Results on the ith test image are shown in the ith
row. Column 1: Ground Truth, Column 2: SCNN, Column 3: CNN, Column 4: DeepDesc, Column 5:
GraphSeg, Column 6: SVM, Column 7: D-SVM, Column 8: Fk-SVM.

the performance, three other deep learning approaches are
also added for comparison:

1) CNN. Traditional CNN is used for feature learning
and feature classification. This approach is aimed at under-
standing the necessity of relationship learning.

2) DeepDesc. To illustrate the advantage of fine tun-
ing, a Siamese-like approach DeepDesc [14] is used to learn
discriminative features, and kNN is utilized to classify the
features.

3) GraphSeg. R-CNN [15] is utilized to detect the
bounding box of the object, and graph based image segmen-
tation algorithm [16] is applied to refine the object boundary.

3.2 Experiment Analysis

Since we model the object detection task as a classifica-
tion problem, we use the following four metrics to compare
the above methods quantitatively: Precision, Recall, CA
(Classification Accuracy) and F-measure. Results of differ-
ent approaches are shown in Fig. 4, and the performances
are listed in Table 1. From Table 1, it can be found that
SCNN achieves the best performance with respect to four
metrics. For instance, its average classification accuracy and
F-measure are 99.7% and 0.893, respectively, while aver-
age CA and F-measure of DeepDesc are 99.6% and 0.878,
which are inferior to SCNN.

For SVM-based methods, D-SVM and Fk-SVM
achieve higher Recalls than SVM, whose Recalls on IMG3
are 65.0%, 59.5% and 43.7%, respectively. D-SVM

achieved higher Recalls since it captured the relationship be-
tween features by feature couplets, while Fk-SVM improved
the performance by a local decision. Despite the advantages
of relationship learning in improving Recalls, many false
alarms are obtained, which can be observed from Fig. 4. The
underlying reason lies in the fact that the relationship cap-
tured by a single layer architecture is limited in reflecting the
fine structure between objects and background. However,
such subtle relationship is caught by deep learning. To un-
derstand how deep relationship learning improve the perfor-
mance, we analyze different approaches in detail by taking
IMG2 for an example. By comparing Fig. 4(b2), Fig. 4(g2)
and Fig. 4(h2), we find that many pixels are wrongly iden-
tified as the background by D-SVM and Fk-SVM, whose
Recalls are 56.2% and 58.4% respectively, which are signif-
icantly lower than SCNN, 97.2%.

Noting that GraphSeg is worst among deep learning ap-
proaches, the key reason is that R-CNN aims at detecting
the object’s bounding box and the performances are difficult
to improve even with the help of segmentation. As can be
seen from Fig. 4(e5), results obtained by GraphSeg are in-
consistent with the ground truths especially near the object
boundary. DeepDesc is similar to the pre-training step of
SCNN with respect to Siamese network, but SCNN outper-
forms DeepDesc definitely. For instance, their average F-
measures are 0.893 and 0.878, respectively. The reason lies
in the lack of fine-tuning. In detail, DeepDesc is promising
in obtaining discriminative features for patch comparison,
but for the pixel-wise feature learning and feature classifi-
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Table 1 Object detection performance comparison

Image Indicator SCNN CNN DeepDesc GraphSeg SVM D-SVM Fk-SVM

IMG1

CA 99.8% 99.8% 99.8% 99.7% 99.6% 99.5% 99.5%
Precision 89.5% 94.1% 91.5% 85.2% 86.9% 72.5% 71.1%

Recall 95.3% 87.6% 94.4% 89.8% 79.6% 85.3% 89.5%
F-measure 0.923 0.907 0.929 0.875 0.831 0.784 0.792

IMG2

CA 99.5% 99.5% 99.4% 98.9% 98.5% 98.5% 98.5%
Precision 79.9% 83.8% 76.1% 69.1% 67.8% 56.0% 57.2%

Recall 97.2% 92.1% 97.5% 71.1% 31.4% 56.2% 58.4%
F-measure 0.877 0.878 0.855 0.701 0.429 0.561 0.578

IMG3

CA 99.9% 99.8% 99.8% 99.6% 99.7% 99.6% 99.6%
Precision 79.6% 85.0% 78.9% 55.0% 74.4% 59.2% 58.8%

Recall 93.8% 79.9% 89.0% 55.9% 43.7% 65.0% 59.5%
F-measure 0.861 0.823 0.836 0.554 0.550 0.619 0.591

IMG4

CA 99.8% 99.8% 99.7% 99.4% 99.6% 99.5% 99.5%
Precision 84.1% 91.9% 83.6% 71.5% 72.0% 67.3% 67.3%

Recall 95.5% 86.4% 91.5% 71.8% 99.5% 99.2% 99.1%
F-measure 0.894 0.891 0.873 0.716 0.836 0.802 0.801

IMG5

CA 99.5% 99.1% 99.5% 96.6% 99.1% 98.8% 98.8%
Precision 86.8% 91.9% 86.3% 40.3% 74.1% 68.8% 67.8%

Recall 96.0% 70.7% 92.9% 75.2% 96.3% 98.3% 98.0%
F-measure 0.912 0.799 0.895 0.525 0.837 0.809 0.802

AVG

CA 99.7% 99.6% 99.6% 98.8% 99.3% 99.2% 99.2%
Precision 84.0% 89.3% 83.3% 64.2% 75.0% 64.8% 64.4%

Recall 95.5% 83.3% 93.0% 72.7% 70.1% 80.8% 80.9%
F-measure 0.893 0.860 0.878 0.674 0.697 0.715 0.713

cation problem, fine-tuning is important and necessary for
achieving accurate region shape.

The above comparisons demonstrate the importance of
three factors: relationship representation, deep learning and
fine-tuning. In other words, SCNN cannot obtain the best
performances if either factor is out of consideration.

4. Conclusion

In this paper, a novel object detection approach based on
deep relationship learning is proposed, which considers not
only the discriminative information between objects and
background, but also the relationship between training cou-
ples. Considering the importance of relationship represen-
tation and deep relationship learning, in the future work,
transductive Siamese CNN will be developed for semi-
supervised object detection.
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