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Encoding Detection and Bit Rate Classification of AMR-Coded
Speech Based on Deep Neural Network

Seong-Hyeon SHIN†, Woo-Jin JANG†, Ho-Won YUN†, Nonmembers, and Hochong PARK†a), Member

SUMMARY A method for encoding detection and bit rate classification
of AMR-coded speech is proposed. For each texture frame, 184 features
consisting of the short-term and long-term temporal statistics of speech pa-
rameters are extracted, which can effectively measure the amount of dis-
tortion due to AMR. The deep neural network then classifies the bit rate of
speech after analyzing the extracted features. It is confirmed that the pro-
posed features provide better performance than the conventional spectral
features designed for bit rate classification of coded audio.
key words: bit rate, speech codec, AMR, deep neural network, feature
vector

1. Introduction

In digital media communication and storage, a signal is typ-
ically processed by a codec in order to reduce the number of
bits. Accordingly, there exist many signal variations due to
various coding schemes. In order to investigate the coding
history of the signal, it is desired to detect whether a given
signal is an original or a coded signal, and to classify the
bit rate of the coded signal [1]–[4]. The encoding detection
and bit rate classification of coded signal can be used for
detecting signal splicing and fake-quality file, and for blind
assessment of signal quality [3].

Many methods for encoding detection and bit rate clas-
sification of audio signal have been reported [1]–[4]. They
use high frequency information and modified discrete cosine
transform (MDCT) coefficients as core features, because au-
dio codecs generally quantize the spectral information in
MDCT domain. These methods, however, cannot be ap-
plied directly to speech signal because of the different cod-
ing schemes between audio and speech codecs; the speech
codec quantizes the speech parameters and excitation sig-
nal [5]. Therefore, it is required to develop new features op-
timized for the bit rate classification of coded speech.

In this letter, we propose a method for encoding de-
tection and bit rate classification of coded speech based on
speech-specific features, in order to investigate the coding
history of speech. We consider only the Adaptive Multi Rate
(AMR) speech codec, since it is the most common codec in
speech communications [5]. The proposed method inputs an
AMR-coded speech signal without any coding information,
and classifies its bit rate into nine classes, where one class
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corresponds to the original and the remaining eight classes
correspond to eight different bit rates of AMR.

Based on the operation of AMR, we first develop fea-
tures specific to the bit rate classification of AMR-coded
speech, which consist of the short-term and long-term tem-
poral statistics of speech parameters. We then design two
classifiers based on deep neural network (DNN) [6]. Finally,
we measure the performance of the proposed classifiers and
compare it with that of the methods using the spectral fea-
tures designed for bit rate classification of coded audio.

2. Proposed Method of Bit Rate Classification

2.1 Features for Bit Rate Classifier

A key step in designing a classifier is to develop the features
that can effectively extract the core information that distin-
guishes the different classes. Figure 1 shows the overall pro-
cedure for computing the proposed feature vector. At the
first stage, the frame-based speech parameters are extracted,
where the sampling frequency is 8 kHz and the frame length
is 20 ms. Synchronization between the parameter frame and
the AMR frame is not conducted.

Since the spectral envelope of speech is distorted due
to codec, the frame-based linear predictive (LP) coefficients
and Mel-frequency cepstral coefficients (MFCCs) of the in-
put are first computed in order to model the amount of dis-
tortion. The order of LP analysis is 10, and the number of
LP coefficients and MFCCs is 10 and 12, respectively, where
the first component of MFCCs is not included. A frame-
based zero crossing rate (ZCR) of input is also computed.
Then, a 23-dimensional vector U f consisting of LP coeffi-
cients, MFCCs, and ZCR is determined as shown in Fig. 1,
where f is a frame index and the subscripts of [ ] refer to the
number of rows.

Next, the frame-wise LP-residual of input, also referred
to as a speech excitation, is computed using a 10-th order
LP filter. Ideally, the speech excitation has a flat spectral
envelope, but when it is incorrectly modeled due to a lim-
ited number of quantization bits, its flatness is degraded.
Hence, in order to independently model the spectral flatness
of speech excitation, the LP coefficients, MFCCs, and ZCR
of the LP-residual are computed and are denoted by another
23-dimensional vector, V f . For each frame, U f and V f are
merged into a 46-dimensional vector Z f , as shown in Fig. 1.

In order to analyze the temporal characteristics of sig-
nal distortion due to coding, the desired bit rate classifier
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Fig. 1 Procedure for computing the proposed feature vector Xk for each texture frame.

needs to model the temporal characteristics of the features.
A neural network with recurrent states, which is called a
recurrent neural network, can model the temporal character-
istics inside the network [7], but has difficulty in accurately
controlling the scale of temporal analysis and in providing
multiple time scales. Therefore, we adopt a strategy to ex-
tract the features representing the temporal properties of the
signal outside the neural network and then to input these
features into a feed-forward neural network [6].

To achieve this, at the second stage, the frame-based
vectors, Z f s, are aggregated into a texture frame consisting
of F frames, which corresponds to T = (F × 0.02) seconds.
As shown in Fig. 1, Z f s for the k-th texture frame are de-
noted by a 46 × F matrix, Φk. Then, the row-wise mean
and row-wise variance of Φk are computed, resulting in a
92-dimensional vector, Yk. Yk corresponds to the short-term
temporal properties because it represents the temporal statis-
tics inside the T -sec-long texture frame.

Finally, at the third stage, the difference in the Yk value
between the adjacent texture frames, Yk−Yk−1, is computed.
It corresponds to long-term temporal properties because it
represents the inter-texture-frame properties. Therefore, as
shown in Fig. 1, a 184-dimensional feature vector Xk for the
k-th texture frame is determined. For each texture frame, the
proposed classifier inputs Xk and outputs the bit rate class,
thereby working as a bit rate classifier every T seconds.

In the proposed method, LP coefficients are used in-
stead of line spectral pairs (LSPs) because LP coefficients
are more sensitive to changes in the spectral envelope than
LSPs. Then, small distortion of the spectral envelope causes
a large change in LP coefficients, which makes them per-
form bit rate classification better than LSPs. The pitch in-
formation, which is one of the major speech features, is not
included in the proposed feature vector, because the varia-
tion of pitch value between different bit rates is not signifi-
cant.

2.2 Deep Neural Network for Bit Rate Classifier

The proposed neural network has three hidden layers with
180, 45, and 30 neurons each, and uses a sigmoid activation
function [6]. When training the neural network, a dropout is
used to prevent overfitting [8].

We develop two classifiers based on two different
DNNs that perform different tasks for feature analysis, as
shown in Fig. 2. One classifier, denoted by CL-P, is based
on a DNN that outputs a class probability. This DNN, de-

Fig. 2 Overall structure of two proposed classifiers based on two differ-
ent DNNs.

noted by DNN-P, has nine output neurons and is trained to
map the input feature vector to a 9-dimensional probability
vector over nine classes at the output layer. In testing, DNN-
P computes the probability of each class at the output layer
and the class with the highest probability is selected as the
output bit rate class.

The other classifier, denoted by CL-S, is based on a
DNN that outputs a single score. This DNN, denoted by
DNN-S, has one output neuron and is trained to map the in-
put feature vector to nine uniformly-spaced discrete scores
between 0.0 and 1.0, corresponding to each class, at the out-
put layer. A maximum likelihood classifier is then designed
after estimating the conditional probability density function,
prob(S |C), of the score S at the DNN-S output for each class
C using the training data. In testing, DNN-S computes a
score S at the DNN-S output, and the class C with the high-
est prob(S |C) is selected as the output bit rate class. Both
networks, DNN-P and DNN-S, use the same features and
have the same structure, except for the number of output
neurons.

3. Performance Evaluation

For performance evaluation, we use the Texas Instruments
and Massachusetts Institute of Technology (TIMIT) speech
database (DB) [9], which consists of English sentences of
about 320 minutes. Each sentence in TIMIT is coded using
AMR with eight different bit rates, resulting in the final DB
consisting of the original and coded sentences of about 320×
9 = 2880 minutes. After deleting the mute periods, 70%,
15%, and 15% of the resulting DB are randomly selected
for training, validation, and testing, respectively.

The performance of classifier varies with the texture
frame length T , because T defines the scale of temporal
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Fig. 3 Mean accuracy of CL-P and CL-S as a function of T .

Table 1 Confusion matrix of the proposed 9-class classifier for T = 4.

statistics. Figure 3 shows the mean accuracy (MA) of the
two proposed classifiers over all nine classes as a function
of T . Based on the results in Fig. 3, we select T = 4 as the
final operating point, because both short texture frame and
high MA are desired for real applications.

Table 1 shows the performance of CL-P and CL-S for
T = 4 in more detail in the form of confusion matrices,
where the rows correspond to the true class and the columns
correspond to the estimated class. The class index C = 0 is
the original and 1 ≤ C ≤ 8 corresponds to 12.2 ∼ 4.75 kbps
in the order of descending bit rates. The MA, which corre-
sponds to the descending diagonal average of confusion ma-
trix, of CL-P and CL-S is 69.7% and 55.3%, respectively.
For both classifiers, the original class is almost perfectly
classified, which means that the proposed classifiers can dis-
criminate between the original and the coded speech.

To the best of our knowledge, studies on the bit rate
classification of AMR-coded speech have not yet been re-
ported. Hence, a direct comparison between the proposed
and the previous methods is impossible. We therefore con-
duct an indirect comparison using the conventional spec-
tral features originally designed for bit rate classification of
coded audio, such as MDCT features and discrete Fourier
transform (DFT) features. We input MDCT features and
DFT features to DNN-P in Fig. 2, respectively, and train
each DNN-P for bit rate classifier. In this way, the perfor-
mance difference by different features, while using the same
DNN-based classifier, can be measured.

Table 2 Confusion matrix of 9-class classifier using MDCT and DFT
features for T = 4.

MDCT features are computed as described in [3] af-
ter applying the necessary change due to different sampling
frequency. MDCT is applied to each 40ms-frame with 50%
overlap, resulting in 160 MDCT coefficients for each 20ms-
frame. Then, as in [3], the absolute average of each MDCT
coefficient over T seconds is computed. In addition, as in
[3], 12 MFCCs and their first and second derivatives are
computed and averaged over T seconds, resulting in addi-
tional 12× 3 = 36 features. In this way, a 196 (= 160+ 36)-
dimensional MDCT feature vector is obtained. Another
196-dimensional feature vector based on DFT is computed
in the same way as the computation of MDCT features, after
replacing MDCT with DFT.

In order verify our computation of the conventional
features, we first apply the MDCT features to the bit rate
classifier of AAC (advanced audio coding)-coded audio and
confirm that the MA of 92.3%, similar to [3], is achieved.
Next, we apply the MDCT and DFT features to the bit rate
classifier of AMR-coded speech for T = 4, and obtain the
confusion matrices shown in Table 2. MDCT and DFT fea-
tures can discriminate between the original and the coded
speech, but they are not capable of properly classifying the
bit rates because they cannot detect the slight distortion dif-
ferences between different bit rates. The results in Tables 1
and 2 confirm that the proposed speech-specific featrues
provide better performance in bit rate classifiction of coded
speech on average than the conventional MDCT and DFT
features.

The proposed feature vector Xk consists of various
types of parameters: short-term and long-term statistics of
LP coefficients, MFCCs, and ZCR derived from the input
and another set derived from the LP-residual of input. We
then evaluate the individual importance of each type of fea-
ture in order to confirm that all elements in Xk are required
to provide good performance. After deleting a subset of fea-
tures in interest from Xk, we re-train the network using the
modified Xk and measure its performance. The amount of
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Table 3 Mean accuracy of CL-P after deleting subset of features for T =
4.

Table 4 Confusion matrix of 4-class classifier for T = 4.

performance decrease then becomes a measure of the im-
portance of the corresponding feature subset.

Table 3 shows the MA of CL-P when each subset of
features is deleted, where the number in the parenthesis
shows the number of deleted features. For example, ‘LP-
resid(92)’ means that, when deleting 92 features derived
from the LP-residual of input, the MA decreases by 15.8%
points, which confirms the necessity for the LP-residual fea-
tures. From Table 3, therefore, we can conclude that there is
no redundancy in the proposed features and thus no subset
of features can be deleted to reduce the number of features
while maintaining the same performance.

The difference between the signal distortions in adja-
cent bit rates is very small, especially in low rates. There-
fore, the bit rate classification into nine classes might be too
strict. We therefore re-define four classes of bit rates: ORIG
(original) class corresponding to C = 0; H (high) class cor-
responding to C = 1 and 2; M (mid) class corresponding
to C = 3, 4, 5, and 6; and L (low) class corresponding to
C = 7 and 8. We then design two 4-class classifiers based
on DNN-P and DNN-S, as shown in Fig. 2, by re-training
the DNNs for 4-class classification. Table 4 shows the con-
fusion matrices of the resulting two 4-class classifiers, CL-P
and CL-S, for T = 4. Both have relatively high accuracy
compared to the 9-class classifier. CL-P is still superior to
CL-S on average, but the difference in performance between
the two classifiers decreases, compared to the 9-class classi-
fier, due to the fewer classes.

We also design a 4-class classifier based on DNN-P us-
ing MFCC and DFT features, and the performance is given
in Table 4. The proposed speech-specific features still pro-
vide better performance than the conventional MFCC and

DFT features.

4. Conclusion

A method is proposed for a bit rate classification of AMR-
coded speech. We develop new features specific to coded
speech that can effectively distinguish the different bit rates
of speech, which include the short-term and long-term tem-
poral statistics of LP coefficients, MFCCs, and ZCR. In this
way, for each texture frame, a 184-dimensional feature vec-
tor is defined. We design two bit rate classifiers based on
DNN that analyze the feature vector in a different way. It
is confirmed that the bit rate classifier using the proposed
features has better performance than that using MDCT and
DFT features designed for bit rate classification of coded
audio.
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