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End-to-End Exposure Fusion Using Convolutional Neural Network

Jinhua WANG"17 Member, Weiqgiang WANG', Guangmei XU'", and Hongzhe LIU ™", Nonmembers

SUMMARY In this paper, we describe the direct learning of an end-to-
end mapping between under-/over-exposed images and well-exposed im-
ages. The mapping is represented as a deep convolutional neural network
(CNN) that takes multiple-exposure images as input and outputs a high-
quality image. Our CNN has a lightweight structure, yet gives state-of-
the-art fusion quality. Furthermore, we know that for a given pixel, the
influence of the surrounding pixels gradually increases as the distance de-
creases. If the only pixels considered are those in the convolution kernel
neighborhood, the final result will be affected. To overcome this problem,
the size of the convolution kernel is often increased. However, this also
increases the complexity of the network (too many parameters) and the
training time. In this paper, we present a method in which a number of
sub-images of the source image are obtained using the same CNN model,
providing more neighborhood information for the convolution operation.
Experimental results demonstrate that the proposed method achieves better
performance in terms of both objective evaluation and visual quality.

key words: exposure fusion, convolutional neural networks, fusion rule,
activity level measurement

1. Introduction

Digital cameras have a limited dynamic range that is lower
than that in real-world environments. In high-dynamic-
range (HDR) images, a bracketed exposure sequence can
obtain the full dynamic range of the real scene. Fusing
the multiple-exposure sequence into a high-quality image
(called exposure fusion) has received considerable attention
from the research community. There is another way to ob-
tain the HDR scene information. This involves recovering a
camera-specific response curve through multiple-exposure
images and their exposure times, and obtaining a scene-
related radiance map [1]. However, in most situations, the
exposure time is unknown. Moreover, the intensities must
be remapped to match the low dynamic range of the display
device through a process called tone mapping [2]. In this
paper, we focus on the first technique and propose a novel
exposure fusion method that gives high-quality images of
HDR scenes.

In the field of multi-exposure fusion, convolutional
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neural networks (CNNSs) can be used to determine both the
activity level measurement and fusion rule [3]. The frame-
work shown in Fig. 1, is not an end-to-end fusion mecha-
nism. The input is two image blocks of known size, and
the network outputs two weight values of the corresponding
blocks that determine the fusion process. To maintain more
details of the scene, post-network segmentation and consis-
tency verification steps are usually added, which greatly in-
creases the complexity of the algorithm. Furthermore, the
fusion framework can only fuse two images, and is not suit-
able for multi-exposure fusion processing. To solve these
problems, this paper describes an end-to-end fusion strat-
egy (EFCNN) in which the input is a sequence of multiple-
exposure images. After passing through the convolution
network, the fusion image is obtained directly, without the
need for subsequent processing. The learnt mapping is rep-
resented as a deep CNN that takes multiple-exposure images
as input and outputs a high-quality image. Our deep CNN
has a lightweight structure, yet demonstrates high fusion
quality. Furthermore, we know that for a given pixel, the in-
fluence of the surrounding pixels gradually increases as the
distance decreases. If the only pixels considered are those
within the convolution kernel neighborhood, the final result
will be affected. To overcome this problem, previous meth-
ods have simply increased the size of the convolution kernel,
which increases the complexity of the network (too many
parameters) and the training time. This paper presents a
novel technique whereby we obtain a number of sub-images
of the sources using the same model, providing more neigh-
borhood information for the convolution operation.

The remainder of this paper is organized as follows.
Some related work is discussed in Sect.2. Section 3 pro-
vides a detailed explanation of our proposed method. Exper-
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Fig.1  Conventional fusion framework using deep convolution network.
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imental results and performance evaluations are presented in
Sect. 4. Section 5 concludes the paper.

2. Related Work

A number of multi-exposure fusion methods have been
proposed. Mertens et al.[4] presented a method to fuse
multiple-exposure images based on processing separate
Laplacian pyramids in the R, G, and B channels. The re-
sults contain brightness changes that are not consistent with
the original source images. These are caused by significant
changes in brightness among images with different exposure
times. Goshtasby [5] proposed an exposure fusion method
from multiple-exposure images of a static scene. His ap-
proach blends the image blocks from a specific domain by
selecting uniform image blocks that contain the most use-
ful information. Because a block may span different ob-
jects, this approach cannot handle object boundaries. Gu
et al. [6] proposed a gradient field multi-exposure image fu-
sion method for HDR image visualization. The advantage
of this method is its computational efficiency and robust-
ness. Only two parameters are used, and they can generally
be set to default values. However, the metric to measure the
distance between intensities should be improved to reduce
the need for tedious gradient modification. Song et al.[7]
synthesized an exposure fusion image using a probabilistic
model that preserves the luminance levels and suppresses
reversals in the image luminance gradients. Shen et al. [8]
proposed a novel hybrid exposure weight measurement that
is guided not only by a single image’s exposure level, but
also by the relative exposure level among different exposure
images using a boosting Laplacian pyramid.

3. Convolutional Neural Networks for Exposure Fu-
sion

In the proposed method, we use the CNN to achieve end-
to-end exposure fusion. “End-to-end” means that, through
the network operation, a fused image is directly generated.
Given the multiple-exposure fusion images denoted as Y,
our goal is to recover an image F(Y) that is as similar as
possible to the ground truth image X. We use the CNN to
learn the mapping F that denotes the relationship between
under-/over-exposed images and the standard-exposure im-
age. An overview of the network is depicted in Fig. 2.

We first describe the process of the framework (denoted
by the black line in Fig.2): 1) Obtain gray images of the
input multiple-exposure images and denote them as Y. From
Fig. 2 we can see that the gray images of the source images
are served as input for the network, and the output of the
network is the gray image. How to obtain the color resulting
image, the traditional methods usually deal with the R, G, B
channel separately. In our method, we use the strategy in our
former work presented in Ref. [10] to obtain the color fusion
resulting image. 2) The first convolution layer is expressed
as an operation F1:

Fi(Y) = max(0, W; =Y +B)) (D)
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Fig.2  Our framework of the end-to-end exposure fusion method.

where W| and B, denote the filters and biases, respectively.
W is an f; X f; convolution kernel filter with n; elements,
where fj is the spatial size of the filter. We can see that
the first convolution layer uses W; to apply n; convolu-
tions to the image, and each convolution has a kernel size
of fi X fi. The output is composed of n; feature maps. Bj is
an n;-dimensional vector in which each element is the bias
of the corresponding filter. The commonly used Rectified
Linear Units (ReLU) are adopted for the filter responses,
making the convergence much faster while still presenting
good quality. 3) The first layer extracts an n;-dimensional
feature. In the second operation, we map each of these n;-
dimensional features into an n,-dimensional feature. The
formula is defined as:

F>(Y) = max(0, W, = F1(Y) + B») 2)

where W, is an f, X f> convolution kernel filter containing
ny X ny elements. B, is an n,-dimensional vector in which
each element is the bias corresponding to a filter in this layer.
4) The last operation occurs in the reconstructive layer. In
traditional methods, the final image is often averaged by the
n, feature maps. The averaging can be considered as a pre-
defined filter on a set of feature maps, that is, the weight is
same for all inputs. This may lead to a “flattening” of the
final fused image. In our method, we define a convolution
layer to generate the final fused image. The formula is de-
fined as:

F(Y) = W3 x Fo(Y) + B3 3

where W is f3 X f5 convolution kernel filter with n, number.

To learn the end-to-end mapping function F, the pa-
rameters ® = {W;, W,, W3, By, B,, B3} must be estimated. In
our method, this is achieved by minimizing the loss between
the fused images F(Y;®) and the corresponding ground
truth images X (standard exposure illumination). Given a set
of training images, we use the Mean Squared Error (MSE)
as the loss function:

1 n
L©) = ~ Y IF(Y; ) - X @)
=
where n denotes the number of training samples.

To examine the performance of our method, training
examples are generated from the images in the ILSVRC
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2012 validation image set, which contains 50,000 high-
quality natural images. To obtain under-exposed images
from this image set, we select random numbers between 0.4
and 1 to rescale the pixel intensity, and multiply the natural
image by the number. In the same way, we select random
numbers between 1.2 and 1.8, and multiply the natural im-
age by this number to obtain over-exposed images. For each
under-exposed/over-exposed image and the natural image,
we randomly sample pairs of 33 x 33 patches. Thus, we
obtain a total of 744,175 pairs of patches from the training
set.

The loss function defined in Eq. (4) is minimized using
stochastic gradient descent. In our training procedure, the
batch size is set to 128 and the weight decay and momen-
tum are set to 0.0005 and 0.9, respectively. The weights are
updated using the rule:

19,'+1 = 0.9'19,'—0.0005‘(1'11),‘—(1'88—“[;, Wiyl = w,-+19,»+1 (5)
1

where ¥ is the momentum variable, i is the iteration num-
ber, « is the learning rate, L is the loss function, and dL/0w;
denotes the derivative of the loss with respect to the weight
at w;. We train the model using the popular deep learning
framework Caffe [9]. The learning rate is equal for all lay-
ers and is initialized as 0.0001 as Ref. [3].

According to the design of the network described
above, the process of the black arrow in Fig.2 shows that,
with different exposures of the image sequence through the
network, we can reconstruct a fusion image. However, in
the convolution process, each pixel is computed using the
pixels within the convolution kernel. To simplify the de-
scription, we use the top part in Fig.3 to denote an image
of size 16 x 16. For a given pixel, shown in the red box, if
we use a convolution kernel of size 3 X 3, only the pixels on
the side of the black box are calculated in the convolution
process. For a given pixel, the influence of the surrounding
pixels gradually increases as the distance decreases. If only
the pixels in the convolution kernel neighborhood are con-
sidered, the final result will be affected. To overcome this
problem, previous methods increase the size of the convolu-
tion kernel, but this increases the complexity of the network
(too many parameters) and the training time. In the pro-
posed method, we first sample the original image to obtain
a number of sub-images, thus providing more neighborhood
information for the convolution operation. For example, we
down-sample the original image of size N, and obtain N2
sub-images. To simplify the description, take N = 2 as an
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example. As shown in the bottom part of Fig. 3, we have the
four sub-images denoted by different colors. For the same
pixel shown in the red box in the yellow sub-image, the con-
volution operation is applied to pixels 1-8 in the original im-
age. This increases the influence of the neighboring pixels
corresponding to the inside of the box in the original image.
As N increases, the influence of neighborhood pixels can
be further enhanced, and the design of the network will not
be affected. As shown in Fig. 2, we obtain four fused sub-
images, and combine these to give the fused image. The
fused image is obtained by convolution using neighborhood
pixels that are far away (with a tentative weight of 0.3) and
the fused image using the original sequence (with a tentative
weight of 0.7). Using the two fused images, we obtain the
final resulting image.

4. Experiments

Three objective criteria were used to quantitatively evaluate
the performance of the exposure fusion methods. The first
criterion is mutual information (MI), defined as the sum of
mutual information between each input image and the fused
image. The second criterion is Q*5--%/F which measures
the amount of edge information transferred from the source
images to the fused image. The third criterion is entropy,
which measures the overall information in the fused image.
Reference [10] provide more details on these criteria.

We use the “grandcanal” source exposure images to
verify the effectiveness of EFCNN. A visual comparison is
shown in Fig. 4. The top row shows the source images, im-
age (B) is that obtained by the method in [4], image (C) is
that obtained by the method in [5], and image (D) is that
obtained by the proposed EFCNN with sampling. We can
see that there is a brightness change in images (B) and (C),
obtained by the methods of [4] and [5], respectively. Al-
though more cloud details can be seen, significant chromi-
nance information has been lost. As a whole, images (B)
and (C) look a little unnatural to the human eye. Image (D),
obtained by EFCNN, provides a warm perception, although
some details of the clouds in the sky have been lost.

To demonstrate the effectiveness of the EFCNN sam-
pling strategy in preserving more details of the source im-

Fig.4  Comparison with typical exposure fusion methods. (A) Source
images, (B) Mertens et al. [4], (C) Goshtasby [5], (D) EFCNN with sam-
pling. Images courtesy of HDRsoft.
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Fig.5  Source images to verify the sampling strategy of the EFCNN.

Table1  Comparison results for Q4-5--#/F ' MI, and Entropy for
validating the effectiveness of sampling in EFCNN.

Image Method (0] MI Entropy

Fig.5 | Without_sampl EFCNN | 0.4639 | 10.6545 | 7.3603
Fig.5 With_ sampl_EFCNN 0.4876 | 11.2966 | 7.4078

Fig.6  Comparison results with tone-mapping operators. (A) Source im-
ages, (B) Fattal, (C) Drago, (D) Krawczyk, (E) Ashikhmin, (F) Reinhard,
(G) EFCNN with sampling. Images courtesy of Cadik et al. [2].

ages, the Q4B-+%/F MI, and Entropy criteria using five
source images in Fig.5 are computed for the fused results
obtained by EFCNN with sampling and without sampling.
The statistical quantitative results are presented in Table 1.
It is clear that the EFCNN with sampling provides bet-
ter fusion performance in terms of the quantitative criteria.
The Q45+#/F value of EFCNN with sampling is 0.4876,
whereas that without sampling is 0.4639. The M value of
EFCNN with sampling is 11.2966, compared with 10.6545
without sampling. The Entropy value of EFCNN with sam-
pling is 7.4078, which is again better than the value of
7.3603 achieved by EFCNN without sampling. Based on
the above analysis, we can see that the proposed sampling
strategy is effective for preserving more details.

Similar to the proposed method, the aim of tone map-
ping is to acquire high-quality images for display on ordi-
nary devices. In Fig.5, the results of our proposed EFCNN
are compared with the output from some typical tone-
mapping methods. The results obtained by Fattal (B), Drago
(C), Krawczyk (D), Ashikhmin (E), and Reinhard (F), as
summarized by Cadik et al. [2], are used as representative
tone-mapping methods. We can see from Fig. 6 that im-
age (B) has lost some local contrast, resulting in an image
that looks unnatural to the human eye. Image (C) is washed
out and some chrominance information has been lost. In
image (D), certain details of the books behind the lamp in
the background are not visible. Reinhard et al.’s method
(F) generates quite similar results to image (E), obtained by
Ashikhmin, in terms of contrast and detail preservation. We
can see that some details in images (E) and (F) have been
lost compared to image (G), obtained by EFCNN with sam-
pling. We also provide a quantitative comparison of the im-
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Table 2  Entropy comparison between EFCNN and tone mapping
methods.
Image ®B) © D) ®) & (&)

Entropy | 6.3108 | 7.3101 | 6.6746 | 6.8799 | 7.3115 | 7.4755

ages in Fig.5 to demonstrate the performance of EFCNN
with sampling. However, criteria Q4% and MI are
input-related, and the inputs for exposure fusion and tone
mapping are different. Thus, we use the Entropy criterion,
which is not related to the input, to validate the effectiveness
of our method. The resulting values for Entropy are pre-
sented in Table 2. From this table, we can see that EFCNN
is competitive with other typical tone-mapping methods in
terms of detail preservation.

5. Conclusion

In this paper, we have described the use of CNNs to learn an
end-to-end exposure fusion model. The image feature repre-
sentation and fusion rules are obtained simultaneously using
the learning approach. To preserve more details, we have
proposed a technique that uses more neighborhood pixels
to calculate the convolution without changing the network
structure. Experiments show that the method is comparable
or even better than existing exposure fusion methods.
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