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On Random Walk Based Weighted Graph Sampling

Jiajun ZHOU†a), Member, Bo LIU†, Lu DENG†, Yaofeng CHEN†, and Zhefeng XIAO†, Nonmembers

SUMMARY Graph sampling is an effective method to sample a repre-
sentative subgraph from a large-scale network. Recently, researches have
proven that several classical sampling methods are able to produce graph
samples but do not well match the distribution of the graph properties in the
original graph. On the other hand, the validation of these sampling methods
and the scale of a good graph sample have not been examined on weighted
graphs. In this paper, we propose the weighted graph sampling problem.
We consider the proper size of a good graph sample, propose novel meth-
ods to verify the effectiveness of sampling and test several algorithms on
real datasets. Most notably, we get new practical results, shedding a new
insight on weighted graph sampling. We find weighted random walk per-
forms best compared with other algorithms and a graph sample of 20% is
enough for weighted graph sampling.
key words: weighted graph sampling, graph mining, graph scale

1. Introduction

Various types of networks such as online social networks
(OSNs), peer-to-peer networks (P2P) and World Wide Web
(WWW) have drawn much attention from researchers of dif-
ferent domains, including psychology, mathematics, social
science, computer science and behavioral science. Many
types of networks are formalized as graphs so that numerous
researchers are familiar with graph computing and graph-
based analysis. However, in some scientific and industrial
domains, the scale of graph is so large that it is difficult
to handle such a large graph within limited time. With the
increase of the graph scale, the number of computing re-
sources increases at the same time. It is not advisable to
purchase computing resources for any data analysis prob-
lem. On the other hand, time efficiency is also a main con-
cern in graph-based analysis problem. In most cases, the
size of graph is too large to get the accurate result to meet
the time requirement.

Graph sampling techniques [1], [2], [4], [6], [7], [11]
spring up to handle the abovementioned problem. Recent
researches mainly focus on unweighted graph, investigating
an effective approach to sample graph. However, weighted
graph sampling still remains unsolved with less attention be-
cause each edge in weighted graph is assigned to a numeric
weight. On the other hand, weighted graph sampling is dif-
ferent from unweighted graph sampling. The existence of

Manuscript received August 14, 2017.
Manuscript revised October 3, 2017.
Manuscript publicized November 1, 2017.
†The authors are with College of Computer, National Univer-

sity of Defense Technology, Changsha, 410073, China.
a) E-mail: zhoujiajun@nudt.edu.cn (Corresponding author)

DOI: 10.1587/transinf.2017EDL8179

edge weight changes the graph property distribution of orig-
inal graph. The unweighted graph sampling techniques are
no longer suitable to sample weighted graph for the incon-
sistency of the graph property distribution between sample
graph and original graph. Our work provides a perspective
view of graph sampling techniques, introduces a weighted
graph sampling problem and explore the applicability of
sampling algorithms to deal with that problem.

In this paper, we consider a weighted graph sampling
problem. Given a large weighted graph, our goal is to get
a representative weighted sample graph that have similar at-
tributes. Our sample graph should hold the properties of the
original graph and be similar to the original graph as much
as possible. To be more specific, the distance between the
graph property distributions of original graph and sample
graph is expect to be as small as possible.

In this work, we answer the questions that what is the
scale of a good weighted graph sample and how to evalu-
ate the performance of a weighted graph sample. We for-
malize the problem of weighted graph sampling. The sam-
pled weighted graph should have similar graph properties
as the original graph. We consider edge weight and node
weight as the evaluation metric for the uniqueness compared
with unweighted graph. The other interesting metrics such
as degree and average path length are omitted in this pa-
per due to the page limit and computation cost. We take
Kolmogorov-Smirnov Test as evaluation method and evalu-
ate several algorithms over a real weighted graph collected
by other researchers [10]. We find Weighted Random Walk
outperforms much than any other algorithms in all metrics
introduced in this paper.

An overview of our contributions is presented as fol-
lows.

• We present a weighted graph sampling problem of
sampling representative subgraph from a given large-scale
graph.
• As for the weighted graph sampling problem, we give a

thorough and complete analysis on several algorithms, test-
ing the performance on real datasets, with graph properties
of edge weight and node weight.
• We perform a systematic evaluation of sampling algo-

rithms, introducing Kolmogorov-Smirnov test to character-
ize the similarity of graph property distribution between the
original graph and the sampled graph.
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2. Weighted Graph Sampling

2.1 Problem Definition

Let G = <V,E,W> be an undirected and weighted graph
with |V| = n nodes and |E| = m edges. V = <vi> is the
vertex set where each vi is a vertex in the graph. E = <ei j>
is the edge set where ei j is an edge connected with vertex vi

and v j. Each edge ei j is undirected. To simplify it, we view
edge ei j and e ji as the same edge in our problem. For each
weight wi j ∈ W, wi j is the weight assigned to the edge ei j.

Given a large weighted graph, our primary goal is to
obtain a representative weighted sample graph that have
similar attributes through a specific sampling algorithm on
an original graph. Our sample graph should hold the graph
properties of the original graph and be similar to the original
graph as much as possible. To be more specific, the distance
between the graph property distributions of original graph
and sample graph is expect to be as small as possible. The
smaller the distance is, the better the sample graph is. Take
edge weight as an example. A good sampled graph is that
the edge weight distribution of which is similar to the edge
weight distribution of original graph so that the graph prop-
erties are kept through effective sampling methods. We note
that unweighted graph sampling is different from weighted
graph sampling. As mentioned in [8], the edge selecting
probability distribution on unweighted graph is πunweighted =

1/ |E|. However, the edge selecting probability distribution
on weighted graph is πweighted = wei j/

∑
e∈E we. The selecting

probability is thus changed for the edge weight.

2.2 Sampling Algorithms

Many researchers have concentrated on simple graph sam-
pling to improve efficiency and obtain a more similar sample
graph. However, few works pay attention to weighted graph
sampling, which still remains unsolved. The performance of
these simple graph sampling algorithms on weighted graph
has not been validated. Weighted graph is different from
simple graph for it contains edge weight. Here we describe
some classical simple graph sampling algorithms and their
variant.

Independent Edge Sampling (IES): Independent
Edge Sampling is an intuitive method to achieve a uni-
form distribution of edge weights. Consider an edge set
E, independent edge sampling randomly selects an edge
with replacement and with probability proportional to the
edge weight. The distribution of sampled edge weight from
weighted graph is equivalent to the distribution of edge
weight from original graph, which is

πei j =
wei j∑
e∈E we

(1)

For an unweighted graph, each edge weighted is equiv-
alent. Then, the selecting probability of all edges from the
same node are the same. It is explicit that the unweighted

version is a variant of the weighted version. Thus, the dis-
tribution of sampled edge weight from unweighted graph is
equivalent to the reciprocal of the edge number, denoted as

πei j =
1
|E| =

1
m

(2)

Breadth-First Search (BFS): Breadth-First Search [2]
is commonly used in web search, exploring edges in a sys-
tematic way. BFS starts from the seed node and expands
by the boundary between explored nodes and unexplored
nodes at each iteration. Each neighbor node of current node
is explored before moving to next level. A traverse tree is
then generated consisting of all nodes within certain dis-
tance from the seed node.

Random Walk (RW): Random Walk [7] randomly se-
lects a node with equal probabilities. The neighbors of the
current node are all candidate nodes to be selected. Con-
sider a node v with n neighbors and next-hop node w, the
transition probability from v to w is

pvw =
1

deg (v)
(3)

Note that deg(v) is the node degree of node v. As our
problem only exists in undirected graph, it is no need to
make distinctions between out-degree and in-degree.

Metropolis Hastings Random Walk (MHRW):
Metropolis Hastings Random Walk [4] is an unbiased al-
gorithm on unweighted graph. The algorithm takes proper
transition probability so that the walk can obtain a desired
uniform distribution of node degree. We view node v as cur-
rent node and node w as the next node to be selected. Then,
the transition probability is noted as:

pvw = min

(
1

deg(v)
,

1
deg(w)

)
(4)

Weighted Random Walk (WRW): Weighted Random
Walk [12] is a variant of random walk. Different from ran-
dom walk, weighted random walk select next-hop node w
from current node v with unequal probabilities. Consider an
edge evw connected with node v and node w, the edge weight
is defined as wvw. The node weight is the sum of all the con-
nected edge weights. For example, the node weight of node
v is illustrated as wv. The transition probability from v to w
is

pvw =
wvw

wv
=

wvw∑
u∈neighbor(v) wvu

(5)

3. Experiment Evaluation

3.1 Dataset Description

We use a real world weighted graph as our experiment
dataset, which is the HEP-TH network collected by M.
Newman [10]. The HEP-TH network is a collaboration net-
work scientists posting preprints on the high-energy the-
ory archive. Table 1 summaries the basic statistics of the
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Table 1 Basic statistic of HEP-TH network.

weighted graph used in our experiment.

3.2 Performance Metrics

To effectively evaluate the efficiency of several algorithms,
we adopt Kolmogorov-Smirnov Test to examine algorithm
performance metrics.

Kolmogorov-Smirnov Test. The K-S test [9] named af-
ter two Soviet mathematicians Kolmogorov and Smirnov is
a nonparametric test, qualifying the distance between the
empirical distribution function of the sample and the cumu-
lative distribution function of the reference distribution. To
compare the sampling result, we use K-S test to compute the
vertical distance between two distributions, where FS and
FR represent sample distribution and reference distribution.
The equation is denoted as

KS (FS , FR) = max |FS (x) − FR(x)| (6)

3.3 Experimental Results

Compared with unweighted graph, weighted graph is differ-
ent in that edges in weighted graph are assigned with multi-
ple labels or attributes. We use four algorithms to sample the
whole graph. As mentioned in [6], 15% sample is enough to
match the properties of the original unweighted graph. We
sample the graph six times in each algorithm. But the scale
of sampled weighted graph is to be examined, which is the
sampling ratio here. The sampling ratio is the percentage
of the number of sampled edges compared with the original
graph. In each step, edges are selected by different sampling
algorithms. The nodes connecting to the edge at both ends
are also collected to form the subgraph to further examine
the graph properties. We use each algorithm to sample the
graph on a scale of 10% to 60%. Then, we have six differ-
ent subgraph in different scale for each algorithm and four
subgraph in the same sampling ratio.

To examine the performance of our algorithm, we eval-
uate several sampling algorithms on real datasets in terms
of the distribution of edge weight and node weight. We
use Independent Edge Sampling (IES) as ground truth, ran-
domly selecting an edge with the probability proportional to
its weight. The algorithm can achieve a subgraph with uni-
form and stationary distribution of edge weight from orig-
inal graph, which we explain it in Sect. 2.2. Moreover, in
some circumstance, when the entire graph is not accessible,
like crawling the whole graph, IES is an effective method to
examine the efficiency of crawling algorithm.

In each sampling ratio, a subgraph is obtained. We

Fig. 1 Edge weight KS value

Fig. 2 K-S test

compute the distribution of graph properties from diverse
subgraphs by different sampling algorithms. We compare
the graph properties of the subgraphs generated by specific
algorithm in the same scale with the subgraph by IES. Then,
we compute edge weight distribution and node weight dis-
tribution to test the efficiency.

• Edge weight distribution: Figure 1 demonstrates the
K-S test of edge weight distribution. For each algo-
rithm, the K-S test value of the edge weight distribu-
tion is explicitly performed on the plot. We noted that
RW performs a similar results as MHRW. The average
KS values of RW and MHRW are 0.424 and 0.426 sep-
arately, reflecting that RW and MHRW are biased on
weighted graphs due to the high KS value. BFS get
the second lowest KS value, the mean value of which
is 0.259. However, as the sampling ratio increases, the
KS value of BFS increases. BFS is not a desired algo-
rithm in our problem. In contrast, WRW performs best
in compare with other sampling methods. The average
KS value is 0.021. This is a remarkable result for the
distance of the edge weight distribution is extremely
low when compared with the ground truth.
• Node weight distribution: As depicted in Fig. 2, the

KS value from different sampling scale by diverse sam-
pling algorithms are plotted as lines. Similar with edge
weight distribution, RW and MHRW perform the simi-
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lar results, the average KS value of which are 0.385 and
0.413 respectively. The KS values are relatively high so
that RW and MHRW are not suitable to our weighted
graphs sampling problem. There is an obvious raise in
the line of BFS. The result do not converge to a stable
value but increase from 0.26 to 0.45. It is useless to ob-
tain an un-convergent result. WRW is clearly the most
accurate in preserving node weight distribution. The
mean KS value from WRW is 0.157.

In summary, these results show that WRW is the
most accurate algorithm in maintaining graph properties on
weighted graphs. For the edge weight, the results of WRW
do not reflect direct connection to the sampling ratio. For the
node weight, it seems that 20% of original graph from WRW
is the most suitable sampling scale for weighted graph sam-
pling. The main reason may be that WRW considers the
effect of edge weight which other algorithms neglect. More-
over, WRW selects edges with the probability corresponding
to the probability distribution of edge weight. The wrong
edge selecting probability is the core of poor performance.

4. Conclusion

Much efforts have been put on unweighted graph sampling
techniques. However, it is important to examine the effec-
tiveness of sampling techniques on weighted graph. When
given a large-scale network, it is hard to analyze such a huge
network by the limit of computing efficiency and computing
resources. In this paper, we detail a weighted graph sam-
pling problem of sampling representative subgraph from a
given large-scale weighted graph. Although there are a few
sampling algorithms on unweighted graph, the accuracy of
these algorithms is unknown in preserving graph properties.
We provide a new approach to examine the efficiency of
sampling algorithms on weighted graph. We numerate a
variety of sampling algorithms and evaluate them on real
weighted graph. The result is interesting. Weighted Ran-
dom Walk yields samples that better match the distributions

of graph properties in the sampled graphs with those of the
original graph. Moreover, we find that a 20% sample is
enough to preserve graph properties in weighted graphs.

References

[1] A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, and B.
Bhattacharjee, “Measurement and analysis of online social net-
works,” Proceedings of the 7th ACM SIGCOMM conference on In-
ternet measurement, San Diego, California, USA, pp.29–42, 2007.

[2] J.D. Wendt, R. Wells, R.V. Field, and S. Soundarajan, “On data
collection, graph construction, and sampling in Twitter,” 2016
IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM), pp.985–992, 2016.

[3] M. Najork and J.L. Wiener, “Breadth-first crawling yields high-qual-
ity pages,” in Proceedings of the 10th international conference on
World Wide Web, Hong Kong, Hong Kong, pp.114–118, 2001.

[4] X. Wang, R.T.B. Ma, Y. Xu, and Z. Li, “Sampling online social
networks via heterogeneous statistics,” Computer Communications
(INFOCOM), 2015 IEEE Conference on, pp.2587–2595, 2015.

[5] M. Gjoka, M. Kurant, C.T. Butts, and A. Markopoulou, “Prac-
tical recommendations on crawling online social networks,” Se-
lected Areas in Communications, IEEE Journal on, vol.29, no.9,
pp.1872–1892, 2011.

[6] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” Pro-
ceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, Philadelphia, PA, USA,
pp.631–636, 2006.

[7] J. Lu and D. Li, “Sampling online social networks by random walk,”
Proceedings of the First ACM International Workshop on Hot Top-
ics on Interdisciplinary Social Networks Research, Beijing, China,
pp.33–40, 2012.

[8] D. Aldous and J.A. Fill, Reversible Markov Chains and Random
Walks on Graphs, 2002.

[9] A.N. Kolmogorov, “Sulla Determinazione Empirica di una Legge
Distribuzione,” Ist Ital Attuari, 1932.

[10] M.E.J. Newman, “The Structure of Scientific Collaboration Net-
works,” Proceedings of the National Academy of Sciences of the
United States of America, vol.98, no.2, pp.404–409, 2000.

[11] K. Cheng, “Sampling from Large Graphs with a Reservoir,” Net-
work-Based Information Systems (NBiS), 2014 17th International
Conference on, pp.347–354, 2014.

[12] L. Lovász, L. Lov, and O.P. Erdos, “Random Walks on Graphs: A
Survey,” Combinatorics, vol.8, pp.1–46, 1993.

http://dx.doi.org/10.1145/1298306.1298311
http://dx.doi.org/10.1109/asonam.2016.7752360
http://dx.doi.org/10.1145/371920.371965
http://dx.doi.org/10.1109/infocom.2015.7218649
http://dx.doi.org/10.1109/jsac.2011.111011
http://dx.doi.org/10.1145/1150402.1150479
http://dx.doi.org/10.1145/2392622.2392628
http://dx.doi.org/10.1073/pnas.021544898
http://dx.doi.org/10.1109/nbis.2014.25

