IEICE TRANS. INE. & SYST., VOL.E101-D, NO.1 JANUARY 2018

253

[LETTER

Regular Expression Filtering on Multiple ¢g-Grams

Seon-Ho SHIN', HyunBong KIM', Nonmembers, and MyungKeun YOON'®, Member

SUMMARY Regular expression matching is essential in network and
big-data applications; however, it still has a serious performance bot-
tleneck. The state-of-the-art schemes use a multi-pattern exact string-
matching algorithm as a filtering module placed before a heavy regular
expression engine. We design a new approximate string-matching filter us-
ing multiple g-grams; this filter not only achieves better space compactness,
but it also has higher throughput than the existing filters.

key words: regular expression, string matching, g-gram, intrusion detec-
tion, deep packet inspection

1. Introduction

Regular expression is widely used to analyze big data, net-
work traffic, web contents, etc. Many network and security
applications provide the functionality where users can de-
fine their own regular expression rules. In this letter, we
focus on how to accelerate regular expression matching in
network intrusion detection, but our proposed scheme can
work for any computing application.

Although regular expression matching is widely used,
it still has a serious performance bottleneck. Numerous
studies have proposed new designs and implemented new
regular expression engines [1]-[3]. Efficient data struc-
tures, such as the bitmap and the hash table, help in-
crease the throughput; however, they rely on additional
ternary content-addressable memory (TCAM) or field-
programmable gate array (FPGA) hardware modules.

To improve the processing speed by software, most reg-
ular expression applications adopt a filtering module as il-
lustrated in Fig. 1, which is the basic architecture assumed
in this paper. The filtering module is generally implemented
as a multi-pattern exact string-matching algorithm, such as
Aho-Corasick [4]. A representative simple string is defined
for each regular expression rule, and the set of representa-
tive strings are fed to the filtering module in the prepara-
tion phase. When a packet arrives, the filtering module first
checks if the packet contains any simple string of the set. If
a match is found, the packet is sent to the regular expression
engine for further evaluation. The filter also notices the en-
gine of the specific rule numbers as index so that the engine
only checks these indexed rules [5], [6].

Manuscript received August 16, 2017.
Manuscript revised September 27, 2017.
Manuscript publicized October 11, 2017.
"The authors are with Kookmin University, Seoul, South
Korea.
a) E-mail: mkyoon@kookmin.ac.kr
DOI: 10.1587/transinf.2017EDL8180

III I " Regular Expression | ! >
I I index Engine Clean
Filtering > < | Tmffic
. module "

Traffic a —
Malicious

%/ Traffic
I : Packet

: index to regular expression rule(s)

Fig.1 Architecture of regular expression matching: a filtering module is
placed before the regular expression engine to filter out benign packets.

Our simple experiments reveal that the throughput be-
comes as low as 2.3Mbps on a modern general-purpose
computer with two CPUs of six cores when no filtering mod-
ule is used. We directly applied a PCRE2 [7] or an RE2 [8]
engine to the Snort regular expression rules with real In-
ternet packets [9]. Adding an Aho-Corasick filter raised the
matching throughput from 2.3Mbps to 2.7Gbps. This signif-
icant improvement is obtained from the selective invocation
of regular expression rules indexed by the filter rather than
the whole set of rules.

Although the filter improved the throughput, multi-
pattern exact string-matching algorithms, such as Aho-
Corasick, Commentz-Walter, and Wu-Manber, were not
originally designed for the purpose of fast regular expres-
sion filtering. They are designed to find exact strings com-
prising some alphabets in a specific order. Therefore, these
algorithms are quite expensive as a regular expression filter
because they need to keep track of states in automata and
multiple pointer operations are required. This motivated us
to design a new filtering algorithm for regular expression
matching that is faster and simpler than the existing algo-
rithms. The contributions of this letter are as follows:

e A family of new filtering algorithms is designed for
regular expression matching, called regular expression
filter (REF), 6-REF, and dynamic-REF. These algo-
rithms use a stateless data structure on g-grams.

e Through experiments with Internet traffic, we prove the
enhanced throughput and space compactness of REF.
The throughput is improved by more than three times,
and the memory space is reduced by a factor of four.

2. Design of Regular Expression Filter

We present REF, a new filtering algorithm for multi-pattern

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

254

approximate string-matching, which consists of two phases:
rule graph generation and regular expression filtering. We
first explain these phases in detail and propose two advanced
schemes: 6-REF and dynamic-REF.

2.1 Rule Graph Generation

The rule graph is generated by following a specific process.
For a set of regular expression rules R = {ri,rz,..., "y},
we first generate a set of g-grams for each rule, which is
denoted by x,(r;) for r;. Some regular expression applica-
tions require their users to provide a representative simple
string for any user-defined regular expression rule. For ex-
ample, Snort requires its users to provide a content field for
a regular expression rule that is a just simple string. We can
also extract extra g-grams by removing the special charac-
ters from the regular expression rules. For example, we can
extract 4-gram of “SS H-" from a regular expression rule
of ““SSH —[12]\ .\ d+” by eliminating special characters
of 7, “[12]”, and “\ d+”. We define a set of all g-grams as
S = U x4(r) = {s1, 82, ..., Sm)-

Special care should be taken when g-grams are ex-
tracted from a regular expression rule containing such char-
acters as ‘!” and ‘", which respectively refers to the NOT
and OR operations; otherwise, false-negative matching may
happen. For example, suppose that a regular expression rule
“(POST|HEAD)” is given. If we remove ‘|’, this rule will
contribute two 4-grams of “POST” and “HEAD”. If a packet
contains only “POST”, the rule will never be matched. To
solve this problem, we removed not only special charac-
ters but also their associated simple strings. For exam-
ple, “(POSTIHEAD)HTTP” contributes only one 4-gram of
“HTTP”. How the g-grams can be optimally extracted re-
mains as an open problem.

In general, enough g-grams are extracted from a regu-
lar expression rule and its representative simple string. Our
experiments with Snort [9] showed that we could extract at
least one g-gram from all the regular expression rules when
q < 4. Most rules generated more than two g-grams. In case
no g-grams can be extracted from a regular expression rule,
we may have a separate process to evaluate packets with
those rules that do not have g-grams. Experiments show
that a g value of less than 5 optimizes the performance.

After S is obtained from R, a bipartite graph of G =
(V,E) is defined as follows[10]: V = § U R with r;
located on the left side of G and s; on the right side,
I <i<nand1l £ j £ m. An edge is drawn be-
tween r; and s; and is denoted as e¢;; € E, if s; is de-
rived from r;, i.e., s; € x,(r;). Figure 2 shows the bipar-
tite graph generation for R={r, r,, r3}. Representative sim-
ple strings are not included in this example for simplicity.
Note that x,(r))={SSH-}, xs(r))={/ff., ff.P, f.ph, .php},
and x,(r3)={/q.p, q.ph, .php}.

2.2 Regular Expression Filtering

The basic bipartite rule graph can be used for filtering out

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.1 JANUARY 2018

r;="SSH-[12]\.\d+
r,=\/[a-f0-9]{16}([a-f0-9]{16})?\/ff\.php
r3=\/[a-f0-9]{16}\/q\.php

Fig.2 A basic rule graph derived from R = {r1,r2,r3}. x4(r1)={SS H-},
xq(r)={/ff., ff-p, f-ph, .php}, and x,(r3)={/q.p. q.ph, .php}, when g=4.

benign packets. A regular expression rule is only activated
when all its g-grams are found in a packet. For every packet,
we first generate all possible g-grams from it; if the packet
is of size @ bytes, (@ — g + 1) grams are generated. For
each g-gram in the packet, we look up the nodes of S that
are implemented as a hash table of g-grams. If a g-gram
matches any s;, we remove all the edges connected with s;.
If any r; node is disconnected from the graph, the regular
expression engine is activated to evaluate the packet with r;.

Once a packet arrives, all possible g-grams are ex-
tracted, and any s; node in the rule graph matching g-grams
is searched for. When s; matches a g-gram from the packet,
the edges connected with s; are removed. Finally, any r; that
is disconnected from the graph activates the regular expres-
sion engine. For example, suppose that a packet of “SSH-
/fE.php” arrives. Its 4-grams are “SSH-”, “SH-/",..., and
“php”. Five s;’s are matched from s; to ss, and two rules of
r1 and r, are disconnected.

REF approximately identifies the benign packets; it
does not belong to a family of exact multi-pattern string-
matching algorithms such as Aho-Corasick. Some packets
are unnecessarily sent to the regular expression engine by
REF, which can be called false positives. For example, if
a packet includes “q.php”, Aho-Corasick does not activate
the regular expression engine, whereas REF does so (see
Fig. 2). However, REF runs much faster than the traditional
multi-pattern string-matching algorithms, and it saves more
memory space, as experimentally verified.

In this letter, we implement a hash table of g-grams
derived from §; therefore, all g-grams are inserted in the
table. A hash table can be looked up by O(1); g-grams from
a packet are searched for quickly. For a packet of size «
bytes, the hash table should be looked up (@ — g + 1) times.

A sophisticated attack can fabricate packets to include
as many triggering strings as possible so that the regular ex-
pression engine is frequently invoked. This attack can com-
promise not only our proposed scheme but also any filtering-
based schemes. One simple countermeasure is to limit the

LETTER

maximum number of engine invocations per packet.
2.3 6-REF

In 6-bounded REEF, or 6-REF, the maximum number of edges
from r; is not larger than threshold 6. The intuition behind
0-REF is that only a few g-grams from a regular expression
rule can make a unique identifier for that rule if selected
appropriately. Two new properties are defined for each node
in the rule graph for 8-REF, connected and degree, denoted
as ¢ and d, respectively. The degree property specifies the
number of physical edges around the node. The connected
property specifies the number of edges around the node that
have been selected until now.

We propose a heuristic edge-selection algorithm. The
idea is that we can identify a rule or at least a small set of
candidate rules quite accurately with small 6, if each rule is
connected with as many different g-grams as possible. Note
that the REF can activate any rule after the rules are dis-
connected from the rule graph. If two rules have the same
g-grams, they would be disconnected from the graph simul-
taneously when these g-grams are present in a packet. This
is not desirable because multiple regular expression rules
should not be evaluated by the engine. Another design prin-
ciple is to give high priority to a small-degree node because
large-degree nodes generally have more freedom in select-
ing edges that are not shared by others.

We explain the selection algorithm. The rule node with
the smallest ¢ is selected first. If there are multiple rule
nodes with the same smallest ¢, we select the one with the
smallest d value. If there are multiple rule nodes with the
same smallest ¢ and d, we select one of them randomly.
Then, we need to choose one edge connected with the se-
lected rule node. Again, we select the g-gram node with the
smallest c. For tie breaking, we compare the d values, and fi-
nally select the most appropriate g-gram, which determines
an edge. After the edge is selected, we increase the c values
of the end nodes by one. If ¢ equals d or € in a rule node,
we remove that rule node from the graph. This is because
the rule node has been selected 8 times, or no more avail-
able edges are left at the node. We repeat this edge selection
process until every rule node is removed from the graph.

When a packet arrives, all its possible g-grams are ex-
tracted, and the hash table of the set S is looked up for those
s;’s that match any g-grams. If a matching node is found,
all the edges connected with that are selected and removed,
and the c value of the connected nodes are decreased by one.
If any r; is disconnected from the graph, that is, its ¢ value
becomes zero, the regular expression engine is activated to
evaluate the whole packet content with the rule 7;.

2.4 Dynamic-REF

Some runtime environments may have static data and traf-
fic patterns. For example, if an intrusion detection system
runs for years in front of a web server with static contents,
the system would see repeated traffic patterns periodically

255

or steadily. We propose how to use this property to gener-
ate a more optimal rule graph and minimize the number of
regular expression engine activations. This version of REF
is called dynamic-REF because it enhances performance by
using the statistical information about the previous traffic.

Let us suppose that we know the occurrence frequency
of each g-gram in §. When selecting an s; during the rule
graph generation, we should first consider those g-grams
that have rarely occurred. This is because we can expect
that the edges connected with these s;’s would be hardly
removed; therefore, the corresponding rules are less fre-
quently evaluated with the regular expression engine. We
add a new property to s;, f for frequency, which indicates
how many times s; has occurred. This information can be
collected during a certain period of the learning phase. The
rule graph construction is the same as 6-REF; the only dif-
ference is that we consider the ¢, f, and d values for each
node in dynamic-REF. After the c values are compared, the
node of small f is given high priority.

3. Experiments

We evaluate REF through experiments using real Internet
traffic traces. The experiments show that REF outperforms
Aho-Corasick in terms of both throughput and memory
use simultaneously. We chose Aho-Corasick because it is
widely used, including Snort [9], and it performs well for
both average and worst cases.

The experimental results are compared in terms of the
throughput and memory space. The throughput is defined as
the total bytes of the traffic trace divided by the processing
time. For dynamic-REF, we use the first half of the traffic
trace to count the occurrence of each g-gram. Then, the
rule graph is generated, and dynamic-REF runs against the
remaining traffic trace.

We use 1,200 distinct regular expression rules from
Snort version 2.9 after removing the redundant rules. The
pcre and content option fields are examined to generate g-
grams. For example, the g-gram set of {13D1,3D12, 1%3D}
is obtained from the snort rule of [alert tcp $EXTER-
NAL.NET any -> $SHOME_NET $HTTP_PORTS (con-
tent:“13D12”; pcre:“/or\++1%3D/”;)].

A Linux server was used for the experiments with two
Intel Xeon CPUs (2.6 GHz six-core processors) and 16GB
DDR3 memory (1,600 MHz). The 64-bit CentOS version
6.6 is installed, and 12 full threads run for all the experi-
ments.

The traffic trace is collected from a campus network.
The same traffic was used for both REF and Aho-Corasick
in the experiments for fair comparison. We briefly explain
the traffic distribution: IP packets account for 88.3%, and
TCP/UDP packets for 83.3%. Most frequently-observed
ports are secure socket layer (SSL), web, domain name sys-
tems (DNS), as usual with the Internet access points in cam-
pus networks. Most threat alarms were related with web,
DNS, and distributed denial of service (DDoS) attacks.

The first set of experiments compares 6-REF, dynamic-

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.1 JANUARY 2018

256
12 : : ‘ ‘
dynamic-REF (q=4) ---x--- 7 F
6-REF (g=4) ——
101 s S, . Aho-Corasick ——%—- - 6
- e ..
8) 5|
@
8 6 |
[O]

no. of rules activated by engine
IS
T

6-R
dynamic-REF (g =4) ---x--- 12

REF (g=4) —— 7 " dynamic-REF (q=4) -
6-REF (g=4) —— |
_ Aho-Corasick ——~

Aho-Corasick ——%-

Gbps

Fig.3 Comparison of §-REF, dynamic-REF, and Aho-Corasick in terms of total throughput, average
number of rules activated per packet, and filtering throughput, from left to right.

REF, and Aho-Corasick in terms of their throughputs. Fig-
ure 3 presents the experimental results; the left plot shows
the total throughput that measures both the filtering time
and the regular expression engine time. The plot shows
that Aho-Corasick processes packets at 2.7 Gbps, whereas
6-REF and dynamic-REF have their maximum throughputs
higher than 9 Gbps. The middle plot compares the aver-
age number of regular expression rules that are finally acti-
vated by the rule engine per packet. Aho-Corasick causes
the smallest number of rules to be activated. In REF, this
number decreases sharply with 6. The left and middle plots
of Fig. 3 imply that the filtering module of REF runs much
faster than the Aho-Corasick filter despite activation of more
rules. This is shown in the right plot of Fig.3; the filter-
ing throughput of REF is significantly higher than its total
throughput. Therefore, the total throughput of REF would
significantly improve with a faster regular expression en-
gine.

Dynamic-REF already knows which g-grams would be
seen more frequently; therefore, this algorithm performs
best when 6 = 1. This is because a small 8 implies a faster
lookup in the g-gram hash table. Dynamic-REF would result
in a poor throughput if the traffic patterns changed abruptly.
We believe that this does not devalue REF because 6-REF
shows competitive throughput without any learning phase
of previous traffic patterns.

Finally, we compare the runtime memory sizes of
dynamic-REF and Aho-Corasick. Dynamic-REF requires
the memory space in proportion to the number of hash ta-
ble slots while Aho-Corasick requires memory space in pro-
portion to the number of states. From the experiments de-
scribed above, we confirmed that Dynamic-REF consumed
only a quarter of the memory used by Aho-Corasick while
the throughput was improved by more than three times.

4. Discussion

When REF or Aho-Corasick finished the filtering process
with a packet, a few rule index, usually one, were se-
lected. Then, the regular expression engine finally checked
the whole contents of the packet only with these rule index.
Therefore, false positive or false negative errors are totally
dependent on the regular expression engine irrespective of

the filtering module. In the experiments, we confirmed that
using REF or Aho-Corasick did not affect the errors of in-
trusion detection.

5. Conclusions

This paper proposed a new multi-pattern approximate
string-matching algorithm for accelerating regular expres-
sion matching. The new algorithm enhances throughput by
more than three times, and it uses only a quarter of the mem-
ory, compared with previous algorithms.

Acknowledgments

This work was supported by Institute for Information &
communications Technology Promotion (II'TP) grant funded
by the Korea government (MSIP) (No. 2017-0-00513-001,
Developing threat analysis and response technology based
on Security Analytics for Heterogeneous security solution)

References

[1] J. Patel, A.X. Liu, and E. Torng, “Bypassing space explosion in
high-speed regular expression matching,” IEEE/ACM Transactions
on Networking, vol.22, no.6, pp.1701-1714, 2014.

[2] AX. Liu and E. Torng, “An overlay automata approach to reg-
ular expression matching,” Proceedings of IEEE INFOCOM’ 14,
pp.952-960, 2014.

[3] T. Liu, A.X. Liu, J. Shi, Y. Sun, and L. Guo, “Towards fast and
optimal grouping of regular expressions via dfa size estimation,”
IEEE Journal on Selected Areas in Communications, vol.32, no.10,
pp-1797-1809, 2014.

[4] A.V. Aho and M.J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Commun. ACM, vol.18, no.6, pp.333-340,
1975.

[5] G. Vasiliadis, M. Polychronakis, S. Antonatos, E.P. Markatos,
and S. loannidis, “Regular expression matching on graphics hard-
ware for intrusion detection,” Proceedings of RAID’09, vol.5758,
pp-265-283, 2009.

[6] M.A.Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K.
Park, “Kargus: a highly-scalable software-based intrusion detection
system,” Proceedings of the 2012 ACM CCS’12, pp.317-328, 2012.

[7] http://www.pcre.org/, 2017.

[8] https://github.com/google/re2/, 2017.

[9] https://www.snort.org/, 2017.

[10] T.H.Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, The MIT Press, 2009.

http://dx.doi.org/10.1109/tnet.2014.2309014
http://dx.doi.org/10.1109/infocom.2014.6848024
http://dx.doi.org/10.1109/jsac.2014.2358839
http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1007/978-3-642-04342-0_14
http://dx.doi.org/10.1145/2382196.2382232

