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Statistical Property Guided Feature Extraction for Volume Data

Li WANG†a), Xiaoan TANG†, Nonmembers, Junda ZHANG†, Student Member,
and Dongdong GUAN†, Nonmember

SUMMARY Feature visualization is of great significances in volume
visualization, and feature extraction has been becoming extremely popu-
lar in feature visualization. While precise definition of features is usually
absent which makes the extraction difficult. This paper employs probabil-
ity density function (PDF) as statistical property, and proposes a statisti-
cal property guided approach to extract features for volume data. Basing
on feature matching, it combines simple liner iterative cluster (SLIC) with
Gaussian mixture model (GMM), and could do extraction without accu-
rate feature definition. Further, GMM is paired with a normality test to
reduce time cost and storage requirement. We demonstrate its applicabil-
ity and superiority by successfully applying it on homogeneous and non-
homogeneous features.
key words: feature extraction, probability density function (PDF), statis-
tical property, simple liner iterative clustering (SLIC), Gaussian Mixture
Model (GMM)

1. Introduction

Feature visualization is of great significances in volume vi-
sualization because direct visualization for the whole dataset
may cost massive hardware resource and result in heavy
shelter when displaying, as the size of dataset has increased
to TB and beyond. With the development of feature visual-
ization, feature extraction has been becoming an extremely
popular issue for research for it could filter out irrelevant
data and reduce visualization mapping [1]. Further, people
would gain a better scientific insight of the dataset by feature
visualization.

There have been plenty of woks for feature extraction,
and majority of them are definition-dependent methods, as
they generally assume that the features are predefined and
extraction of features is deterministic. Such as Gu [2] pro-
posed a C2-continuous framework to extract high-quality
topological structure. Gyulassy [3] characterized the range
of features and extracted them from a Morse-Smale com-
plex. The contour tree [4] and Reeb graph [5] are also used
to define the features of interest, etc.

However, these methods are limited within their spe-
cific datasets and features, if we get a new kind of dataset,
we have to define the features newly, and this is unaccept-
able in practice. What is worse, if the descriptions of the
features are fuzzy or the definitions could not be got by ana-
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lytical equations, extraction process would be difficult. Un-
fortunately, most datasets to visualize belong to these two
cases as precise definition of features is usually absent.

According to this, definition-independent methods
have been becoming promising. Chaudhuri [6] proposed an
integral distribution based method. Lee [7] used integral dis-
tributions with discrete wavelet transformation to analyze
the local statistical properties. To evaluate the performance
of query driven visualization, Gosink [8] utilized PDF effec-
tively. Wang [9] introduced an importance-driven method
for volume visualization using information theory basing on
distributions. A prominent technology is that Xie [10] pro-
poses a fast uncertainty-driven refinement method, it com-
bines simple liner iterative clustering (SLIC) with multi-
resolution technology and refinement approach, and do well
for kinds of volumes and features without definition. While
multi-resolution technology is time and hardware resource
consuming, what is worse, extraction deteriorates when fac-
ing with some non-homogeneous features such as topol-
ogy structure or texture, and these two disadvantages con-
strain its application. Overall, our paper aims at overcome
the problems of [10] and focus on definition-independent
method.

In this work, probability density function (PDF) is
employed as statistical property, and a statistical property
guided approach for feature extraction is proposed, our main
contributions are:

• It could do extraction without precise feature defini-
tion.
• It is applicable to kinds of features including homoge-

neous and non-homogeneous features.
• A normality test is applied to PDF estimation which

reduces the time cost and storage requirement.

2. Proposed Method

2.1 Overview

The primary contents of our method are three parts: Firstly
the dataset is segmented by SLIC and series of supervoxels
generate, simultaneously we preselect a small region from
the volume as reference feature ( freference); Secondly, PDF is
employed as statistical property, then PDFs of all supervox-
els and freference are estimated by Gaussian mixture model
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(GMM); Finally, PDF based distance between each super-
voxel and freference is calculated, and a matching threshold
is applied, if the distance is lower than the threshold, that
is the supervoxel matches the freference and all these matched
supervoxels compose the feature extracted.

2.2 SLIC Based Segmentation

SLIC [11] is originally proposed for 2D image segmenta-
tion, and it has been extended to 3D volume. Comparing
with other cluster-based segmentation methods, SLIC is su-
perior for its better segmentation quality and higher execu-
tion efficiency [10].

Iterative cluster for SLIC is similar to K-means: (a)
each voxel is assigned to a supervoxel with the smallest dis-
tance; (b) the cluster center is updated after every assign-
ment; (c) a threshold is predefined, if the difference between
every two adjacent iterations is lower than the threshold, the
algorithm is terminated, otherwise, the algorithm runs to its
next iteration.

The primary disparities with K-means are: (a) search
space of SLIC for each voxel is constrained within a win-
dow around each cluster center instead of the whole volume;
(b) distance metric in cluster combines intensity and spatial
proximity which controls the compactness of cluster.

It is to be noted that by localizing the search within a
window in cluster, computational complexity of SLIC is ex-
tremely reduced comparing with K-means. The complexity
of K-means is O(kN) and SLIC is O(N) [10] for each itera-
tion. When the dataset is with a huge dimension, obviously
SLIC would have a much faster performance.

2.3 GMM Based PDF Estimation and Normality Test

In this paper, PDF is employed as statistical property, and
GMM is introduced to estimate PDFs of these supervoxels.
Comparing with typical kernel density estimation (KED),
GMM has lower storage requirement than KED, and could
better represent PDFs of distribution-free datasets [12], [13].

GMM represents the PDF of a dataset as

f (x) =
K∑

k=1

ωkN(x : μk,Σk) (1)

Where K stands for the number of Gaussian kernels
mixed, ωk is the mixing weight and μk, Σk are the mean
vector and covariance matrix of Gaussian kernel respec-
tively, generally they are fixed by Expectation-Maximum
(EM) [14].

However, storage requirement of GMM is still large as
the volume dataset is usually with a big size, and EM has
large time complexity because EM gets a better estimation
iteratively. To settle these weaknesses, a strategy called nor-
mality test [15] is introduced, if a supervoxel satisfies the
test, a single Gaussian model (SGM) is enough to estimate
its PDF, and otherwise, GMM is employed. By this strategy,
when most supervoxels satisfies the test, no doubt the total

time and storage cost will largely decrease.

2.4 PDF Based Feature Matching and Extraction

To match all supervoxels with the freference, PDF based dis-
tance between them is calculated, the smaller the distance is,
the more similar they are, and the supervoxel is more likely
to be the feature. Simultaneously a matching threshold is
applied, if distance is lower than the threshold, it means a
successful matching and the supervoxel would be part of the
feature, otherwise, it would be regarded as the background.
All these supervoxels successfully matched compose the ex-
tracted feature.

Here the Bhattacharyya-based distance metric [16] is
utilized as it is generally fast and leads to good results. It
can be expressed as

Ψ(p, p′) =
n∑

i=1

m∑
j=1

wiw
′
jψ(pi, p′j) (2)

Where p and p′ are GMMs, n and m are number of
mixture components of p and p′ respectively. ψ(·) is dis-
tance between two Gaussian kernels:

ψ(p, p′) =
1
8

(u − u′)T

(
Σ + Σ′

2

)−1

(u − u′)

+
1
2

ln

[ |Σ + Σ′|
2
√|Σ||Σ′|

]
(3)

Here u, u′ and Σ, Σ′ are mean and covariance of the
Gaussian kernel p and p′ respectively.

Obviously ψ(·) is symmetric, positive, and is zero when
p and p′ are equal, which is well in corresponding with in-
tuitive judgment.

3. Experiments

The experiments are performed on a PC equipped with Intel
Core i5-6500 CPU@3.20 GHz and 8.00 GB DDR, software
platforms are Visual Studio 2010 and MATLAB 2012a.

To demonstrate the extraction results, two datasets are
used: (a) Hurricane Isabel data [17]. It is a very typical
dataset with 13 scalars and is used for the IEEE Visualiza-
tion 2004 Contest. The resolution is 500 × 500 × 100, we
select the wind field as the feature to be extracted, and it is
non-homogeneous; (b) Blunt Fin Data [18]. The resolution
is 256×128×64, body of combustion is taken as the feature,
and it is homogeneous.

3.1 Qualitative Evaluations

Two datasets are pre-partitioned for SLIC with a size of 5 ×
5 × 5 and 3 × 3 × 3 respectively, and matching threshold is
0.45 and 0.20 respectively. Extracted features are exhibited
by volume rending technology [19].

Figures 1 and 2 show qualitative evaluations. In Fig. 1,
Fig. 1 (c) just identifies the core of the wind, but the smaller
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Fig. 1 Extraction results of Hurricane Isabel Data.

Fig. 2 Extraction results of Blunt Fin Data.

band of the vortex is mostly missing or identified with low
confidence. However, Fig. 1 (b) extracts not only the vortex
core but also the smaller band, so the whole wind field is
better extracted with higher accuracy. Comparing Fig. 1 (b)
with Fig. 1 (c), we could find that the smaller band is also
valuable as they help to represent the distribution of the wind
field, so we can gain a better understanding of the dataset. In
Fig. 2, Fig. 2 (b) is with much subtler details and it is much
sharper than Fig. 2 (c) which is with vague and jagged out-
lines. What is more, Fig. 2 (c) leads to under-extraction be-
cause it loses important part where represents the combus-
tion burner (as marked with red boxes). To sum up, extrac-
tions of our method are more complete.

3.2 Quantitative Evaluations

Essentially feature extraction is segmentation as the vol-
ume is divided into two parts: feature and background. To
quantitatively evaluate the extraction performance, unifor-
mity of region (UR) and disparity of regions (DIR) are in-
troduced [20], [21]. UR is to measure the uniformity within-
class and DIR is to measure disparity among-classes, they
would be as large as possible for a perfect segmentation.
Particularly, distance in UR and DIR is calculated by Eq. (2)
to improve the criteria.

Table 1 and Table 2 show the quantitative evaluations.
As depicted, for two datasets, UR of our method largely in-
creases by 50.151% and 24.716% respectively, DIR largely
increases by 34.545% and 33.032% respectively, and it re-
veals that feature extracted by our method is much more dif-
ferent and identifiable from the background.

Moreover, time cost of our method largely decreases
by 56.777% and 35.066% respectively, which means our

Table 1 Quantitative evaluations for Hurricane data.

Table 2 Quantitative evaluations for Blunt Fin data.

method is with much higher execution efficiency.
Overall, qualitative and quantitative results demon-

strate that extraction performance of our method is much
more excellent.

4. Conclusion

This paper employs PDF as statistical property, and pro-
poses a statistical property guided method to extract fea-
tures. Basing on feature matching, it combines SLIC with
GMM, and could do extraction without precise feature defi-
nition. With the normality test introduced, the time cost and
storage requirement reduce. Experiments illustrate its ap-
plicability to non-homogeneous and homogeneous features,
and superiority with better performance.
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