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A Simple and Effective Generalization of Exponential Matrix
Discriminant Analysis and Its Application to Face Recognition

Ruisheng RAN†a), Bin FANG††b), Nonmembers, Xuegang WU††c), Member, and Shougui ZHANG†d), Nonmember

SUMMARY As an effective method, exponential discriminant analysis
(EDA) has been proposed and widely used to solve the so-called small-
sample-size (SSS) problem. In this paper, a simple and effective general-
ization of EDA is presented and named as GEDA. In GEDA, a general ex-
ponential function, where the base of exponential function is larger than the
Euler number, is used. Due to the property of general exponential function,
the distance between samples belonging to different classes is larger than
that of EDA, and then the discrimination property is largely emphasized.
The experiment results on the Extended Yale and CMU-PIE face databases
show that, GEDA gets more advantageous recognition performance com-
pared to EDA.
key words: matrix exponential, linear discriminant analysis, the small
sample size problem, face recognition

1. Introduction

The classical Linear Discriminant Analysis (LDA) [1] is an
important and effective approach in pattern recognition. Un-
fortunately, in most cases, the dimension of the sample is
much larger than the number of the samples, which results
in the within-class scatter matrix in LDA is in question sin-
gular. This is so-called small size sample (SSS) problem and
LDA has to suffer from this problem.

As an effective method, Exponential Discriminant
Analysis (EDA) [2] is proposed to overcome the SSS prob-
lem of classical LDA. The main idea of EDA is that the
Euler matrix exponential is introduced. The scatter matrices
are firstly mapped into a new space with matrix exponen-
tial transformation, and then the LDA criterion is applied
in such a space. Due to the property of the matrix expo-
nential, the SSS problem LDA is addressed by EDA. EDA
method is improved in Ref. [3]. The author proposed two
inexact Krylov subspace algorithms to solve the large ma-
trix exponential eigenproblem efficiently. And the new algo-
rithm showed the superiority over their original counterpart
for face recognition.

After the release of EDA, it is widely applied to
solve the SSS problem, especially in the manifold learn-
ing field. In Ref. [4], a general exponential framework for
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dimensionality reduction has been proposed. Under this
framework, matrix exponential is applied to extend many
popular Laplacian embedding algorithms. Many of mani-
fold learning algorithms, such as Local Preserving Projec-
tion (LPP) [5], Discriminant Locality Preserving Projection
(DLPP) [6], Local Discriminant Embedding (LDE) [7] and
Semi-supervised Discriminant Embedding (SDE) [8], have
to suffer from the SSS problem. Then, the EDA method
is introduced to solve this problem. The exponential LPP
(ELPP) [9], the exponential DLPP method (EDLPP) [10],
the exponential LDE method (ELDE) [11] and the exponen-
tial SDE method (ESDE) [12] are proposed. They are the
exponential versions of the corresponding methods. They
avoid the SSS problem and show better performance in face
recognition.

In this paper, a simple and effective generalization of
EDA is made, and called as GEDA. The main idea of GEDA
is that the general exponential function f (x) = ax, not Euler
exponential function f (x) = ex, is used. Due to the property
of exponential function, one has ax > ex if a > e and x > 0.
And then, the distance of GEDA between samples belong-
ing to different classes, which is with the matrix exponential
transformation a(A), is larger than that of EDA, which is
with the Euler matrix exponential exp(A). So, we can be-
lieve that GEDA will show advantageous performance over
EDA for classification.

2. Generalized EDA (GEDA)

2.1 Theoretical Basis of GEDA

In this section, some theories about the exponential func-
tion and matrix function for generalized EDA method are
presented.

Theorem 1. Let f (x) = ax is a general exponential
function, if a > e and x > 0, the inequality ax > ex holds.

The following Fig. 1 shows this property of the expo-
nential function.

Theorem 2([13]). For an arbitrarily n-order real sym-
metric square matrix A, A can be diagonalization, i.e., there
exists an n-order orthogonal matrix T and a matrix D, sub-
ject to

D = T′AT = T−1 AT

is a diagonal matrix. Where T′ is the transpose matrix of T
and T−1 is the inverse matrix of T respectively.

For the above diagonalization, let λi (i = 1, 2, · · · , n)
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Fig. 1 The curve of exponential function y = ax, ax > ex if a > e and
x > 0

are the eigenvalues of the n-order matrix A, then D =

diag(λ1, λ2, · · · , λn). And the ith column vector of T is the
eigenvector of the matrix A corresponding to the ith eigen-
value λi (i = 1, 2, · · · , n).

In this paper, the proposed GEDA method is based on
the matrix function. In the following, the definition and
eigenproblem of the matrix function are introduced.

Definition 1([13]). Let f (x) be a scalar function with
x as independent variable and A be a square matrix, if the
independent variable x is replaced with the square matrix A,
the function f (A) may be gotten and is called as a matrix
function.

Theorem 3([13]). Let A be a n-order square matrix and
A can be diagonalization, i.e., there exists a n-order matrix
X, subject to A = Xdiag(λ1, λ2, · · · , λn)X−1. Let f (A) is a
matrix function, then

f (A) = Xdiag( f (λ1), f (λ2), · · · , f (λn))X−1.

According to Theorem 2 and Theorem 3, the relation-
ship between the eigen-system of a real symmetric square
matrix A and the eigen-system of the matrix function f (A)
may be easily obtained as follows:

Theorem 4. Let A be a n-order real symmetric
square matrix and f (A) is a matrix function, and let V =
[v1, v2, · · · , vn] are eigenvectors of the matrix A that corre-
spond to the eigenvalues [λ1, λ2, · · · , λn] of A, then V are
also eigenvectors of the matrix function f (A) that corre-
spond to the eigenvalues of f (A):

[ f (λ1), f (λ2), · · · , f (λn)].

In this paper, the general matrix exponential function is
used. We define it as follows.

Given an arbitrarily n × n square matrix A, its Euler
matrix exponential is defined as [13]:

exp(A) = I + A +
A2

2!
+ · · · + Ak

k!
+ · · · ,

where I is an identity matrix.
Note that a general scalar exponential function f (x) =

ax (a > 0, a � 1) may be written as:

ax = exp(x ln a).

According to Definition 1, the general matrix exponential

function may be defined as follows:
Definition 2. Let f (x) = ax (a > 0, a � 1) be a

scalar exponential function with the x as argument and A
be a square matrix. Denote a general matrix exponential
function as a(A), a(A) may be defined as:

a(A) = exp(A ln a).

Obviously, Theorem 3 and Theorem 4 hold for the gen-
eral matrix exponential function a(A).

2.2 GEDA

Let Sb be between-class scatter matrix, Sw be within-class
scatter matrix, and let φb = (ϕb1,ϕb2, · · · ,ϕbn) is the eigen-
vector matrix of Sb that corresponds to eigenvalues Λb =

diag(λb1, λb2, · · · , λbn), and let φw = (ϕw1,ϕw2, · · · ,ϕwn) is
the eigenvector matrix of Sw that corresponds to eigenvalue
Λw = diag(λw1, λw2, · · · , λwn). The objective of LDA is to
find an optimal projection matrix W by maximizing the ratio
of between-class scatter to within-class scatter as follows:

J(W) = arg max
W

|WTSbW|
|WTSwW| = arg max

W

|WTφT
bΛbφbW|

|WTφT
wΛwφwW| .

(1)

Let f (x) = ax (a > 0) be a general exponential function. In
the above LDA criterion (1), we replace the eigenvalue λw j

of Sw with aλw j , and replace the eigenvalue λb j of Sb with
aλb j , and denote

a(Λw) = diag(aλw1 , aλw2 , · · · , aλwn ),

a(Λb) = diag(aλb1 , aλb2 , · · · , aλbn ).

Then, the criterion of LDA can be transformed to:

J(W) = arg max
W

|WTφT
b a(Λb)φbW|

|WTφT
wa(Λw)φwW| . (2)

Because the matrices Sb and Sw are symmetric and
semi-positive definite matrices [2], Theorem 4 holds in this
case. And so, the Eq. (2) can be rewritten as:

J(W) = arg max
W

|WT a(Sb)W|
|WT a(Sw)W| . (3)

The columns vector of optimal transformation matrix W can
be obtained by solving the following generalized eigenvec-
tors problem:

a(Sb)x = λa(Sw)x. (4)

Because f (x) = ax is a general exponential function,
the proposed method is called as generalized EDA (GEDA).
If the base a = e, where e is Euler number 2.71828, i.e.
f (x) = ex, the GEAD becomes EDA.

3. Distance Diffusion Mapping

LDA finds an optimal projection by simultaneously max-
imizing the between-class distance and minimizing the
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within-class distance. The two distances can be measured
by the traces of two scatter matrices as:

db = trace(Sb) = λb1 + λb2 + · · · + λbn, (5)

dw = trace(Sw) = λw1 + λw2 + · · · + λwn. (6)

Note that the between-class scatter matrix Sb and
within-class scatter matrix Sw are symmetric and semi-
positive definite matrices [2], so for all the eigenvalues in
Eqs. (5) and (6), one has λbi ≥ 0, λwi ≥ 0 (i = 1, 2, · · · , n).

In fact, for GEDA, there is an implicit non-linear map-
ping of samples:

Θ: Rn×n → Rn×n,

Sb → Θ(Sb) = a(Sb), Sw → Θ(Sw) = a(Sw). (7)

With the mapping (7) and Theorem 4, in the same input
space, such that the distance db and dw are replaced by da

b
and da

w:

da
b = trace(a(Sb)) = aλb1 + aλb2 + · · · + aλbn , (8)

da
w = trace(a(Sw)) = aλw1 + aλw2 + · · · + aλwn . (9)

In general, the distance between samples in different
classes is bigger than the related distance between samples
in the same class, one has db > dw. So, for most of the
eigenvalues in Eqs. (5) and (6), one has λbi > λwi. These
eigenvalues may be viewed as a set. In the set, we have
λbi > λwi ≥ 0, according to the value of λwi, we make the
discussion as follows:

1) In the case of λwi > 0.
Because of λbi > λwi, one has aλbi > aλwi , and so

aλbi

aλwi
>
λbi

λwi
. (10)

Especially, if a = e, the above inequality (10) also holds.
In this paper, the base a of the exponential function is

chosen to meet the condition: a > e. According to Theorem
1, if a > e and x > 0, one has ax > ex. In this case, λbi >
λwi > 0, so one has:

aλbi

aλwi
>

eλbi

eλwi
>
λbi

λwi
(a > e). (11)

2) In the case of λwi = 0.
If some λwi = 0, obviously aλwi = eλwi = 1. Because of

λbi > λwi = 0, in this case, one always has

aλbi > aλwi , eλbi > eλwi . (12)

aλbi > eλbi > λbi (a > e). (13)

Combining the two cases, i.e., by the inequality
(11)∼(13), the non-linear mapping function Θ of GEDA has
the effect of distance diffusion. As a result, there is a dif-
ference in diffusion scale between the between- and within-
class distances. The diffusion scale to the between-class dis-
tance is larger than that to the within-class distance. Ac-
cording to the inequality (11) and (13), the diffusion scale
of GEDA is much larger than that of EDA. Hence, the dis-
tances between different class samples of GEDA are larger

than that of EDA. This is the superiority of GEDA over
EDA. And so, GEDA will show better discrimination power
than EDA.

4. Experiment Results

In this section, we evaluate the face recognition performance
of the proposed GEDA method. The experiments are made
on the two public face image databases: the Extended Yale
and CMU-PIE. The proposed GEDA method is compared
with the classical PCA [14], LDA+PCA [1], EDA [2]. In or-
der to show the performance of GEDA, the base a of the ex-
ponential function is taken as 10,100 and 1000 respectively.

A random subset with p images for each individual is
taken to form the training set, and the remaining images are
used as the testing set. Note that LDA method may get the
maximal C − 1 subspace dimension, where C is the num-
ber of classes. So we choose the C − 1 subspace dimension
for all methods to compare. For each given p, the 30 times
random sample splits are made to get a stable recognition
result. Then the average value of the 30 recognition accu-
racies, from the 30 times random sample splits, is regarded
as the recognition ratio of the corresponding method. The
results are illustrated in Table 1 and Table 2 respectively.

In general, the recognition performance varies with the
subspace dimension. Figure 2 and Fig. 3 show the recogni-
tion rates versus subspace dimension of the above methods
on the Extended Yale and CMU-PIE face database respec-
tively. These obtained plots are the average values over 30
random splits.

From the experiment results, we can observe that: com-
pared with the other methods, GEDA has better performance
among all subspace dimensions in all the database. And if
the base of the exponential function is larger, the discrimi-
nant performance is better.

Table 1 Average recognition accuracy of the different methods on Ex-
tended Yale database over 30 random splits.

Table 2 Average recognition accuracy of the different methods on PIE
database over 30 random splits.
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Fig. 2 Recognition accuracy versus the projected dimensions on the Ex-
tended Yale face database (seven training images)

Fig. 3 Recognition accuracy versus the projected dimensions on the
CMU-PIE face database (ten training images)

5. Conclusions

In this paper, a generalized exponential matrix discriminant
analysis (GEDA) is proposed to improve the EDA method.
The proposed GEDA method is equivalent to transforming
the scatter matrices to a new space by distance diffusion
mapping, and then, the LDA criterion is applied in such a
space. The main idea of the improvement is that the general
exponential function is used, not the Euler exponential func-
tion. It is a simple generalization of the EDA method, but it
shows advantageous classification performance over EDA.
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