
568
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

LETTER

Painterly Morphing Effects for Mobile Smart Devices

SungIk CHO†, Nonmember and JungHyun HAN†a), Member

SUMMARY This paper proposes a painterly morphing algorithm for
mobile smart devices, where each frame in the morphing sequence looks
like an oil-painted picture with brush strokes. It can be presented, for ex-
ample, during the transition between the main screen and a specific appli-
cation screen. For this, a novel dissimilarity function and acceleration data
structures are developed. The experimental results show that the algorithm
produces visually stunning effects at an interactive time.
key words: mobile smart devices, user interface, interactive morphing,
painterly effect

1. Introduction

With the growing use of mobile devices such as smartphones
and smartpads, there has been an increasing demand on in-
teractive special effects that can be executed on such mo-
bile devices. A good candidate would be image morph-
ing [1]. It can be presented, for example, during the transi-
tion from a specific application such as photo viewer back to
the main screen. We propose a painterly morphing method,
where each frame in the morphing sequence looks like an
oil-painted picture with brush strokes.

2. Fast Morphing Based on Patch Similarities

Based upon the framework proposed by regenerative mor-
phing [2] and image melding [3], our morphing algorithm
takes as input two source images, S1 and S2, initializes
a sequence of in-between target images, T ks, by cross-
dissolving S1 and S2, and then updates T ks such that S1, T ks,
and S2 form a painterly morphing sequence.

2.1 Dissimilarity Measure

In our algorithm, similarity or equivalently dissimilarity be-
tween images plays a key role. The function frequently
used for evaluating dissimilarity is the sum of squared dif-
ferences (SSD). Given two images, P and Q, of the same
size, SSD(P,Q) is defined as follows:

SSD(P,Q) =
m∑

i=1

(pi − qi)
2

= mE(P2) + mE(Q2) − 2mE(P)E(Q)

Manuscript received September 12, 2017.
Manuscript revised October 24, 2017.
Manuscript publicized November 6, 2017.
†The authors are with the Korea University, Korea.

a) E-mail: jhan@korea.ac.kr
DOI: 10.1587/transinf.2017EDL8200

− 2
m∑

i=1

[(E(P) − pi)(E(Q) − qi)] (1)

where m is the number of pixels in an image, pi and qi de-
note the i-th pixels in P and Q, respectively, E(P) denotes
the mean of the lightness values of all pixels in P, E(P2)
is the mean of the squared lightness values in P, and E(Q)
and E(Q2) are defined in the same manner. Equation (1) is
derived using the theorem, E(P2) = E(P)2 + σ2(P), where
σ2(P) is the variance of P.

The last line of Eq. (1) reflects the covariance of two
images. We delete the covariance term to generate a
painterly morphing effect. The result is then divided by m to
define our dissimilarity function:

D(P,Q) = E(P2) + E(Q2) − 2E(P)E(Q) (2)

2.2 Morphing with Similar Patch Tables

Given an image, consider its square sub-area composed of
n × n pixels, which we call a patch. If the resolution of
an image is M × N and that of a patch is n × n, we have
(M − n + 1) × (N − n + 1) patches in total. For each of such
patches, the “mean” and “mean of squares” are computed
and stored in what we call a patch table. Each of S1, S2, and
T ks has its own patch table, as shown in Fig. 1. The patch

Fig. 1 The similar patch table is filled using the patch tables of the source
and target images and is used later to update the target image.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers



LETTER
569

Fig. 2 Target image update. For an initial target image, T k , two temporary images, T k,1 and T k,2,
are computed using S1 and S2, respectively. Then, T k,new is obtained by linearly interpolating T k,1 and
T k,2. The distance between S1 and T k and that between T k and S2 are used to determine the weights for
interpolation. Finally, T k is replaced by T k,new.

Fig. 3 Iteration and blending (Another source image S2 is omitted just
for saving the space).

table for T k is created using its current content, which was
obtained by cross-dissolving S1 and S2.

For each patch of a target image T k, S1 is searched for
the most similar patch using Eq. (2). It is recorded in the so-
called similar patch table (SPT), which has the same dimen-
sion as the patch table. In order to achieve a smooth tran-
sition across the morphing sequence, searching is restricted
to a sub-area in S1, which is called the search window. S2 is
also searched in the same manner. Then, a target image has
two SPTs, one for S1 (SPT 1) and the other for S2 (SPT 2).

A target image T k is updated by computing new colors
for all of its pixels. In updating a pixel q of T k, n×n patches
sharing q (each denoted by Qj) are involved. See Fig. 1 for
an example of Qj. For each Qj, the most similar patch (Pi)
is retrieved from SPT 1, and Pi’s pixel p which has the same
within-patch location as q is extracted. Then, the mean of n×
n colors is assigned to q. When all pixels in T k are updated,
a temporary image T k,1 is generated. The same process is
repeated using SPT 2 to generate another temporary image
T k,2.

Algorithm 1: Pseudo code for morphing
Make the patch tables of S1 and S2

foreach target image {T k}K1 do
Make the patch table of T k

end
foreach target image {T k}K1 do

Make SPT 1 using the patch tables of T k & S1

Make SPT 2 using the patch tables of T k & S2

T k,1 ← Color accumulation using SPT 1

T k,2 ← Color accumulation using SPT 2

T k,new = K−k+1
K+1 T k,1 + k

K+1 T k,2

end

T k,1 and T k,2 are linearly interpolated to determine
T k,new using the relative position of T k between S1 and S2, as
illustrated in Fig. 2. T k,new replaces T k. Algorithm 1 shows
the pseudo code for the morphing process.

2.3 Blending for Painterly Stylization

Suppose that, in Fig. 2, T k is replaced by the updated target
image T k,new and then Algorithm 1 is executed again on the
sequence of the “updated” target images. Then, the resulting
target images would look like being drawn using a “larger”
brush. This kind of iteration can be continued. The more
iterations, the larger brush effect, as shown in Fig. 3, where
T k

i denotes the target image updated at the i-th iteration. Ob-
serve how the image changes as i increases. T k

2 looks as if
it were drawn by a brush larger than the one used for T k

1 . A
similar observation can be made between T k

3 and T k
2 .

In general, an oil-painted picture is created by starting



570
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Fig. 4 Morphing sequences generated in a smartphone.

with a large brush and then by adding details progressively
with smaller brushes [4]. This painting technique can be
simulated if we save the iteratively-updated target images
and blend them. For example, in Fig. 3, T k

2 would first be
blended with T k

3 , and then T k
1 would be blended with the re-

sult. The first step of blending T k
2 with T k

3 is implemented by
taking T k

2 as the target and T k
3 as the source, i.e., by updating

T k
2 using its similarity to T k

3 .
Once T k

2 is updated by T k
3 , it is used for updating T k

1
through the same procedure presented above. The right most
image in Fig. 3 shows the final result of blending. Observe
how it differs from T k

i .

3. Experimental Results

The proposed algorithm has been implemented on Samsung
Galaxy Note 5. The program is written in C++ using the
Java Native Interface (JNI) with OpenMP and OpenCV. The
source images, S1 and S2, are originally in QHD (Quad High
Definition) with the resolution of 2560 × 1440. They are
down-sampled to 320 × 180 resolution, and the target im-
ages are created with the same resolution. A patch is com-
posed of 3× 3 pixels, and the number of target images is set
to 10 in a morphing sequence. Three iterations were made
for blending the target images. Figure 4 shows morphing
examples.

Figure 5 compares our method with simple linear
blending and regenerative morphing [2]. In general, image
morphing is defined as a combination of cross-dissolve and
warping, but linear blending presented in Fig. 5 (a) shows
the cross-dissolve effect only. On the other hand, regenera-

tive morphing produces a comparable result (Fig. 5 (b)) but
the differences with our method should be clarified. First,
it does not generate the painterly morphing effect. Second,
it is not implemented in interactive time. The regenerative
morphing method was implemented on Matlab with 20 tar-
get images, each with 400×400 resolution, and was reported
to take “several tens of minutes” in a mid-range PC [2]. In
contrast, the entire time consumed by our method is 1.433s
on average in a mid-range mobile device.

4. Conclusion

This paper proposed to create a painterly morphing se-
quence on mobile smart devices, where each frame in the se-
quence looks like an oil-painted picture with brush strokes.
For this, a novel dissimilarity measure function is devised
and the ingredients of the function are computed and stored
in patch tables. Then, similar patch tables are created using
them, which enable interactive similarity-based image mor-
phing. The experimental results showed that the algorithm
produces novel styles of morphing with visually stunning
effects on mobile devices at an interactive time.

The user interface in smartTVs is important [5], and
it may benefit from our painterly morphing, e.g., the spe-
cial effects can be presented during the transition between
the main screen and an arbitrary screen. Unfortunately,
the computing power of the state-of-the-art smartTV is far
weaker than that of smartphone or smartpad. A more ef-
fective solution to get closer to the interactive-time perfor-
mance in smartTV would be to restrict the target image up-
date to the region of interest (ROI). Our future work will be
done along this direction.



LETTER
571

Fig. 5 Comparison with other methods. (a) Linear blending. (b) Regenerative morphing†. (c) The
proposed method.

Acknowledgments

This research was supported by Next-Generation Informa-
tion Computing Development Program through the National
Research Foundation of Korea (NRF) funded by the Min-
istry of Science, ICT (NRF-2017M3C4A7066316).

References

[1] M. Haseyama, M. Takizawa, and T. Yamamoto, “Video frame interpo-
lation by image morphing including fully automatic correspondence
setting,” IEICE Trans. Inf. & Syst., vol.92, no.10, pp.2163–2166, Oct.
2009.

† c© 2010 IEEE. Reprinted, with permission, from E.
Shechtman, A. Rav-Acha, M. Irani and S. Seitz, “Regenerative
morphing,” 2010 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, San Francisco, CA, 2010,
pp.615–622.

[2] E. Shechtman, A. Rav-Acha, M. Irani, and S. Seitz, “Regenerative
morphing,” 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp.615–622, 2010.

[3] S. Darabi, E. Shechtman, C. Barnes, D.B. Goldman, and P. Sen, “Im-
age melding: Combining inconsistent images using patch-based syn-
thesis.,” ACM Trans. Graph., vol.31, no.4, Article No. 82, 2012.

[4] A. Hertzmann, “Painterly rendering with curved brush strokes of mul-
tiple sizes,” Proc. 25th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’98, pp.453–460, 1998.

[5] T. Kim, S. Choi, and H. Bahn, “A personalized interface for sup-
porting multi-users in smart TVs,” IEEE Trans. Consum. Electron.,
vol.62, no.3, pp.310–315, 2016.

http://dx.doi.org/10.1587/transinf.e92.d.2163
http://dx.doi.org/10.1109/cvpr.2010.5540159
http://dx.doi.org/10.1145/2185520.2335433
http://dx.doi.org/10.1145/280814.280951
http://dx.doi.org/10.1109/tce.2016.7613198

