IEICE TRANS. INFE. & SYST., VOL.E101-D, NO.3 MARCH 2018

799

[LETTER

Extraction of Library Update History Using Source Code Reuse

Detection

Kanyakorn JEWMAIDANG ', Nonmember, Takashi ISHIO"™, Akinori IHARA ", Kenichi MATSUMOTO'",

SUMMARY This paper proposes a method to extract and visualize a
library update history in a project. The method identifies reused library
versions by comparing source code in a product with existing versions of
the library so that developers can understand when their own copy of a
library has been copied, modified, and updated.

key words: visualization, software reuse, source code similarity, repository
mining

1. Introduction

Software reuse is important to improve software reliabil-
ity [1]. Software systems in the industry increasingly use
open source software components due to their reliability and
cost benefits [2]. While some libraries are available in bi-
nary forms, software developers often clone-and-own exist-
ing software components for their products [3], [4].

Application developers using a library should replace
their library copy with a new version, if the copied version
of the library included severe problems such as security vul-
nerabilities. Adopting a new version of a library may seem
a simple task, but have many difficulties [5]. Knowledge
about a system’s past upgrade activity with respect to a li-
brary can help maintainers [6].

To analyze library update activity, Kula et al. [6] pro-
posed a visualization technique using configuration files for
a dependency management system. On the other hand, there
exists no appropriate tool to understand library update ac-
tivity of a project using clone-and-own approach. Xia et
al. [7] reported that source code reuse activity is often un-
recorded, based on their manual analysis of source code
repositories. Hence, an automatic analysis tool is necessary
to track copied libraries in a project. To identify the original
version of a copied library, Ishio et al. [8] proposed a source
file comparison method. The method uses aggregated file
similarity to effectively identify an original version.

In this paper, we propose a method to extract and vi-
sualize a library update history to investigate when develop-
ers adopt, update or change their copied library in the ver-

Manuscript received September 20, 2017.
Manuscript revised December 1, 2017.
Manuscript publicized December 20, 2017.
"The authors are with the Department of Computer Engineer-
ing, Kasetsart University, Bangkok, 10900 Thailand.

""The authors are with the Graduate School of Information Sci-
ence, Nara Institute of Science and Technology, Ikoma-shi, 630—
0192 Japan.

a) E-mail: ishio@is.naist.jp

DOI: 10.1587/transinf.2017EDL8205

and Pattara LEELAPRUTE', Members

sion history of a product. To identify the original version
of a library copy, we employed a modified version of the
source file comparison method [8]; we compare source files
between repositories. The identified library versions in each
of product versions are visualized in a Sankey diagram [9].

Section 2 explains our extraction method. Section 3
shows a case study that analyzes a library reused in Android
project. Section 4 summarizes the current state and future
directions of the research.

2. Extraction of Library Update History

Our method visualizes how software projects reuse and up-
date their own copy of a library. The method compares a
set of official versions of a library and a set of release ver-
sions of a software product including the library. It identifies
reuse pairs between product versions and library versions,
and then visualizes the pairs using a Sankey diagram.

The extraction step identifies a set of source code reuse
pairs Reuse(P, L) for a set of product versions P and a set
of library versions L based on source code similarity as fol-
lows.

Reuse(P,L)={(pePlecL)|S(pl = r]naZ(S(p, I}
e

where S (p, [) is an aggregated file similarity value of a prod-
uct version p and a library version [[8]. In Reuse(P, L), each
product version p € P is corresponding to only one version
of library / whose source files are the most similar to the
product source code. We assume that a product p includes
at most one version of a library. A library version may be
included in a number of product versions.

The aggregated file similarity approximates the amount
of source code that can be reused from [to create files in p.
It is defined by the sum of file similarity values:

S(p, D)= Z max{sim(f,, fi € Fplsim(f,, fi) > th}

Tr€Fp

where F, represents a set of files in the product p, F; repre-
sents a set of files in the library /, respectively. The similar-
ity function sim(f,, f;) is defined as Jaccard index of token
trigrams.

) 3 |trigrams(f,) N trigrams(f;)|
sim(fp, fi) = ltrigrams(f,) U trigrams(f;)|

The trigrams ignore whitespace and comments. We use

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

800

th = 0.9 to ignore lower similarity values. The threshold
accurately identifies source files in a product that are reused
from a library [8].

The definition of Reuse(P, L) selects a library version
/in L that has the highest value of S (p,) for each version
of p. For a particular version of p, if a library version /,
has more similar files than another version [, (i.e., S (p, ;) >
S(p, b)), [} is more likely an original version. We also use
S (p, 1) to analyze different versions of a product against a
particular version of a library. If the value of S (p;,) equals
to S(p2,1), we consider two versions of a product p; and
p> have the same library files reused from a version of a
library 1. It should be noted that we do not directly compare
S(p1, 1) with S(pa2, L) (p1 # p2, 11 # 1), because it is less
meaningful.

The extracted pairs Reuse(P,L) are visualized as a
Sankey diagram, that is a visualization used to depict a
flow from one set of values to another. In our visualiza-
tion method, the diagram lists product versions on the left
side, library versions on the right side, and connects their
versions. Since a large number of links may result in a com-
plicated figure, we filter out versions whose revision num-
bers are different but whose aggregated file similarity values
are the same as the adjacent product versions.

To investigate library reuse and update activity accord-
ing to the time axis, both product and library versions are
sorted by their release date. The oldest versions are placed
at the top of a diagram, the latest versions are placed at the
bottom, respectively. The diagram links versions with col-
ors indicating different aggregated similarity values. The
size of a link between a library and a product indicates the
similarity values, i.e., the amount of reused source code of
the library and the product.

3. Case Study

To investigate the effectiveness of our extraction approach,
we have applied our visualization to libraries reused in An-
droid project. The Android project keeps libraries cus-
tomized for Android in Git source code repositories [10].
The libraries are stored in individual repositories, separately
from one another. Source code in the repositories have An-
droid’s version numbers, instead of library version numbers.

‘We choose three popular libraries written in C/C++ and
Java: junit[11], s1f4j[12], and easymock[13]. Their
copies are located in a library directory named “external”
in Android source code.

Since the libraries are managed in Git, we collect mod-
ified library versions for Android and official release ver-
sions of the original library project using tags in the reposi-
tories. In case of junit, 458 versions for Android releases
and 20 official versions are extracted from the repositories.
The files for Android releases include source files reused
from official library versions and additional files to extend
features. The analyzed files exclude the Android kernel and
other libraries.

Our method extracted reuse pairs by comparing the JU-

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.3 MARCH 2018

Table 1 The aggregated file similarity between p = JUnit for Android
4.1.1 and some official versions of JUnit.

JUnit version (/) S (JUnit for Android 4.1.1, /)
JUnit4-r3.8.2 15.45
JUnit4-r4.10 160.87
JUnit4-r4.11 114.56
JUnit4-r4.12 69.65

android-2.0_r] me—— . 10it4r3.8.2
android-4.0.1_rl

android-4.1.1_rl |

android-4.2.1 1 |
android-4.3.1 1l |
android-4.4.1 11 |
android-5.0.0_rl |

android-6.0.0_rl |
qunitd-rd 10

android-7.0.0_r1 |
android-n-preview-3

android-n-iot-preview-2

—

android-n-mrl-preview-

[

android-wear-n-preview-

[

android-n-mr2-preview-

android-n-mr2-preview-2

—

android-o-preview-

)) . junitd-rd 12
android-n-iot-preview-4

android-wear-o-preview-3

Fig.1 A visualization result that shows how Android project uses JUnit
versions

nit versions for Android and the official versions of JUnit.
Table 1 shows example values of S (p, /) for a particular ver-
sion of JUnit for an Android release. The aggregated file
similarity values clearly show the differences between the
JUnit version in Android with official versions. Using those
values, we identify a reuse pair of Android 4.1.1 and JUnit
4.10.

The analysis compares all version pairs in the repos-
itories. Our single-threaded implementation takes 15 sec-
onds using Intel Xeon E5-2690v3 CPU (2.60GHz) to ana-
lyze repositories on a SSD.

Figure 1 shows a result of how Android project uses
JUnit versions. Due to the limited space, some minor ver-
sions without source code changes are omitted. The left
side of the figure shows a list of Android versions sorted
by timestamps in the repository. They are connected to JU-
nit versions on the right side. From the visualization, we
could know which version of Android have modified or up-

LETTER

Table 2

Version of JUnit for Android (p)
android-2.0.r1
android-4.1.1.r1
android-4.2.1.rl1
android-5.0.0.r1
android-n-preview-3
android-n-mr2-preview-1
android-n-mr2-preview-2

The aggregated file similarity values of version pairs in Fig. 1

JUnit version(/) S(p,1)
JUnit4-r3.8.2 48.00
JUnit4-r4.10 160.87
JUnit4-r4.10 159.84
JUnit4-r4.10 159.87
JUnit4-r4.10 159.83
JUnit4-r4.12 185.80
JUnit4-r4.12 191.96

android-6.0.0 _rl
android-7.0.0_rl

android-cts-6.0_rl

android-cts-7.0_rl
android-m-preview
android-n-1ot-preview-2
android-n-mrl-preview-1
android-n-mr2-preview-1
android-n-preview-1
android-o-preview-1
android-wear-3.1.0_rl
android-wear-7.1.1_rl
android-wear-n-preview-1
android-wear-o-preview-3

Fig.2 A visualization result that shows how Android project uses slf4j
versions

dated their own copy library. The visualization result shows
that the first period of Android project used JUnit version
3.8.2. After the copy was updated to JUnit 4.10 and JUnit
4.12, the developers modified their own copy, as indicated
by several colors of the links. Table 2 shows the actual
values of aggregated file similarity between the visualized
links. Android developers modified their copy of JUnit 4.10
for Android 4.2.1. The commit message says “Allow sub-
classes of JUnit38ClassRunner to create specialized fil-
tered test suites.” The developers introduced a new feature
to their own copy and the change decreased the aggregated
file similarity. Another change has been performed for An-
droid 5.0.0. Developers introduced their own (“‘android test
runner”’) package and reverted a modified file to the original
version. The change increased the aggregated file similarity.
The version has been updated again for Android-n-preview-
3. Developers added generic type annotations to aid cer-
tain Java compilers. Android developers also used modified
versions of JUnit 4.12. The change is related to Hamcrest li-
brary [14] that provides rich expressions for JUnit test cases.
The first modified version was compiled against Hamcrest
1.1, and the second version was compiled against Hamcrest
2.0.

In case of s1£4j, our implementation takes 38 seconds
to compare 253 versions for Android releases with 58 offi-
cial versions. Figure 2 shows that Android project uses slf4j

801

version 1.7.12 without modification of source files. Since no
vulnerabilities have been reported for slf4j 1.7.12, Android
developers can keep the version as is. While slf4j project
continues to enhance the library, Android developers use a
fixed set of features. Similarly, in case of easymock, our vi-
sualization shows that Android project uses easymock 2.5.2
without modification. Although it is an old version released
in 2009, it is a functional version. Our implementation takes
3 minutes and 8 seconds to compare 439 versions for An-
droid releases and 13 official versions.

4. Summary and Future Work

In the case study, our method successfully extracted and vi-
sualized library reuse and update activity in a repository.
The case study illustrates that the extracted diargams show
us when developers adopt, update or change their cloned li-
brary in the version history of a product.

In the future work, we would like to optimize source
code comparison to visualize library update activity of a
large software project in a practical time. We are also in-
terested in a visualization method to understand how reused
source files are customized in a project.

Acknowledgments

This work was supported by JSPS KAKENHI Grant
Numbers JP25220003, JP26280021, JP16K16037, and
JP17HO0731.

References

[1] P. Mohagheghi, R. Conradi, O.M. Killi, and H. Schwarz, “An em-
pirical study of software reuse vs. defect-density and stability,” Pro-
ceedings of the 26th International Conference on Software Engineer-
ing, pp.282-291, 2004.

[2] C. Ebert, “Open source software in industry,” IEEE Softw., vol.25,
no.3, pp.52-53, 2008.

[3] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik, ‘“Managing
forked product variants,” Proceedings of the 16th International Soft-
ware Product Line Conference, pp.156-160, 2012.

[4] T. Mende, R. Koschke, and F. Beckwermert, “An evaluation of code
similarity identification for the grow-and-prune model,” Journal of
Software Maintenance and Evolution, vol.21, no.2, pp.143-169,
2009.

[5] A. Ihara, D. Fujibayashi, i. Suwa, R.G. Kula, and K. Matsumoto,
“Understanding when to adopt a library: A case study on asf
projects,” Proceedings of the International Conference on Open
Source Systems, vol.496, pp.128-138, 2017.

[6] R.G. Kula, C. De Roover, D. German, T. Ishio, and K. Inoue, “Vi-
sualizing the evolution of systems and their library dependencies,”
Proceedings of the 2nd IEEE Working Conference on Software Vi-
sualization, pp.127-136, 2014.

[7] P. Xia, M. Matsushita, N. Yoshida, and K. Inoue, “Studying reuse
of out-dated third-party code in open source projects,” JSSST Com-
puter Software, vol.30, no.4, pp.98-104, 2013.

[8] T. Ishio, Y. Sakaguchi, K. Ito, and K. Inoue, “Source file set search
for clone-and-own reuse analysis,” Proceedings of the 14th Inter-
national Conference on Mining Software Repositories, MSR *17,
Piscataway, NJ, USA, pp.257-268, IEEE Press, 2017.

[9] Sankey Diagrams, http://www.sankey-diagrams.com/ (accessed
Sept. 13,2017).

http://dx.doi.org/10.1109/icse.2004.1317450
http://dx.doi.org/10.1109/ms.2008.67
http://dx.doi.org/10.1145/2362536.2362558
http://dx.doi.org/10.1002/smr.402
http://dx.doi.org/10.1007/978-3-319-57735-7_13
http://dx.doi.org/10.1109/vissoft.2014.29
http://dx.doi.org/10.1109/msr.2017.19

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.3 MARCH 2018

802
[10] Git Repositories on Android, https://android.googlesource.com (ac- [13] EasyMock, http://easymock.org/ (accessed Oct. 24th, 2017).
cessed Sept. 19th, 2017). [14] Hamcrest, http://hamcrest.org/JavaHamcrest/ (accessed Oct. 24th,
[11] JUnit, http://junit.org/junit4/ (accessed Oct. 24th, 2017). 2017).

[12] SLF4J, https://www.slf4j.org/ (accessed Oct. 24th, 2017).

