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Complex-Valued Fully Convolutional Networks for MIMO Radar
Signal Segmentation

Motoko TACHIBANA†a), Kohei YAMAMOTO†, and Kurato MAENO†, Members

SUMMARY Radar is expected in advanced driver-assistance systems
for environmentally robust measurements. In this paper, we propose a novel
radar signal segmentation method by using a complex-valued fully con-
volutional network (CvFCN) that comprises complex-valued layers, real-
valued layers, and a bidirectional conversion layer between them. We also
propose an efficient automatic annotation system for dataset generation.
We apply the CvFCN to two-dimensional (2D) complex-valued radar sig-
nal maps (r-maps) that comprise angle and distance axes. An r-maps is
a 2D complex-valued matrix that is generated from raw radar signals by
2D Fourier transformation. We annotate the r-maps automatically using
LiDAR measurements. In our experiment, we semantically segment r-
map signals into pedestrian and background regions, achieving accuracy
of 99.7% for the background and 96.2% for pedestrians.
key words: radar signal segmentation, fully convolutional network,
complex-valued network, semantic segmentation, MIMO radar

1. Introduction

Radar is expected to play an important role in advanced
driver-assistance systems because of its robustness to var-
ious environmental factors such as lightning and weather
conditions [1]. Frequency-modulated continuous wave
(FMCW) radar can measure distances by analyzing the fre-
quency shifts of beat signals. Combining it with a multiple-
input multiple-output (MIMO) antenna array, FMCW radar
can also measure angles by analyzing the phase shifts
among multi-channel beat signals. As such, FMCW
MIMO radar gives a two-dimensional (2D) radar signal map
(r-map) as a complex-valued matrix whose rows indicate an-
gles and whose columns indicate distances.

On another front, significant progress has been made
in image recognition by deep convolutional networks. Long
et al. proposed the fully convolutional network (FCN), a se-
mantic segmentation technique that classifies objects in an
image by pixel-wise segmentation [2].

In recent years, a great deal of research on the seman-
tic segmentation of images has been conducted, whereas
far fewer studies have focused on radar signals. In this
paper, we propose a novel semantic segmentation method
for r-maps by using a CvFCN. The inputs to a CvFCN are
complex values, but the outputs must be real values for a
classification task. Therefore, we have designed an archi-
tecture that transfers complex-valued and real-valued layers
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bidirectionally. This allows a CvFCN to be trained as a seg-
mentation model end to end.

Generally, in order to train deep neural networks, it
is necessary to prepare a large amount of annotated data.
For image recognition, we can obtain semantically seg-
mented annotated data from an existing database such as the
Pascal Visual Object Classes dataset. However, as far as we
know, such annotated data for radar signals have not been re-
ported. Therefore, we began by preparing many annotations
for the semantic segmentation of r-maps. These annotations
are simpler in shape compared with those for images; how-
ever, it is difficult even for a person to segment element-wise
object classes on r-maps because they include pseudo reflec-
tions, called ghosts. Ghosts are generated from side lobes of
Fourier transforms or multi-path reflections. Thus, in the
present study, we created annotations automatically by ref-
erencing light detection and ranging (LiDAR) data and the
r-map intensity distributions.

2. Automatic Annotation System

2.1 Conversion of Radar Signal to R-Map

Before generating the annotations, we convert the radar beat
signals into an r-map by 2D fast Fourier transform (FFT) as
follows:

Bt(d, θ) =
1

NM

M−1∑
r=0

N−1∑
τ=0

qrbt−N+τ+1,re
−i 2π( τdN + rθ

M ), (1)

qr =

{
1, 0 ≤ r ≤ K
0, K < r < M

,

where bt,r is the complex-valued beat signal of aligned re-
ceiving antenna r at sampling time t, K is the number of
receiving antennas, and M and N are the FFT window sizes
in the antenna-alignment and time directions, respectively.
Term τ is the index for the beat signal in the FFT window
in the time direction, and Bt(d, θ) is the complex-valued el-
ement of the r-map at distance d and angle θ.

Figure 1 (a) and (b) show an image taken from the radar
position and the intensity of its r-map, respectively. As
shown in Fig. 1 (b), the region of strongest intensity near
the center of the r-map indicates where the person is. Al-
though there are other regions of strong intensity, there are
no targets. Such strong intensity regions without targets are
called ghosts. Note that to ensure stationary objects are ig-
nored, we apply a moving-target-indication filter when we
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Fig. 1 (a) Image taken from radar position. (b) Intensity of correspond-
ing r-map.

Fig. 2 Example of automatic annotation.

generate r-maps in our system.

2.2 Automatic Annotation

Simultaneously with our radar, we used 2D LiDAR at al-
most the same position. We extract the pedestrian regions in
r-maps automatically by expanding from those points on the
r-map at which the LiDAR detects pedestrians. An example
of this process is shown in Fig. 2. Figure 2 (a) shows an r-
map overlaid with two points at which the LiDAR detected
pedestrians, and Fig. 2 (b) shows the corresponding auto-
matically created annotation; gray regions indicate pedes-
trians, black regions are background, and white regions are
not used for training. This process can automatically pre-
pare enough annotation maps to train a deep neural network
model. In order to improve the angular resolution of the an-
notation, we use the Khatri–Rao product [3] when creating
r-maps.

3. Complex-Valued Fully Convolutional Network Model

In recent work on complex-valued networks, Guberman [4]
showed that fully complex-valued convolutional networks
can detect meaningful phase structures in complex-valued
data extracted from an image using the Sobel kernel. Moti-
vated by that work, we designed a partially complex-valued
FCN as a CvFCN.

To segment an r-map semantically, the output and in-
put must comprise real and complex values, respectively.
The proposed CvFCN was designed to learn from complex-
valued input to real-valued output end to end. We de-
scribe here the CvFCN concatenation process that converts
bidirectionally between a complex-valued layer and a real-
valued layer. Figure 3 shows in detail the CvFCN used in
our experiment described in Sect. 4. As shown in Fig. 3,
the r-map is applied to the three complex-valued convolu-

Fig. 3 Configuration of proposed CvFCN.

tion layers and converted to 64 channels; each of which is
a complex-valued matrix. By dividing them into real and
imaginary parts, we generated two sets of 64 real-valued
matrices and used them as 128-channel inputs to the sub-
sequent layers. With this architecture, it is possible to learn
the r-map topology end to end.

Because the phase distributions of an r-map contain
finer information such as the fractional movements of peo-
ple or finer distance changes, we believe that it is important
to use not only intensity but also phase structure as input
data for restraining intensity noise when segmenting radar
signals. We follow the forward and backward propagation
scheme of Ref. [5] when dealing with the complex-valued
networks.

As shown in Fig. 3, we use a split hyperbolic tangent
function for activation following all of the complex convo-
lutional layers. It activates the real and imaginary parts sep-
arately as follows:

f (z) = f (x + iy) = tanh x + i tanh y. (2)

We halve the size in the distance–angle direction by
setting a stride of two at the third layer of the complex con-
volution. We use a rectified linear unit (ReLU) as the ac-
tivation function for the outputs of the real convolutional
layers, and MaxPooling to compress information in the
distance–angle direction. We repeat this process until the
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r-map is reduced in size by a factor of 1/16. Finally, we
expand the feature maps so generated into the same size of
input r-map to obtain the probability of each pixel being ei-
ther pedestrian or background.

4. Experiment and Evaluation

We acquired indoor data by using a 24-GHz FMCW MIMO
radar where there were some pedestrians most of the time.
For learning, we used 27,318 data that were obtained in
three hours on two days. For evaluation, in order to en-
sure independence, we used 503 data that were acquired on
another day. All data were acquired at one location; how-
ever, we set up the measurement hardware (i.e., the radar
and LiDAR) on each collection day. Thus, the installation
conditions may have differed slightly according to the day.

To train the CvFCN, we set the batch size to 100,
whereas the training batch size in Ref. [2] was 1. Because
segmenting an r-map semantically gives simpler shapes than
doing so for an image, we expected that a larger batch size
would accelerate the convergence of learning. We also used
Adam [6] for optimization, the parameters of which were
0.0001 for alpha, 0.8 for beta1, and 0.9 for beta2.

We evaluated the accuracy of signal segmentation as
follows, using the same metric as that in Ref. [2]:

� Pixel accuracy: nii/ti, (3)

� Mean IU: (1/ncl)
∑ncl

i

{
nii

/(
ti +
∑

j
n ji − nii

)}
,

where i is the class index to be distinguished, ti is the num-
ber of pixels of class i, ni j is the number of pixels of class
i predicted to belong to class j, and ncl is the number of
classes.

Figure 4 shows two examples of the results. From left
to right, the columns in Fig. 4 show the r-map input data,
the inferential data, and the ground truth. The gray re-
gions of the inferential and ground truth indicate pedestri-
ans. Figure 4 (b) shows that the CvFCN can detect pedes-
trian regions without false detection of ghosts, which are
high-intensity regions in the r-map.

Figure 5 shows the transitions corresponding to the
learning iteration number of an error and the resulting ac-
curacy, which is defined by Eq. (3). As a result, we achieved
recognition accuracies of 99.7% for the background and
96.2% for pedestrians, as shown in Fig. 5 (b).

In Fig. 5 (a), the error tends to increase proportionally
to iteration number. This suggests that the probabilities of
belonging to each class are becoming close. By reducing
the learning rate according to the number of iterations, it
might be possible to suppress the error growth. In addition,
the pedestrian pixel accuracy decreases in Fig. 5 (b). At an
early-stage iteration, the inferred pedestrian regions could
be wider and even include background pixels. Such false-
detection errors are evaluated in Mean IU of Eq. (3), since
the denominator includes the term

∑
j
n ji − nii. As shown

in Fig. 5 (c), Mean IU improves as the number of iterations
increases. This indicates that segmentation performance

Fig. 4 Two examples of inference results.

Fig. 5 Evolution of evaluation values: (a) error; (b) pixel accuracy;
(c) mean IU.

could be improved iteratively. We suppose the decrease in
pedestrian pixel accuracy is attributable to the slightly wider
annotation regions of pedestrian, because boundaries of tar-
gets on r-maps blur. We expect that pedestrian pixel accu-
racy can be improved by adjusting the method for setting
annotation boundaries.

5. Discussion and Conclusion

In the present study, we proposed a radar signal segmen-
tation method using a CvFCN and an automatic annotation
system for dataset generation. Our unique approach of using
a bidirectional conversion layer between complex-valued
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and real-valued layers achieved backward propagations for
complex-valued parameters from real-valued teaching sig-
nals. Because the CvFCN is able to learn phase properties
in r-maps end to end, it is effective at restraining ghosts. In
addition, our automatic annotation system makes it possi-
ble to prepare many annotation maps without much manual
effort for supervised learning.

In future work, we will acquire data on various objects
and at various places to enhance functionality and improve
accuracy. We will also compare the CvFCN with a real-
valued FCN to verify the effectiveness of the CvFCN.
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