
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018
795

LETTER

Pipelined Squarer for Unsigned Integers of Up to 12 Bits

Seongjin CHOI†, Nonmember and Hyeong-Cheol OH†a), Member

SUMMARY This paper proposes and analyzes a pipelining scheme for
a hardware squarer that can square unsigned integers of up to 12 bits. Each
stage is designed and adjusted such that stage delays are well balanced and
that the critical path delay of the design does not exceed the reference value
which is set up based on the analysis. The resultant design has the critical
path delay of approximately 3.5 times a full-adder delay. In an implemen-
tation using an Intel Stratix V FPGA, the design operates at approximately
23% higher frequency than the comparable pipelined squarer provided in
the Intel library.
key words: squarer, high-speed pipelining

1. Introduction

Squaring is a widely used operation in various applications.
The L2-norm requires squaring operations in its calculation
and is a typical measure for optimization, identification, and
clustering applications. Moreover, squaring is intensively
used in various signal processing problems, such as subband
vector quantization, image compression, and pattern recog-
nition. Given the intensive usage of squaring and its appli-
cation in portable devices, the optimized design of squarers
has attracted the interest of many researchers [1]–[7].

Most optimization schemes exploit the folding and
merging techniques, which use xi+ xi = 2xi and xi+ xixi−1 =

2xixi−1 + xixi−1, respectively [2]. Figure 1 describes the use
of the optimization techniques in a 4-bit unsigned integer
squarer. Trials have been performed for further improve-
ments of squarer performance. However, trials, such as
in [3], that extend the techniques in Fig. 1 do not signifi-
cantly improve the squarer performance, for the bit widths
and the implementation conditions considered in this pa-
per. The high-radix techniques [4], [5] or signed-digit tech-
niques [6] can be beneficial but require extra circuits to re-
code operands or convert representations. The designs with
reduced precision, such as in [2], are also interesting but are
not considered in the present study.

For many applications, including multimedia and
portable applications, square operations are performed on
short words with 8 or 12 bits [7]. In this work, we investigate
a pipelining scheme for a hardware squarer that can process
a 12-bit squaring operation in every cycle with a latency of
four cycles. Using our analysis results, we adjust the delay

Manuscript received October 14, 2017.
Manuscript revised November 26, 2017.
Manuscript publicized December 6, 2017.
†The authors are with College of Sci. & Tech., Korea Univ.,

Sejong 30019, Korea.
a) E-mail: ohyeong@korea.ac.kr

DOI: 10.1587/transinf.2017EDL8229

Fig. 1 Folding and merging techniques [2], for squaring a 4-bit unsigned
integer.

Fig. 2 Proposed pipelining scheme for a 12-bit squarer. A, B, and D are
4-bit unsigned integers.

of each stage such that the stage delays of the resultant de-
sign are well balanced. The proposed squarer can calculate
the square of an 8-bit unsigned integer with reduced latency
by bypassing a pipeline stage.

Although this paper presents an FPGA implementa-
tion, the pipelined design proposed in this work is not re-
stricted to FPGA designs. FPGAs are popularly adopted
in various applications such as cloud servers and IoT plat-
forms [8]; hence studies on FPGA-specific implementation,
such as [9], are interesting. However, this study focuses on
the design at the abstraction level of carry-save adder (CSA)
trees [10] and relies on the technology mapper of the FPGA
design tool, so that the design can be adopted in other im-
plementation technologies.

2. Proposed Squarer

Figure 2 presents the proposed pipelining scheme for a 12-
bit squarer. We aim to calculate the square of a 12-bit un-

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

796
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Fig. 3 Architecture of the proposed 12-bit squarer. A, B, and D are 4-bit unsigned integers. The adder
in the final stage is an 11-bit adder of which the 23rd bit of C3 input is tied to 0 (ground). Those FFs
shown in Table 2 can be removed.

signed integer X = A||B||D, where A, B, and D are 4-bit un-
signed integers, and “||” denotes concatenation. The partial
product matrix (PPM) is divided into three parts, as shown
by the dotted lines, which constitute the three stages of the
four-stage pipeline. Each of the three stages adds the square
of A, B, or D to the shifted result of the multiplication of
two of A, B, and D. The second and the third stages addi-
tionally accumulate the output of the previous stage. Each
of the three boxes in Fig. 2 calculates the value written in the
box in terms of the two intermediate forms, sum and carry
vectors [11]. The squares of A, B, and D are implemented
similarly to the “after-merging” PPM shown in Fig. 1. The
fourth stage adds up the sum and carry vectors from the third
stage to obtain the final square result.

In the front three stages, the maximum time delay de-
pends on the maximum number of bit rows in the PPM to
be handled in each stage. Claim 1 analyzes the maximum
number of bit rows in the PPMs to be accumulated by a CSA
tree in a squarer that is designed in the manner described in
Fig. 2:

Claim 1: Consider a squarer for unsigned integers of n
bits, where n = 4k for some positive integer k ≥ 2, designed
in the way described in Fig. 2. Let Nb,max be the maximum
number of bits in any column of the PPM to be accumulated
in any stage. Then, Nb,max ≤ 4 × � k

2 � + 2 × (k mod 2) + 2.

Proof: The operand can be written as X = X1||X2|| · · · ||Xk,
where Xi is a 4-bit number for i = 1, · · · , k. Then, when
we partition the PPM of X2 in the form of Fig. 2, the
largest number of rows occurs in the part of PPM below
X1, which is denoted as PPMX1 below. When k is even,
PPMX1 consists of 2X1Xk + 2X2Xk−1 + · · · + 2Xk/2X(k/2)+1.
Since the number of bits in each column of PPM of XiXj

(i � j) is less than or equal to 4 and at most two bits from
the previous stage can be added to each column. Thus,
Nb,max ≤ 4 × k

2 + 2. When k is odd, PPMX1 consists of
2X1Xk + 2X2Xk−1 + · · ·+ 2X(k−1)/2X((k−1)/2)+2 + (X((k−1)/2)+1)2.
The number of bits in each column of PPM of (Xi)2 is less
than or equal to 2. �

For the 12-bit squarer, by Claim 1, any column of the
PPM contains at most eight bits, which requires a CSA tree

Fig. 4 Organization of the first stage. Unfilled circles represent the PPM
of BD whereas the filled circles in the topmost four rows represent the PPM
of D2. Each shaded rectangle represents a full or a half adder in the CSA
tree. Each pair of outputs from an adder is tied together with a line segment.
Each oval represents a full or a half adder of the ripple-carry adder. Arrows
represent the locations of the carry and sum bits.

with up to four levels according to [10]. Using this result, we
confine the number of levels of the CSA tree in each stage
to less than or equal to four. We evaluate the delay of a half
adder as one half of the delay of a full adder (ΔFA) in the
evaluation. We also distribute the burden of the final adder
in the fourth stage into the front three stages; otherwise, the
critical path would occur in the fourth stage.

Figure 3 shows the architecture of the proposed
squarer. Block D2_2BD consists of the gates for generat-
ing the PPM of 25BD + D2 (Fig. 2), and a CSA tree for
accumulating the PPM. Figure 4 describes the organization
of the first stage. The low seven bits of the final square
value are constructed in a ripple-carry fashion as shown in
Fig. 4. The sum and carry vectors, which are S 1 and C1,
respectively, and the obtained part of the final square value
SQ[6:0] are stored together with the input into the pipeline

LETTER
797

register (Fig. 3). The maximum time delay in the first stage
is 3.5ΔFA.

In the second stage, the most significant three and four
bits of S 1 and C1, respectively, are merged and accumu-
lated with the PPM of 29AD + 28B2 by the CSA tree in the
block B2_2AD+C1+S1. Figure 5 describes the organization
of the second stage. We adjust the CSA trees in the first
stage to generate the “always-0” bits in C1 such that the
number of levels of the CSA tree is reduced in the second
stage. Although the implementation in Fig. 5 has a column
with seven bits, the PPM is sparse such that the PPM can be
accumulated by a CSA tree with three levels. The sum and
carry vectors that are generated in the second stage are S 2
and C2, respectively. The maximum time delay in Fig. 5 is
3ΔFA. Only two bits of the final square value are generated
in a ripple-carry fashion. Our trials for generating additional
bits of the final square value will increase the maximum time
delay.

In the third stage, the most significant four bits of
S 2 and C2 are merged and accumulated with the PPM of
216A2 + 213AB by the CSA tree with three levels in the
block A2_2AB+C2+S2. In addition, four more bits of the fi-
nal square value, SQ[12:9], are calculated in a ripple-carry
way with the maximum time delay of 3.5ΔFA. The final ad-
dition of the two results, S 3 and C3, is performed by an
adder in the fourth stage to produce the remaining 11 bits
of the final square value. In the design described above, the

Fig. 5 Organization of the second stage. Topmost two rows are from the
first stage. The 3rd to 8th rows show the PPM of 29AD + 28B2. Merging is
not applied to the most significant bit of B2.

critical path delay is 3.5ΔFA as long as the maximum time
delay in the final adder does not exceed 3.5ΔFA.

3. Evaluation

This section presents the results of an FPGA implementation
in evaluating the performance of the proposed squarer. For
comparison, the following four squarers are considered:

1) SquarerA is the multiplier that uses the dedicated DSP
hardware in the FPGA and is provided in the library
of parameterized modules (LPM) of Quartus Prime
17.0 [12]. The operating frequency of this squarer can-
not be increased by adding the pipeline stages. (Non-
pipelined)

2) SquarerB is the multiplier that is provided as
LPM_MULT in the LPM of Quartus Prime 17.0 [12]. (4-
stage pipelined)

3) SquarerC is the squarer obtained from the LPM_MULT
core in the LPM of Quartus Prime 17.0 [12], with the
configuration option of “squaring operation”. Three-
stage pipeline outperforms four-stage pipeline for this
squarer. (3-stage pipelined)

4) SquarerD is the squarer shown in Fig. 6. The PPMs
are accumulated in a similar way to the accumulation
in the proposed squarer. However, the final addition is
separated as an independent stage. (4-stage pipelined)

The proposed squarer and the four squarers listed
above have been modeled in Verilog and implemented
with Quartus Prime 17.0, targeting an Intel Stratix FPGA,
5SGSMD3E1H29C1 [13]. Table 1 summarizes the imple-
mentation results. Multipliers are generally used for com-
puting squares. SquarerA uses the dedicated multiplier cir-
cuit in the FPGA and operates fast, but its operation fre-
quency cannot be increased further.

The remaining squarers are implemented using logic
elements and flip-flops (FFs). No DSP block nor blockRAM

Fig. 6 Architecture of SquarerD.

Table 1 Comparison with prior works. The maximum operation fre-
quencies shown are estimated with the Slow 900 mV 85◦C model.

Logic Registers Max.
utilization [FFs] Op. freq.
[ALMs] [MHz]

SquarerA [12] 18 (+ 1DSP) 35 751
SquarerB [12] 103 204 822
SquarerC [12] 62 116 820
SquarerD 82 134 914
Proposed 79 123 1010

798
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Table 2 Removable FFs in pipeline registers. D[0] can be merged with
SQ[0]. The others always contain 0.

Register Removable FFs
A,B,D,S1[11:7],C1[12:7],SQ[6:0] D[0],C1[8,10],SQ[1]
A,B,S2[16:9],C2[16:9],SQ[8:0] SQ[1]
S3[23:13],C3[22,13],SQ[12:0] S3[21],C3[14,16],SQ[1]

is used. Using a four-stage pipeline, the multiplier SquarerB
can achieve a speedup over SquarerA at a significant ex-
pense of hardware. SquarerC exploits the identicalness of
two inputs of squaring operations and can thus greatly re-
duce the hardware cost while keeping the operation fre-
quency nearly the same. However, the maximum operation
frequency of SquarerC is achieved with three pipeline stages
and cannot be increased further even with four pipeline
stages.

A multiplier is commonly pipelined by dividing its op-
eration functionally into the generation of PPM, the accu-
mulation of PPM, and the final addition. Then some parts of
final addition can be moved into the front stages, as in [14],
and the process of retiming may follow. SquarerD divides
its operation by the amount of computation and can increase
the operation frequency by approximately 11% higher than
that of SquarerC. The number of FFs used in SquarerC in
Table 1 is different from that in Fig. 6 because there are re-
movable FFs in the figure as in the proposed squarer. Squar-
erD adopts an optimized CSA tree but naively places the
final ripple-carry adder in the final stage, which makes the
critical path in the squarer.

By distributing the final adder over front pipeline stages
quantitatively, the proposed squarer costs less than Squar-
erD but operates approximately 23% faster than SquarerC.
The gate usages are almost the same: the proposed squarer
uses 54 FAs and 20 HAs, whereas SquarerD uses 54 FAs and
19 HAs. The reduction in hardware cost is due to the reduc-
tion in the usage of FFs. The number of FFs used in Fig. 3
is 97. However, nine FFs are removable in the proposed de-
sign (Table 2). The proposed squarer uses additional 35 FFs
for I/O registers as other squarers, because bit 1 is always
zero in any square result. As the final adder in the fourth
stage, an 11-bit ripple-carry adder is adopted, which oper-
ates faster than the CSA trees in the other stages when they
are implemented in the FPGA used in this evaluation. If the
fourth stage is slower than any of the other stages in other
implementation technologies, then other fast adder architec-
tures must be considered at the cost of hardware.

4. Conclusion

This paper has proposed a pipelined hardware squarer that
can square unsigned integers of up to 12 bits. The pipeline
stages are balanced such that the squarer operates faster than
prior comparable designs. In our evaluation using an FPGA,
the proposed squarer outperforms the pipelined squarer pro-
vided in the LPM of Intel Quartus Prime 17.0.

The proposed pipelining scheme can be extended to the
16-bit design, which can perform a 16-, a 12-, or two 8-bit

squaring operations in every cycle; the last two of which
are popular data sizes in video applications. For squaring
a 16-bit unsigned integer, at most 10 bits are needed to be
accumulated in each column by Claim 1. We can reduce the
maximum number of bits over all columns to 9 by adjusting
the carry vector from the previous stage and, thus, accumu-
late the PPM by a CSA tree with four levels. The actual
implementation results will be dealt with in future works.

Although the number of bits estimated by Claim 1
grows slowly as the operand size increases, the columns of
PPMs should be divided into multiple pipeline stages for
larger operand sizes, which will also be dealt with in future
works.

Acknowledgments

This work has been supported by a Korea University Grant.

References

[1] S.L. Chiu, “Fuzzy model identification based on cluster estimation,”
J. Intelligent and Fuzzy Syst., vol.2, pp.267–278, 1994.
DOI: 10.3233/IFS-1994-2306

[2] K.-J. Cho, “Efficient unsigned squarer design techniques,” IEICE
Electron. Express, vol.9, no.6, pp.422–428, March 2012.
DOI: 10.1587/elex:9.422

[3] S. Bui and J.E. Stein Jr., “Additional Optimizations for Paral-
lel Squarer Units,” Proc. IEEE Int. Symp. Circuits and Syst.,
pp.361–364, July 2014. DOI: 10.1109/ISCAS.2014.6865140

[4] A.G.M. Strollo and D.D. Caro, “Booth folding encoding for high
performance square circuits,” IEEE Trans. Circuits and Syst. II,
vol.50, no.5, pp.250–254, May 2003.
DOI: 10.1109/TCSII.2003.810574

[5] D.W. Matula, “Higher radix squaring operations employing left-
to-right dual recoding,” Proc. 19th IEEE Symp. Computer Arith.,
pp.40–47, June 2009. DOI: 10.1109/ARITH.2009.34

[6] Y. Tanaka and S. Wei, “Efficient squaring circuit using canoni-
cal signed-digit number representation,” IEICE Electron. Express,
vol.11, no.2, p.20130955, Jan. 2014.
DOI: 10.1587/elex.11.20130955

[7] J.-T. Yoo, K.F. Smith, and G. Gopalakrishnan, “A fast Parallel
squarer based on divide-and-conquer,” IEEE J. Solid-State Circuits,
vol.32, no.6, pp.909–912, June 1997. DOI: 10.1109/4.585298

[8] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating Binarized Neural Networks: Comparison
of FPGA, CPU, GPU, and ASIC,” Int. Conf. Field-Programmable
Technology, pp.77–84, Dec. 2016. DOI: 10.1109/FPT.2016.7929192

[9] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Efficient synthesis of
compressor trees on FPGAs,” Proc. ASP-DAC, pp.138–143, 2008.
DOI: 10.1109/ASPDAC.2008.4483927

[10] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol.34, pp.349–356, 1965.

[11] I. Koren, Computer Arithmetic Algorithms, 2nd ed., A K Peters,
MA, 2001.

[12] Altera Corp., “Integer Arithmetic IP Cores User Guide,” UG-01063,
https://www.altera.com, accessed 2017.

[13] Altera Corp., “Stratix V Device Overview,” SV51001,
https://www.altera.com, accessed 2017.

[14] Q. Li, G. Liang, and A. Bermak, “A High-speed 32-bit
Signed/Unsigned Pipelined Multiplier,” Fifth Int. Symp. Electron.
Design, Test & App., pp.207–211, 2010.
DOI: 10.1109/DELTA.2010.10

http://dx.doi.org/10.3233/IFS-1994-2306
http://dx.doi.org/10.1587/elex.9.422
http://dx.doi.org/10.1109/iscas.2014.6865140
http://dx.doi.org/10.1109/tcsii.2003.810574
http://dx.doi.org/10.1109/arith.2009.34
http://dx.doi.org/10.1587/elex.11.20130955
http://dx.doi.org/10.1109/4.585298
http://dx.doi.org/10.1109/fpt.2016.7929192
http://dx.doi.org/10.1109/aspdac.2008.4483927
http://dx.doi.org/10.1109/delta.2010.10

