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Bilateral Convolutional Activations Encoded with Fisher Vectors
for Scene Character Recognition

Zhong ZHANG†a), Member, Hong WANG†, Shuang LIU†, and Tariq S. DURRANI††, Nonmembers

SUMMARY A rich and robust representation for scene characters plays
a significant role in automatically understanding the text in images. In this
letter, we focus on the issue of feature representation, and propose a novel
encoding method named bilateral convolutional activations encoded with
Fisher vectors (BCA-FV) for scene character recognition. Concretely, we
first extract convolutional activation descriptors from convolutional maps
and then build a bilateral convolutional activation map (BCAM) to cap-
ture the relationship between the convolutional activation response and the
spatial structure information. Finally, in order to obtain the global fea-
ture representation, the BCAM is injected into FV to encode convolutional
activation descriptors. Hence, the BCA-FV can effectively integrate the
prominent features and spatial structure information for character represen-
tation. We verify our method on two widely used databases (ICDAR2003
and Chars74K), and the experimental results demonstrate that our method
achieves better results than the state-of-the-art methods. In addition, we
further validate the proposed BCA-FV on the “Pan+ChiPhoto” database
for Chinese scene character recognition, and the experimental results show
the good generalization ability of the proposed BCA-FV.
key words: bilateral convolutional activations, Fisher vectors, scene char-
acter recognition

1. Introduction

Characters, as the basic units of texts, are of great seman-
tic value. Many applications in computer vision and pattern
recognition involve the field of scene text recognition to au-
tomatically understand the texts in images. Conventional
optical character recognition (OCR) based methods [1], [2]
feed the binary image into OCR engine and perform well
on the scanned documents. However, the scene texts dif-
fer from the traditional scanned ones due to heavy occlu-
sion, blur and complex background, which is hard to bina-
rize. Over the past decades, many approaches [3]–[6] are
proposed to recognize scene texts. Although these methods
have been reported good performance by combining lan-
guage prior [7], [8], the scene character recognition is the
primary determinant to the scene text recognition. Thus, in
this letter, we focus on the scene character recognition.

The challenges of accurately recognizing scene char-
acters lie in arbitrary fonts, noises, deformations, complex
background and so on. Therefore, a powerful and effective

Manuscript received October 30, 2017.
Manuscript revised January 21, 2018.
Manuscript publicized February 2, 2018.
†The authors are with Tianjin Key Laboratory of Wireless Mo-

bile Communications and Power Transmission, Tianjin Normal
University, Tianjin, China.
††The author is with Department of Electronic and Electrical

Engineering, University of Strathclyde, Glasgow Scotland, UK.
a) E-mail: zhong.zhang8848@gmail.com

DOI: 10.1587/transinf.2017EDL8238

feature representation strategy is indispensable for scene
character recognition. Considering the significance of fea-
ture representation, Gao et al. [9] build spatial embedded
dictionary under the framework of the bag-of-words (BoW)
model to obtain the final features. Newell et al. [10] ex-
tract the multiscale histogram of oriented gradient (HOG)
features to recognize the characters in natural scenes. These
methods achieve considerable progress in the task of scene
character recognition, but they come with the problem of
insufficient discrimination ability of features.

To generate more discriminative representations, Per-
ronnin et al. [11], [12] utilize Gaussian mixture model
(GMM) to learn codebooks and obtain Fisher vectors (FV)
by taking the derivative of GMM parameters. The FV is an
enriched representation and its superiority manifests that en-
coding the high level information is more effective than the
number of occurrences of visual words. Nowadays, several
researchers resort to convolutional neural network (CNN)
features. Wang et al. [13] regard the output of the last fully-
connected layer of CNN as the final image representations.
Jaderberg et al. [14] also report impressive accuracy by us-
ing the fully-connected layer based features. In [15], [16],
the convolutional activations based features replace the full-
connected ones to boost the classification accuracy.

In this letter, we propose a novel representation method
named bilateral convolutional activations encoded with
Fisher vectors (BCA-FV) to recognize the characters in
natural scenes. For character images, convolutional acti-
vations describe the particular image regions and the lay-
out of convolutional activations corresponds to stroke struc-
tures. Hence, we first extract convolutional activation fea-
tures from the convolutional layers of CNN to retain rich
stroke structure information. Then, we build a bilateral con-
volutional activation map (BCAM) to reflect the relationship

Fig. 1 Visualization of the convolutional activation map. (a) an image
sample from the ICDAR2003 database, (b) the convolutional summing map
(CSM), and (c) the bilateral convolutional activation map.
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between the spatial structure and the activation response. As
visualized in Fig. 1 (c), the BCAM keeps the highly active
responses of the convolutional map and removes the less
important ones. Finally, the BCAM is embedded into the
FV encoding strategy to derive a powerful character repre-
sentation. In fact, the highly active responses indicate the
salient parts, and therefore the BCAM can be regarded as
the weight map of FV, which highlights the useful informa-
tion for classification.

2. The Proposed Method

2.1 Convolutional Activations

In the convolutional layer, the filter traverses the input im-
age in a sliding-window manner to generate a convolutional
map. Generally, the top-left (bottom-right) activation in
a convolutional map is generated by the top-left (bottom-
right) part of the input image. Therefore, the obtained con-
volutional map involves not only the responses of activa-
tions, but also the stroke structure information of characters.
In order to mine the useful information as much as possi-
ble, we extract convolutional activation descriptors from the
convolutional maps.

The convolutional maps can be viewed as a tensor of
size W × H × N, which contains N convolutional maps with
width W and height H. The tensor can be treated as a map
consisting of (W × H) N-dimensional convolutional activa-
tion descriptors. We select one convolutional layer from the
pre-trained CNN network as described in [14] for the ex-
traction of convolutional activation descriptors. The convo-
lutional activation descriptors extracted from different posi-
tions of the convolutional maps represent diverse parts and
preserve the stroke structure information of characters.

2.2 Bilateral Convolutional Activations Map

As we known, each activation response in a convolutional
map describes a local part of the input image and the high
responses indicate the salient parts. To discover the impor-
tant feature and spatial stroke information, we propose the
bilateral convolutional activations map (BCAM) to build the
relationship between the spatial structure and the activation
response. Specifically, we first add all the convolutional
maps of one convolutional layer to capture the completed
spatial response information of characters. Let Ci denote
the i-th response of the convolutional summing map (CSM)
and it is formulated as:

Ci =

N∑

n=1

cn
i , (1)

where cn
i denotes the i-th activation response of the n-th con-

volutional map and N is the number of the convolutional
maps. The CSM is shown in Fig. 1 (b), from which we can
see that those high activated positions mainly distribute in
the character area. This illustrates that the value of Ci can

reflect the importance of the local features. However, some
high responses may be distracters, such as noise, outlier, etc.
To overcome this limitation, the BCAM is proposed based
on the CSM. The j-th activation response of the BCAM is
formulated as:

Oj =
∑

i

Bi jCi, (2)

where i and j represent the activation response indexes, and
Bi j is designed as:

Bi j = exp(
−|Ci −C j|
σ1

) + αexp(
−|Li − Lj|
σ2

), (3)

where Li and Lj are the corresponding coordinates of Ci and
C j, respectively, and α is the parameter to regulate the influ-
ence of spatial similarity. The first term of Eq. (3) indicates
the importance based on the activation response differences,
and the second term indicates the importance based on the
spatial distance between the activation responses. Both of
them are controlled by σ1 and σ2, respectively.

Generally, the activation responses of the neighbors in
a convolutional map are similar. If the activation responses
of the neighbors in the CSM are similar, the Bi j is large to
highlight the salient parts. While if the activation responses
of the neighbors in the CSM differ greatly, there may be the
noise or outlier. In this situation, Bi j is small so as to restrain
the distracters. We visualize the BCAM in Fig. 1 (c), from
which we can see that the BCAM boosts the salient visual
content and suppresses the interference components.

2.3 Encoding with BCAM

In order to combine the local and global information,
we propose bilateral convolutional activations encoded
with Fisher vectors (BCA-FV) for character representation.
Specifically, the BCAM is embedded into FV to encode the
convolutional activation descriptors. Assuming that the di-
mensionality of convolutional activation descriptor is N, the
N-dimensional derivatives with respect to the mean vector
μk and diagonal variance vector σk of the k-th GMM are
denoted as:

fμk =
1

M
√
wk

M∑

j=1

Ojφ j(k)(
x j − μk

σk
), (4)

fσk =
1

M
√
wk

M∑

j=1

Ojφ j(k)[
(x j − μk)2

σ2
k

− 1], (5)

where wk denotes the weight of the k-th Gaussian compo-
nent, φ j(k) is the soft assignment weight of convolutional
activation descriptor x j to the k-th Gaussian component, and
M is the total number of convolutional activation descriptors
in an image. We concatenate fμk and fσk for all the K Gaus-
sian components to generate the feature vector for the MCA-
FV which is a 2NK-dimensional vector. The BCAM can be
regarded as a weight map of FV. By injecting the BCAM
into FV encoding, the proposed BCA-FV can automatically



LETTER
1455

select the useful descriptors for characters, leading to a more
powerful feature representation.

3. Experiments

3.1 Databases and Implementation Details

We first evaluate the proposed method on two typical
scene character recognition databases: ICDAR2003 [17]
and Chars74K [18]. Both of them contain 52 classes En-
glish letters, i.e., lower English letters a-z, upper English
letters A-Z, and 10 classes Arabic numbers 0-9. The IC-
DAR2003 database contains 6,185 training and 5,430 test
images, and these images undergo extensive variances such
as nonuniform illumination, distortions and complex back-
grounds. The Chars74K database collected from various
natural scenes has totally 12,503 images. The samples in
this database vary in color, size, font, background, etc.
When performing Chars74K evaluation, we randomly se-
lect 30 images for each class, in which 15 images are used
for training and the remaining are used for testing as de-
scribed in [18], [19]. We also conduct experiments on the
Chinese scene character database “Pan+ChiPhoto” [20] and
adopt the same experimental setup as described in [20].

In the experiments, we utilize the pre-trained CNN net-
work in [14] for the extraction of convolutional activation
descriptors. We employ 64 convolutional maps of the sec-
ond convolutional layer (conv 2), and therefore the dimen-
sionality of the convolutional activation descriptor is 64.
The character images are normalized into 24 × 24. The pa-
rameters σ1 and σ2 are empirically set to 0.05 and 6, respec-
tively, and α is set to 1.5. The parameters σ1, σ2 and α are
chosen on the training set of ICDAR2003 database, and we
directly utilize the same values on the other databases.

3.2 Evaluation of Vocabulary Size of BCA-FV

The vocabulary size K is an importance parameter because
it determines the dimensionality of the final feature vec-
tor and effects the classification results of scene characters.

Fig. 2 Performance of the proposed BCA-FV method under different
size of vocabulary on the ICDAR2003 and Chars74K databases.

Hence, we investigate the influence of the vocabulary size
K of BCA-FV for scene character recognition. Figure 2
shows character recognition accuracy on the ICDAR2003
and Chars74K databases when K = 2, 4, 8, 16, 32, 64, 128.
As can be seen, the character recognition accuracy improves
with the increasing size of vocabulary in a range, but when
K comes to a certain point, the performance drops a little
or fluctuates. For the ICDAR2003 database, the best per-
formance can be obtained when K is equal to 32. While
on the Chars74K database, the highest accuracy is obtained
when K is equal to 8. For the “Pan+ChiPhoto” database, K
is empirically set to 32. With a small size of vocabulary, the
proposed BCA-FV method can achieve high scene character
recognition accuracy.

3.3 Comparison with Other Methods

In Table 1, we compare the proposed BCA-FV method with
other state-of-the-art methods. From Table 1, we can see
that our method is superior to other published methods in-
cluding HOG based and CNN (using fully-connected layer
features) based methods. Compared with HOG+SVM [19]
and Co-HoG [20] which encode the spatial information
by considering the co-occurrence of orientation pairs, our
method achieves superior performance. Compared with
SED [9], DSEDR [19], DMSDR [19] and Stoke Bank [21],
which utilize the HOG as the local descriptors to cap-
ture stroke structure information, the proposed BCA-FV
method outperforms them by more than 3% (8%), 2% (4%),
3% (9%) and 5% (10%) on the ICDAR2003 (Chars74K)
database, respectively. Compared with CNN+softmax [22],
FV+SVM [22] and MCA-FV [23], the superiorities of our
method lie in: (1) the convolutional activation descrip-
tors extracted from the second convolutional layer possess
stronger discriminative ability; (2) the proposed BCA-FV
method can automatically select the useful descriptors with
prominent feature and stroke structure information for char-
acters. The CSM-FV method directly inject the convolu-
tional summing map (CSM) into FV for encoding convo-
lutional activation descriptors, and achieves the accuracies
of 82.98% and 73.12% on the ICDAR2003 and Chars74K
databases, respectively. Noticeably, the performance of the

Table 1 Recognition accuracies (%) of different methods on the IC-
DAR2003, Chars74K and “Pan+ChiPhoto” databases.

Algorithm ICDAR Chars74K “Pan+ChiPhoto”
HOG+SVM [19] 77.00 62.00 59.20

Co-HoG [20] 80.50 - 64.30
Stoke Bank [21] 79.80 65.90 -

SED [9] 82.00 67.10 -
DSEDR [19] 82.60 71.80 -
DMSDR [19] 81.70 66.10 -

CNN+softmax [22] 81.57 73.52 53.40
FV+SVM [22] 84.40 74.80 -
MCA-FV [23] 83.40 - 76.70

CNN [14] 86.80 - 61.5

CSM-FV 82.98 73.12 75.34
BCA-FV 85.08 76.02 77.30
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BCA-FV gains higher accuracy than the CSM-FV, because
our method can automatically select the useful descriptors
and remove the less importance ones, leading to a more
powerful representation. The CNN [14] achieves 86.80% on
the ICDAR2003 database for character recognition which
partly attributes to the large amount of additional training
data, i.e., 107k. With limited training data, i.e., 6k, the pro-
posed BCA-FV achieves the accuary of 85.08%.

The proposed BCA-FV achieves the best result on
the Chinese scene character database, i.e., “Pan+ChiPhoto”
database, and the results demonstrate the good generaliza-
tion ability of the proposed method. The proposed BCA-
FV outperforms CNN [14] by more than 15% on the Pan +
Chiphoto database. Since the training samples are limited,
the advantage of CNN could not present and it obtains lower
accuracy.

4. Conclusion

In this letter, we have proposed the BCA-FV, a novel fea-
ture encoding method for recognizing characters in natu-
ral scenes, to automatically select the useful descriptors
in the encoding process. The proposed BCA-FV method
builds the BCAM for each image to reflect the relation-
ship between the spatial structure and the activation re-
sponse, and embeds the BCAM into FV to encode the con-
volutional activation descriptors for scene character repre-
sentation. The proposed BCA-FV method has been vali-
dated on three well-known databases, i.e., the ICDAR2003,
Chars74K and “Pan+ChiPhoto” databases, and the exper-
imental results outperform the other previous methods in
scene character recognition.
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