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Accurate Target Motion Analysis from a Small Measurement Set
Using RANSAC

Hyunhak SHIN†, Bonhwa KU†, Wooyoung HONG††, Nonmembers, and Hanseok KO†a), Member

SUMMARY Most conventional research on target motion analysis
(TMA) based on least squares (LS) has focused on performing asymptot-
ically unbiased estimation with inaccurate measurements. However, such
research may often yield inaccurate estimation results when only a small set
of measurement data is used. In this paper, we propose an accurate TMA
method even with a small set of bearing measurements. First, a subset of
measurements is selected by a random sample consensus (RANSAC) algo-
rithm. Then, LS is applied to the selected subset to estimate target motion.
Finally, to increase accuracy, the target motion estimation is refined through
a bias compensation algorithm. Simulated results verify the effectiveness
of the proposed method.
key words: bearing only target motion analysis, RANSAC, least squares

1. Introduction

Target motion analysis is a critical issue for the adoption
of acoustic sensor based surveillance systems. Especially
for moving platform scenarios, such as the passive sensors
installed on ships, bearings are the only reliable form of
acquirable information. Considering this constraint, bear-
ing only target motion analysis (BOTMA), which estimates
the trajectory of targets based on bearing measurements, has
been actively researched over the last few decades [1]–[12].

Early research focused on recursive state estimation
based on the Kalman filter (KF) which is limited to lin-
ear state/measurement models [1], [2]. To deal with non-
linear models, approaches such as extended KF (EFK) and
unscented KF (UKF) have been developed [3]. However,
due to the strong dependency of performance on initial mo-
tion settings, estimation results often diverge when scenar-
ios are inaccurately initialized. Therefore, to avoid this di-
vergence problem, a particle filter (PF) was employed [4].
Although the particle filter was capable of representing the
uncertain initial motion with multiple particles, the com-
putational load caused difficulties in achieving real time
operation.

To improve the applicability of the method to real life
situations, some studies have focused on accurately obtain-
ing initial target motion. These studies find the best target
motion parameter, and assume that the target moves con-
stantly over a short period. Some approaches attempt to find
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the best parameter by using maximum likelihood (ML) es-
timators [5]. However, such methods often converge at lo-
cal minima when implemented by iterative numerical search
algorithms.

For scenarios applying the white-Gaussian noise as-
sumption, the ML estimator can be simplified to a Least
Square (LS) estimator. One advantage of the LS algorithm
is that it has a closed form solution and is free of the pre-
viously mentioned convergence problem. However, in real
noisy environments, LS estimators are vulnerable to a biased
estimation problem and to overcome this problem, many
new methods have recently been proposed [6]–[12]. In order
to suppress the estimation bias, approaches based on an in-
strumental variable (IV) matrix have been proposed [7]–[9].
In addition, asymptotically unbiased estimation algorithms
based on total LS (TLS) have also been proposed [10]–[12].
All the aforementioned methods achieve asymptotically un-
biased estimation if a large set of measurements is obtained.
However, in practice the demand for an immediate response
in many maritime surveillance applications forces surveil-
lance systems to make quick analyses of targets before suf-
ficient measurements have been obtained.

This paper proposes a method of improving the per-
formance of LS based estimations given the limitation of a
small measurement dataset. First, a RANSAC algorithm is
incorporated into the BOTMA application in order to deter-
mine a set of useful measurements. Then, target motion is
estimated using the selected subset of measurements. Fi-
nally, to improve the accuracy of the estimation results, the
estimated parameters are refined via an instrumental vari-
able algorithm.

The rest of this paper is organized as follows: Sect. 2
includes details of BOTMA, while Sect. 3 describes the de-
tails of the proposed algorithm. Section 4 provides the ex-
perimental results obtained in various scenarios. Finally,
conclusions are drawn in Sect. 5.

2. BOTMA Formulation

As shown in Fig. 1, the considered acoustic sensor based
surveillance system is composed of a moving passive sensor
which obtains consecutive target bearing measurements.

At time k, a bearing measurement can be obtained by
the following equation:

θk = tan−1

(
py,k − ry,k

px,k − rx,k

)
+ nk (1)
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Fig. 1 BOTMA geometry of an acoustic surveillance system.

where θk, pk = [px,k, py,k], rk = [rx,k, ry,k], nk are the bearing
measurement, target location, sensor location, and measure-
ment noise, respectively, at time k. It is assumed that the
sensor location is constantly obtained using a Global Posi-
tioning System (GPS). In addition, it is assumed that a tar-
get maneuvers according to a motion model with constant
parameters. Position at time k is given by:

pk = Fkx0 (2)

where x0 = [p0, v0, a0] is a set of model parameters repre-
senting the initial position, velocity and acceleration of the
target and Fk follows the constant acceleration model as:

Fk =

[
1 0 kT 0 0.5 × (kT )2 0
0 1 0 kT 0 0.5 × (kT )2

]
(3)

where T is the bearing measurement sample interval.

3. Proposed Method

3.1 Selection of Measurements Based on RANSAC

RANSAC is a popular algorithm in the field of computer
vision and typically applied to estimate the parameters of
geometric transformations between images [13]. It allows
the outliers of the transformation matrices to be discarded
by iteratively searching for faulty matched points between
two images. Likewise, in the BOTMA scenario, measure-
ments with large errors are also regarded as outliers of the
target motion model. Therefore, the purpose of applying
RANSAC to BOTMA is to reduce outliers and enhance the
performance of target motion estimation.

Figure 2 presents a flowchart of the proposed measure-
ment selection method. The method is composed of a hy-
pothesis generation process and an update process. The hy-
pothesis generation process creates a hypothesis represent-
ing a possible target trajectory. In other words, at time k,
m measurements are randomly selected from the acquired
measurements θ1, θ2, . . . , θk that compose the trajectory hy-
pothesis. Then, using those selected measurements, the
model parameters of the hypothesis are calculated by least
squares estimation. From these model parameters, a trajec-
tory hypothesis can be constructed using Eq. (2).

Fig. 2 Flowchart of the proposed method

In the update process, the generated hypothesis is up-
dated by comparing its inlier costs to those of the best hy-
pothesis estimated by the previous iteration process. The set
of inliers, Sinlier, is selected by the following equation:

Sinlier = {θi : ‖θi − θ̂i‖ < θth} (4)

where θth is a predefined constant for determining the inliers
and θ̂i is the re-estimated bearing of the generated trajectory
at time i. The costs of the selected measurements are simply
determined using the following equation:

Cinlier = |Sinliner | (5)

where |Sinliner | represents the number elements in the set of
inliers. If the total cost of the inliers of a generated hypoth-
esis exceeds the current maximum cost, the set (Sbest) and
cost (Cbest) of inliers are updated. This hypothesis genera-
tion and update process is repeated until the number of iter-
ations reaches a maximum iteration number D defined as:

D =
log(1 − pinlier)
log(1 − αmk )

(6)

where α is the ratio of the number of inliers to the number of
acquired bearing measurements and pinlier is the probability
of only selecting actual inlier measurement at least once in
the random generation process [13], [14].

3.2 Refinement with Selected Measurements Based on In-
strumental Variables

Instrumental Variable (IV) method is applied as shown



LETTER
1713

in Fig. 2 to improve the performance of the LS estima-
tor using the selected subset of measurements (Sbest =

{θs1 , θs2 , · · · θsL }). The estimation based on the IV method
is constructed as follows [7]:

x̂0 =
(
GT A

)−1
GT b (7)

where G is the matrix of instrumental variables defined as
the following:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v̂T
s1

Fs1

v̂T
s2

Fs2

...

v̂T
sL

FsL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, v̂si =

⎡⎢⎢⎢⎢⎣ sin θ̂si

−cos θ̂si

⎤⎥⎥⎥⎥⎦ (8)

where θ̂si is the bearing angle re-estimated by the bias com-
pensated LS estimator using the selected subset of measure-
ments at time si. Then, A and b can be constructed by con-
secutive bearing measurements and the positions of the sen-
sor as:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vT
s1

Fs1

vT
s2

Fs2

...

vT
sL

FsL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, vsi =

[
sin θsi

−cos θsi

]
(9)

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vT
s1

rs1

vT
s2

rs2

...

vT
sL

rsL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

4. Experimental Results

4.1 Experimental Environment

As displayed in Fig. 3, the considered scenario is com-
posed of a moving target and an observer. It is assumed
that the target moves in a curved line p0 = [−160, 1550],
v0 = [−0.8,−1.3], a0 = [0.005,−0.005]. In addition, the
moving observer collects bearing measurements of the tar-
get featuring i.i.d. zero mean Gaussian noise and a sampling
interval T = 1. The predefined parameters of the measure-
ment selection algorithm are summarized in Table 1.

The effectiveness of the proposed algorithm is evalu-
ated in terms of the root mean squared error (RMSE), which
is defined by the following equation:

RMSE =

√√√
1
Ns

Ns∑
i=1

‖x0 − x̂0,i‖ (11)

Table 1 Detail parameters for RANSAC in the experiments

where NS is the total number of Monte Carlo runs, x0 is the
actual model parameter of the target and x̂0,i is the model pa-
rameter of the target as estimated by the i-th iteration. Sim-
ulations were conducted using MATLAB with the Monte-
Carlo simulation over 500 iterations.

4.2 Discussion of Experimental Results

Figure 4 shows the time averaged RMSE of position against
the number of randomly selected measurements (m) in the
hypothesis generation process. The bearing noise standard
deviation is set to 3 degrees. According to the results, setting
a large number for m increases randomness and decreases
performance of the proposed algorithm. On the other hand,
setting an insufficient value for m generates inaccurate esti-
mations for the hypothesis trajectory. Since the tipping point
is m = 10, we set the value of m to 10 in all experiments
hereafter.

Figure 5 shows the RMSE of the estimated initial

Fig. 3 Simulated surveillance scenario for BOTMA

Fig. 4 Time averaged RMSE of the estimated position against the num-
ber of randomly selected measurement

Fig. 5 RMSE of estimated model parameter, (a) position (b) velocity,
over time



1714
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.6 JUNE 2018

Fig. 6 Time averaged RMSE of the estimated model parameter against
standard deviations of noise, (a) position (b) velocity

position and velocity of the target. The bearing noise stan-
dard deviation is also set to 3 degrees. The red line rep-
resents the RMSE of the LS estimator, the green line the
RMSE of the TLS estimator [11], the blue line the RMSE of
the IV estimator [8] and the black line the RMSE of the pro-
posed algorithm based on measurement selection. Accord-
ing to the results, the performance of the LS estimator is de-
graded due to severe bearing measurement noise. However,
utilizing the reduced set of measurements selected by the
RANSAC based method drastically reduces the RMSE of
the position and velocity. It is particularly noted that the pro-
posed algorithm outperforms conventional estimators when
small measurement sets are available and that the proposed
algorithm converges faster than conventional estimators do.

Figure 6 shows the time averaged RMSE of position
and velocity for varying standard deviations of noise. Ac-
cording to the results, the proposed measurement selection
algorithm has no effect on estimation performance in rela-
tively low-noise environments. However, they demonstrate
that as the standard deviation of bearing noise increases the
proposed measurement selection method slightly increases
performance. Therefore, it is possible to say that the pro-
posed measurement selection algorithm applied in BOTMA
is effective when given a small set of noisy measurements.

5. Conclusions

This paper investigated the BOTMA problem when an only
small set of measurements is available. Because the prompt
generation of target information is critical to many maritime
surveillance applications, this paper attempted to provide
more precise motion information when using a small set
of measurements. The proposed method consisted of the
following two procedures. First, a measurement selection
process based on RANSAC reduced the influence of noisy
measurements. Second, an efficient estimation method
based on the selected measurements helped to determine tar-
get motion precisely. According to the simulation results,

compared to conventional methods, the proposed method
was better at quickly estimating precise motion in high-
noise conditon.
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