
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018
1203

LETTER

Filter Level Pruning Based on Similar Feature Extraction for
Convolutional Neural Networks

Lianqiang LI†, Student Member, Yuhui XU†, and Jie ZHU†a), Nonmembers

SUMMARY This paper introduces a filter level pruning method based
on similar feature extraction for compressing and accelerating the convolu-
tional neural networks by k-means++ algorithm. In contrast to other prun-
ing methods, the proposed method would analyze the similarities in recog-
nizing features among filters rather than evaluate the importance of filters
to prune the redundant ones. This strategy would be more reasonable and
effective. Furthermore, our method does not result in unstructured network.
As a result, it needs not extra sparse representation and could be efficiently
supported by any off-the-shelf deep learning libraries. Experimental results
show that our filter pruning method could reduce the number of parameters
and the amount of computational costs in Lenet-5 by a factor of 17.9× with
only 0.3% accuracy loss.
key words: CNNs, filter, pruning, feature extraction, k-means++, struc-
tured

1. Introduction

Convolutional Neural Networks (CNN) are famous for their
success in various of artificial intelligence tasks [1]–[3].
However, most of parameters in CNN models are usually
redundant. This redundancy makes it hard for CNN mod-
els to be deployed in both computation limited and memory
limited devices.

To address this issue, there are a number of works
have been proposed [4]–[7]. Among them, pruning is one
of the most outstanding methods to alleviate the complexity
of CNNs. Han et al. [7] introduced a simple yet effective
pruning strategy. It was reported that Lenet-5 could be com-
pressed by a factor of 12×. But such improvements cannot
transfer directly to faster inference by modern deep learn-
ing libraries due to its unstructured pattern. To avoid the
shortcoming, [8], [9] have studied structured pruning meth-
ods based on removing filters according to their importance
indices. However, these importance criteria do not yield sat-
isfactory results because of their unreasonable tactics.

In this paper, we present a novel filter level prun-
ing method for convolutional neural networks by k-
means++ [10] algorithm. First, we employ the k-means++
algorithm to enforce the filters to enter specific clusters.
Second, we will retain the filter which is the closest to
the cluster center and prune the others in every cluster.
Then the pruned model will be fine-tuned to recover ac-
curacy. Our approach aims to find the correlation among

Manuscript received November 9, 2017.
Manuscript revised December 19, 2017.
Manuscript publicized January 18, 2018.
†The authors are with the Dept. of Electronic Engineering,

Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China.
a) E-mail: zhujie@sjtu.edu.cn (Corresponding author)

DOI: 10.1587/transinf.2017EDL8248

filters in feature extraction and prune the analogous ones.
Naturally, we could obtain more lightweight CNN models.
We evaluate the proposed pruning strategy by the classical
CNN model, Lenet-5 [1], on MNIST. Results show that our
method has the ability to reduce the number of parameters
and the amount of inference costs in Lenet-5 by a factor of
17.9× with only 0.3% accuracy loss, which has significant
improvements than state-of-the-arts.

The rest of this paper is organized as follows. We de-
scribe the related works briefly in Sect. 2. Section 3 intro-
duces the proposed filter level pruning in detail. Section 4
presents the experimental results. Finally, we summarize
the conclusions and present our future research direction in
Sect. 5.

2. Related Works

In this section, we will give a brief introduction to some of
pruning methods.

Srinivas et al. [6] proposed a data-free approach to
carry out CNN models compression. They managed to
avoid employing any training data by minimizing the ex-
pected squared difference of logits. Compared to the former
works, they removed a neuron at a time instead of removing
some weights at a time. All of the reduction is implemented
on fully connected layers. There is no pruning operation
on convolutional layers. In practice, convolutional layers
are the computation intensive layers. Thus, this method has
great limitations.

Han et al. [7] introduced a pruning approach by ap-
plying L1/L2-norm regularizations to remove the small
weights. The basic idea of their work is that a weight
connectivity should be pruned if it is less than a prede-
fined threshold. Both convolutional layers and fully con-
nected layers could be pruned by this strategy. Their method
achieved the compression ratio on Lenet-5 by a factor of
12×. Although the performance is inspiring, the pruning
would result in unstructured pattern in weights. This short-
coming requires long fine tuning time which may exceed the
original network training by a factor of 3×.

In line with our work, several works [8], [9] have ex-
plored structured pruning by removing filters. The main
challenge is to evaluate the importance of filters. Li et al. [8]
judged the importance of each filter by calculating abso-
lute weight sum. This criterion is simple and naive. Small
weights also have large effects on the final accuracy. Hu et
al. [9] introduced Average Percentage of Zeros to assess the

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers



1204
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

importance of each filter. A filter may be selected as unim-
portant one if most outputs of the filter are zero. Their tactic
seems more reasonable. Nevertheless, this work needs lots
of extra calculations and the compression ratio is not satis-
fying.

3. The Proposed Filter Level Pruning for CNNs

The input feature map in convolutional layer i could be
viewed as a 3-D tensor Ii ∈ RNi×Hi×Wi , where Ni, Hi and
Wi are the number of channels, height and width of input
feture map, respectively. The weights in this layer could be
expressed as a 4-D tensor Wi ∈ RNi+1×Ni×hi×wi , where Ni+1

is the number of filters, hi and wi are the spatial height and
width of filters. Wi consists of a bunch of 3-D filters Wn

i
(1 ≤ n ≤ Ni). They perform convolutional operation with
the input could produce another 3-D tensor, output feature
map, Oi ∈ RNi+1×Ho×Wo , where Ho and Wo are the height and
width of the output feature map. Oi is also the input for the
(i + 1)th convolutional layer.

As we were studying the prior structured pruning meth-
ods, we found two main deficiencies. On the one hand, their
important indices are little unconvincing. It may be logical
that we could prune some parameters if their weights are
smaller than a specific threshold in fully connected layers.
But filters with smaller sum of weights do not mean less im-
portant than larger ones in convolutional layers. Different
filters could capture different features. On the other hand,
their optimization procedures are too difficult to converge in
a short time because there are several constraints on weights
at one time. To solve these drawback, we improve structured
pruning method by more reasonable and effective strategy.
The core of our filter level pruning method is shown in Al-
gorithm 1.

Algorithm 1 Filter level pruning based on feature selection
by k-means++
Input: A trained CNN model, target layer i and tolerance threshold α for

accuracy loss
Output: Pruned CNN model
1: Initialize k=Ni-1
2: repeat
3: Use k-means++ to force the Wn

i (1 ≤ n ≤ Ni) into k clusters
4: Keep the filter which is the most closet to centroid for each cluster,

prune the others and their output feature maps
5: Fine tuning the pruned model as training process
6: k=k-1
7: until Accuracy loss is larger than α

We merge filters with highly correlated relationships
into one instead of removing filters by additional regulariza-
tions. Specifically, we use k-means++ algorithm to identify
the similar filters for each layer of trained CNN models, and
we only keep the filter which is the closest to the centroid
for every cluster. The motivation of this idea is straightfor-
ward. If some filters belong to one cluster, they are simi-
lar to each other in capturing features. The proposed filter

Fig. 1 The illustration of the proposed pruning method

level pruning can reduce feature map directly, which con-
denses CNN models into thinner ones. The thinner mod-
els are able to gain acceleration via modern deep learning
libraries because no additional sparse representation is re-
quired. Figure 1 shows the illustration of our method briefly.
If we prune (Ni+1 − k) filters for layer i, we could reduce
(Ni+1 − k)NihiwiHoWo operations as the pruned filers’ cor-
responding feature maps would be removed. The channels
which are related to those removed feature maps in the next
convolutional layer would also be removed. Actually, keep-
ing k filters of layer i will reduce (Ni+1− k)/Ni+1 of the com-
putation costs for both layers i and i + 1.

Our method could also be used in fully connected layer.
However, we choose to follow the approach in [7]. There
are two reasons. First, we can get higher compression ra-
tio. Furthermore, the function of fully connected layer is
to deal with different combinations of features learned from
convolutional layer. The method in [7] would be more sensi-
ble here. Despite it results in unstructured weight matrices,
computational costs in fully connected layer are so small
that we can ignore the unstructured influence.

4. Experiments

In this section, we evaluate the effectiveness of our method
in the classical CNN model, LeNet-5, on MNIST by
Caffe [11]. Lenet-5 has two convolutional layers and two
fully connected layers, which achieves 0.87% error rate
on MNIST. We employ the pipeline that pruning a trained
model layer by layer and then fine tuning iteratively. Our
fine tuning is same to the training process, without introduc-
ing any other tricks except the learning rate is set to be 0.1
times as large as the original one. The tolerance threshold
for accuracy loss in Algorithm 1 is 0.3%.

Table 1 gives the performance of our method† and the
reported performance in [6], [7] and [9] in terms of the per-
centage of retained parameters (Paras), the percentage of re-
tained floating point operations (FLOPs) and the final accu-
racy. Please note that the approach in [8] is similar to ours,
and its authors did not present results on Lenet-5. We repro-
duce their algorithm and apply the same pruning ratios of
ours into [8] to get a more intuitive contrast.

The results in Table 1 show that the proposed filter
level pruning method by k-means++ has advantages over
the state-of-the-arts with respect to the number of param-

†More details are in https://github.com/shiyuetianqiang



LETTER
1205

Table 1 The performance of different pruning methods on LeNet-5
��������Layer

Method
Ours Ref. [6] Ref. [7] Ref. [8] Ref. [9]

Conv1
Paras (%) 20 100 66 20 100

FLOPs (%) 20 100 66 20 100

Conv2
Paras (%) 16 100 12 16 48

FLOPs (%) 3.2 100 10 3.2 48

Fc1
Paras (%) 5 6 8 5 50.4

FLOPs (%) 5 6 6 5 50.4

Fc2
Paras (%) 5 100 19 5 100

FLOPs (%) 5 100 10 5 100

Total
Paras (%) 5.66 12.66 8 5.66 50.89

FLOPs (%) 5.63 83.6 16 5.63 55.06

Accuracy (%) 98.83 94.18 99.23 98.17 99.26

eters and the amount of computational costs. More con-
cretely, our method has the ability to reduce the number of
parameters and FLOPs in Lenet-5 on MNIST by a factor of
17.9× with only 0.3% accuracy loss due to its cross-layer
linkage of structured pruning. As for [6], it only concen-
trates on pruning the first fully connected layer, which helps
it to retain 12.66% parameters compared to original Lenet-
5. But the computational complexity does not decrease too
much and the loss in accuracy is unacceptable due to its
reckless pruning strategy. As far as [7] is concerned, al-
though its accuracy is 0.07% higher than the baseline, the
number of retained parameters and FLOPs is still more than
ours. More crucial is that this approach needs extra sparse
representation and special hardware for acceleration. The
work in [8] obtains the same compression ratios as ours in
parameters and computational complexity because it also
employs filter level pruning method. However, the pruning
strategy in [8] is too native to retain the accuracy. The ac-
curacy in [9] is the highest one, which is 0.13% higher than
the baseline. In fact, it only deals with the second convo-
lutional layer and the first fully connected layer. The final
pruning ratio is relatively low. Our method, [7] and [8] could
achieve similar or even better accuracy performance in such
a low pruning ratio.

To ensure fair comparison and validate the superiority
of the proposed method thoroughly, we explore the accu-
racy of our method, [7] and [8] against the pruning ratio on
the convolutional layers of LeNet-5. The three algorithms
carry out pruning on all of the convolutional layers. Please
note that the performance of the second convolutional layer
is obtained on the basis of 80% pruning ratio for the first
convolutional layer. Results are shown in Fig. 2.

We could see from Fig. 2 (a) that the accuracy of the
three algorithms would drop with the increase of pruning
ratio in the first convolutional layer. In addition, there is no
apparent difference among them. We could also see that the
accuracy of the proposed algorithm has slight improvements
when pruning ratio is low according to Fig. 2 (b). This may
be because that our approach avoids overfitting to some ex-
tent under such circumstances. It is clear that the accuracy
performance of our method is superior to the others when
pruning ratio is from 40% to 80% while the accuracy per-
formance of the three algorithms is similar to each other

Fig. 2 Comparison of accuracy loss with the same sparsity for LeNet-5

when pruning ratio is 90%. The explanation is that enforc-
ing highly correlated filters to enter one cluster would not
hurt the accuracy heavily as the fine tuning process could
make up for it easily. However, with the number of clus-
tering centroids becomes less, the fine tuning procedure has
more difficulties in compensating for the accuracy loss. As
a result, the performance of all of the algorithms including
ours would drop heavily at last.

5. Conclusion

In this work, we put forward to a filter level pruning
method based on similar feature extraction for convolutional
neural networks by k-means++ algorithm. The proposed
method belongs to structured pruning. It leverages similar-
ities among the filters in a layer to detect redundant ones
and merge them. Compared with the exiting methods, our
method shows significant improvements both in the number
of parameters and the amount of the FLOPs with negligible
loss in accuracy.

In the future, we would like to carry out our method



1206
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

on large convolutional neural networks. Moreover, devising
another strategy for filter selection is also worthy to be stud-
ied. In a word, filter level pruning is a promising approach
for compression and acceleration, but how to optimize its
strategy still needs a lot of work.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (grant Nos.61371147, and 11433002).

References

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol.86, no.11, pp.2278–2324, 1998.

[2] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, pp.1097–1105, 2012.

[3] T. Matsuo and N. Shimada, “Construction of latent descriptor space
and inference model of hand-object interactions,” IEICE Transac-
tions on Information and Systems, vol.E100-D, no.6, pp.1350–1359,
2017.

[4] J.H. Ko, B. Mudassar, T. Na, and S. Mukhopadhyay, “Design of
an energy-efficient accelerator for training of convolutional neural
networks using frequency-domain computation,” Proceedings of the
54th Annual Design Automation Conference 2017, DAC ’17, New
York, NY, USA, pp.59:1–59:6, ACM, 2017.

[5] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,”
arXiv preprint arXiv:1702.03044, 2017.

[6] S. Srinivas and R.V. Babu, “Data-free parameter pruning for deep
neural networks,” Procedings of the British Machine Vision Confer-
ence 2015, pp.31.1–31.12, 2015.

[7] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” Advances in Neural Infor-
mation Processing Systems, pp.1135–1143, 2015.

[8] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H.P. Graf, “Prun-
ing filters for efficient convnets,” arXiv preprint arXiv:1608.08710,
2016.

[9] H. Hu, R. Peng, Y.W. Tai, and C.K. Tang, “Network trimming: A
data-driven neuron pruning approach towards efficient deep archi-
tectures,” arXiv preprint arXiv:1607.03250, 2016.

[10] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of care-
ful seeding,” Proceedings of the 18th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp.1027–1035, 2007.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1587/transinf.2016edp7410
http://dx.doi.org/10.1145/3061639.3062228
http://dx.doi.org/10.5244/c.29.31

