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PCANet-II: When PCANet Meets the Second Order Pooling
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SUMMARY PCANet, as one noticeable shallow network, employs the
histogram representation for feature pooling. However, there are three main
problems about this kind of pooling method. First, the histogram-based
pooling method binarizes the feature maps and leads to inevitable discrim-
inative information loss. Second, it is difficult to effectively combine other
visual cues into a compact representation, because the simple concatenation
of various visual cues leads to feature representation inefficiency. Third,
the dimensionality of histogram-based output grows exponentially with the
number of feature maps used. In order to overcome these problems, we
propose a novel shallow network model, named as PCANet-II. Compared
with the histogram-based output, the second order pooling not only pro-
vides more discriminative information by preserving both the magnitude
and sign of convolutional responses, but also dramatically reduces the size
of output features. Thus we combine the second order statistical pooling
method with the shallow network, i.e., PCANet. Moreover, it is easy to
combine other discriminative and robust cues by using the second order
pooling. So we introduce the binary feature difference encoding scheme
into our PCANet-II to further improve robustness. Experiments demon-
strate the effectiveness and robustness of our proposed PCANet-II method.
key words: second order pooling, binary feature difference, face recogni-
tion, pain estimation

1. Introduction

Face is one of the most interesting subjects in various
computer vision tasks, and many face analysis tasks have
achieved significant progress in recent years. However,
there are still many unsolved problems in real applications,
such as extreme intra-class variations and large number of
subject classes in face recognition (FR) and affective com-
puting (AC) tasks. In order to solve these problems, large
number of learning-based methods [1], [2], especially deep
learning (DL) methods [3], [4], have been proposed in re-
cent years. The convolutional neural network (CNN) [5] is a
typical deep learning model. Its architecture contains three
main components: convolutional layers, activation func-
tions and pooling layers. The FaceNet [3], which follows
the idea of end-to-end learning, directly learns the mapping
from raw image to Euclidean space. The work [4] inte-
grates the center loss with original softmax loss functions
to further enhance the deep features’ discriminative power.
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However, these methods require a large number of samples
to train the DL model. Comparatively, a number of “shal-
low” learning models are proposed, such as PCA-Network
(PCANet) [6] and Stacked Image Descriptors (SID) [7]. Lei
et al. [7] introduced several existing shallow descriptors into
the deep model by stacking image descriptor layers and
max-pooling layers alternatively. These shallow descrip-
tors include Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA) and Discriminant Face De-
scriptor (DFD) [1]. Another recent noticeable work, i.e.,
PCANet [6], achieved good performances for image classifi-
cation. Compared with CNN, the PCANet does not need the
backward propagation process to update the model’s param-
eters, therefore, it performs well on small-scale dataset. The
PCANet is considered as a simplified model of CNN [6].
The PCANet follows the basic architecture of CNN and con-
sists of a few convolutional layers, non-linear processing
layers and block histogram extraction layers. For convolu-
tional layers, PCANet computes the local patch based filter
kernels by the PCA. For non-linear processing layers, the
whole feature map is binarized by a unit step hashing func-
tion. For the pooling layer, different feature maps are as-
signed to difference weights. Just like LBP [8], around each
pixel, a set of binary values are summed with weights and
a decimal-valued image is obtained. The block-wise his-
tograms are computed in each local block from the decimal-
valued image. At last, the block-wise histograms are con-
catenated into a long vector. We abbreviate the block-wise
histogram as histogram hereinafter unless it is specifically
indicated.

The PCANet method uses histogram technique as the
pooling approach. However, there are three main problems
for this kind of pooling methods. Problem 1: The binary
hashing process sets pixel value of a feature map to be 1
when the original pixel values are larger than 0, otherwise, to
be 0. This binarization process makes a lot of discriminative
information loss during the pooling process. Problem 2: It
is difficult for the histogram-based pooling method to com-
bine other effective visual cues during the pooling process.
Problem 3: The dimensionality 2L of histogram grows ex-
ponentially with the number of feature maps L. Therefore, it
limits the number of feature maps in the convolutional layer.

In order to solve the above problems, we propose a
novel “shallow” network model, namely PCANet-II. We
use the second-order statistics to pool the feature map set.
Thus, we obtain more discriminative information from the
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floating based response value of feature maps (w.r.t Prob-
lem 1). Benefiting from the expandability property of the
second-order pooling technology, we can integrate discrim-
inative and robustness properties into our method simul-
taneously (w.r.t Problem 2). Moreover, the second-order
pooling (usually is implemented by covariance matrix) is
a kind of statistics instead of the distribution variable. So
the dimensionality of covariance matrix’s output is relatively
lower (w.r.t Problem 3). We also employ the binary feature
difference (BFD) scheme to translate the non-numerical en-
coding responses to numerical ones, which can be encap-
sulated into the feature map set, so that the robustness of
PCANet-II can be improved.

There are several works about second order pooling
for CNN model [9], [10]. However, to our best knowledge,
there is no second order pooling scheme for PCANet model.
The methods based on CNN model need backward propa-
gation process and lots of samples to update the parameters
of network. In contrast, our PCANet-II learns model’s pa-
rameters by one forward propagation, so it works well on
small-scale dataset. Moreover, the computational cost of our
PCANet-II is also dramatically reduced.

2. The Proposed Approach

In this paper, we propose a novel “shallow” network model
with the second order pooling and BFD, namely PCANet-II.
Figure 1 illustrates the framework of our PCANet-II model.
We first compute the filter kernels and convolutional re-
sponses of all stages. Next, for the convolutional responses
of each stage, we compute the BFD images from a set of
convolutional feature maps, and cumulate feature maps and
BFD images together as a new feature map set. Then, the
second order statistics is computed from the new feature
map set of all stages. At last, we vectorize the covariance
matrix and stack the output of all stages as the final output
vector. In the following sections, we will describe each step.

2.1 Convolutional Layers

For convolutional layer, we first extract local patches from
all training samples and form a local patch set A ∈ Rk1k2×NP,
where [k1, k2] and P denotes the size and number of local
patch. N is the number of training samples. Then, we com-
pute the leading L1 eigenvectors V1 ∈ Rk1k2×L1 of A by PCA,

Fig. 1 The framework of our proposed PCANet-II method.

and resize each column vector in V1 as the matrix of size
[k1, k2], which is considered as the filter kernel of the first
stage. The response of the first stage can be obtained by
convolving images with learned filter kernel. We further ob-
tain the filter kernels of the ith stage by learning the leading
Li eigenvectors of the local patch set of the (i − 1)th stage’s
convolutional response. At last, we obtain the convolutional
responses (i.e., feature maps) of all stages.

2.2 Computation of Binary Feature Difference

Original PCANet produces a kind of discrete patterns’ in-
dex instead of numerical features through encoding. It is
meaningless to directly use a discrete index for second-order
pooling [11]. In order to further improve the robustness of
PCANet-II, we extend the LBP difference [11] to a more
general BFD encoding scheme, so that non-numerical en-
coding output can be translated to the numerical one. BFD
encodes binary features in any form, which are not limited
to the particular form of local binary patterns. Moreover,
we successfully apply BFD to the face analysis task, which
is out of the scope of [11].

There are Li convolutional outputs
{
fi
l

}Li

l=1
in the ith

stage, where Li denotes the number of filter kernels in the
ith-stage. We binarize these Li feature maps by the unit step

function S (·) and obtain the binary feature maps
{
Bi

l

}Li

l=1
=

{
S
(
fi
l

)}Li

l=1
. Therefore, the average pattern of the lth bina-

rized feature map Bi
l (x, y) in the ith-stage can be defined as

the mean as follow:

µi
l =

∑
(x,y)∈fi

l

Bi
l (x, y)

Ni
, l = 1, 2, · · · , Li, (1)

where Ni denotes the dimensionality of ith-stage’s feature
map. The binary constraint is added to form the mean pat-
tern in integer type:

µi
l =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
(x,y)∈fi

l

Bi
l (x, y)

Ni
+ 0.5

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, l = 1, 2, · · · , Li. (2)

Having obtained the average pattern of each feature
map, the BFD vector can be computed as

(
Bi

l (x, y) − µi
l

)
.

We denote the binary feature difference with float mean and
integral mean as BFD-F and BFD-I. The sign information is
also used to encode BFD and form a discriminative descrip-
tor as follow:

fi
BFD = sgn

(∥∥∥Bi
∥∥∥ − ∥∥∥µi · 1∥∥∥

)
· ∥∥∥Bi − µi · 1∥∥∥, (3)

Bi =
[
Bi

1,B
i
2, · · · ,Bi

Li

]
∈ Rk1k2×Li , µi =

[
µi

1, µ
i
2, · · · , µi

Li

]
∈

R
1×Li . sgn (v) is element-wise sign function, i.e., sgn (v) = 1

when v ≥ 0, and sgn (v) = 0 otherwise.
We consider the BFD image fi

BFD as a new kind of fea-
ture map. In each stage i, we cumulate this BFD image

over the feature maps
{
fi
l

}Li

l=1
to form the new feature map
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set gi =
[
fi
1, · · · fi

Li
, fi

BFD

]
, so gi has Li + 1 column vectors.

2.3 Second Order Statistical Pooling

Compared with the histogram-based pooling, the second-
order statistics can not only provide more discriminative in-
formation of feature maps by preserving the floating-point
format, but also enable to integrate other informative cues
(such as BFD) into the feature map set.

Since different local face patches have different con-
figuration of facial components, we compute the patch-wise
covariance matrices from a set of feature maps. More specif-

ically, there are (Li + 1) outputs
{
gi

l

}Li+1

l=1
in the ith stage,

and each convolutional output gi
l is divided as M patches{

gi
l,m

}M
m=1

. The patch-based covariance matrix describes the
(Li + 1) × (Li + 1) covariances between any pair of feature
maps for the mth local patch. Its formulation is [12]:

CovMi
m = c ×

Li∑

l=1

(
gi

l,m − µ̃i
m

) (
gi

l,m − µ̃i
m

)T
, (4)

where c is the normalization constant and µ̃i
m is the mean of{

gi
l,m

}Li+1

l=1
. Therefore, the correlation of the local blocks of

these “feature maps” is summarized by using the covariance
matrix. Moreover, the covariance matrix has positive semi-
definite and symmetric properties. So we just need around
half the size of covariance matrix. Compared with the first
order statistics, our second order pooling approach reduces
the dimensionality of each block’s output feature from 2Li

to (Li + 1) (Li + 2)/2. At last, the covariance matrices of all
stages are stacked as the final output vector.

3. Experimental Results and Discussion

In order to further prove the generalization of PCANet and
our proposed model, we choose three most representative
datasets, which are not evaluated in the original PCANet pa-
per, to investigate the performance of our proposed method
for classification and regression tasks. For classification
task, we use CAS-PEAL-R1 [13] and PaSC dataset [14] for
constrained FR and unconstrained FR, respectively. For re-
gression task, we use UNBC-McMaster pain dataset [15]
for pain estimation (PE). The performances of PCANet and
PCANet-II are improved with the increase of filter’s num-
ber, while the running time and the output features’ size are
increased, too. Therefore, we set [L1, L2] = [10, 10] for bal-
ancing the performance and computational cost. The filter
size in the convolutional layer and local patch size in the
pooling layer depend on the size of original face image. We
set the number of local patch to be 11 × 11 (i.e., M = 121)
in these layers. The number of stages in PCANet and our
PCANet-II model are set to be 2. We not only directly eval-
uate the performance of all methods by using original output
feature on CAS-PEAL-R1 dataset, but also use the Whiten-
ing PCA (WPCA) to reduce the size of all methods’ output
for a fair comparison with prior methods. The Whitening

Table 1 The accuracy (%) comparison on PEAL-R1 dataset. The results
in brackets are output feature with WPCA.

Methods Expression Accessory Lighting

DFD [1] 98.3 (99.0) 93.7 (96.9) 59.0 (63.9)
E-LBP [16] 98.3 (98.7) 92.0 (94.4) 68.7 (72.9)
PCANet [6] 99.2 (99.4) 95.2 (96.2) 64.2 (69.0)
PCANet-II (BFD-F) 99.4 (99.6) 95.5 (96.5) 83.5 (84.9)
PCANet-II (BFD-I) 99.4 (99.6) 95.2 (96.2) 83.4 (84.3)

PCA (WPCA) reduces the dimensionality of all methods’
output under comparisons into 1,039, 1,000 and 1,000 for
CAS-PEAL-R1, PaSC and UNBC-McMaste datasets, re-
spectively.
Evaluation on CAS-PEAL-R1 Dataset: For CAS-PEAL-
R1 dataset, every image is aligned and cropped into the size
of 150 × 130. Table 1 provides the result comparison be-
tween our method and other methods on CAS-PEAL-R1
dataset. We use the Nearest Neighbor (NN) classifier with
cosine metric. As seen in Table 1, regardless of with WPCA
or without WPCA projection, our method achieved good re-
sults on the Expression and Accessory subsets and signifi-
cantly outperformed other methods on the Lighting subset.

Compared with other state-of-the-art methods, the re-
sults demonstrate that our method has excellent robustness
and descriptive ability for various intraclass variabilities.
Compared with original PCANet, our PCANet-II method
not only preserves the magnitude information of feature
maps by covariance matrix but also contains sign relation-
ship of feature maps by BFD scheme. Because Expression
and Accessory subsets are well controlled, our PCANet-II
achieves slightly better accuracies than PCANet in these two
saturated subsets. However, our PCANet-II significantly
improves the accuracy of PCANet and other methods when
faced with extreme lighting conditions.
Evaluation on PaSC Dataset: For PaSC dataset, we align
all images and crop them into 128 × 128 pixels. Table 2
shows the verification rate at FAR = 0.01 of our method
and other state-of-the-art methods on PaSC dataset for all
images and near-frontal images scenarios, respectively.

Our PCANet-II obtains good robustness by reference
to the non-linear process in the PCANet model. Therefore,
both of them achieve better performance when facing com-
plicated intraclass variations. Compared with histogram-
based pooling scheme of PCANet model, our PCANet-II
retains more discriminative power by computing the sec-
ond order statistics of floating-based feature maps. So our
method achieves the best performance on both scenarios.
In other words, the second order pooling provides more
discriminative power than PCANet, and the BFD scheme
brings our method good robustness.
Evaluation on UNBC-McMaster Pain Dataset: The PE is
a regression task, so we use the linear kernel Support Vector
Regressors (SVR) (hyperparameter C = 0.1) to estimate the
pain intensity. We align the all images and crop them into
128 × 128 pixels. The average Mean Squared Error (MSE)
is used to describe the performance of evaluated methods.
We compare PCANet-II with the state-of-the-art PE meth-
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Table 2 Verification rate (%) at FAR = 0.01 on PaSC dataset

method all frontal method all frontal

LBP [8] 17.6 29.6 IQBC [17] 21.2 38.8
LRPCA [14]* 10.0 19.0 PCANet [6] 28.6 53.0
CohortLDA [14]* 8.0 22.0 PCANet-II (BFD-F) 30.4 54.0
DFD [1] 21.5 36.1 PCANet-II (BFD-I) 30.2 53.7

* We directly cite the results from the original papers.

Table 3 MSE comparison on UNBC-McMaster pain dataset

Methods MSE Methods MSE

PTS [18] 2.59 VGGface+CNN+SVR [19] 1.70
DC [18] 1.71 RCNN+Regression [19] 1.54
LBP [18] 1.81 PCANet-II (BFD-F)+SVR 1.47
Gradient Histograms [20] 4.76 PCANet-II (BFD-I)+SVR 1.48
Hess+Grad [20] 3.35

ods as shown in Table 3. Compared with other methods,
the proposed general method achieved the best MSE result.
According to the experimental results, we obtain the similar
conclusion with the above experiments. Though the PE is
a regression task, the essence of PE task is still the descrip-
tion and representation for facial image. From this view, the
results demonstrated the excellent facial description ability
and robustness of our proposed model.

4. Conclusion

In this paper, we propose a general “shallow” network for
face analysis, named as PCANet-II. Compared with the
histogram-based pooling method of PCANet, our model
not only gains supplementary discriminative information by
preserving both the magnitude and sign of convolutional re-
sponses, but also provides robustness by BFD scheme. Our
PCANet-II also eases the high dimensionality problem of
histogram-based feature. Our method achieves promising
performances on both FR and PE tasks.
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