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Improve Multichannel Speech Recognition with Temporal and
Spatial Information

Yu ZHANG†a), Pengyuan ZHANG†, Nonmembers, and Qingwei ZHAO†, Member

SUMMARY In this letter, we explored the usage of spatio-temporal in-
formation in one unified framework to improve the performance of multi-
channel speech recognition. Generalized cross correlation (GCC) is served
as spatial feature compensation, and an attention mechanism across time is
embedded within long short-term memory (LSTM) neural networks. Ex-
periments on the AMI meeting corpus show that the proposed method pro-
vides a 8.2% relative improvement in word error rate (WER) over the model
trained directly on the concatenation of multiple microphone outputs.
key words: multichannel speech recognition, long short-term memory, at-
tention mechanism, generalized cross correlation

1. Introduction

Deep neural networks (DNNs) based acoustic models [1]
have driven tremendous improvements in automatic speech
recognition (ASR) in recent years. Further improvements
are achieved by using more complex models such as
long short-term memory based recurrent neural networks
(LSTMs) [2]. However, it still remains challenging to per-
form recognition when the speaker is distant from the mi-
crophone, because of the presence of background noise, re-
verberation, and competing acoustic sources. In such cases,
ASR systems often use signals from multiple microphones
to enhance the speech signal and reduce the impact of noise
and reverberation.

Multichannel ASR systems often adopt a two-part ar-
chitecture, in which a beamforming algorithm is applied
to enhance the speech, followed by conventional acoustic
modeling approaches. And some mask estimation based
beamforming techniques [3]–[5] have achieved good perfor-
mance on the multichannel speech recognition task. How-
ever, the speech enhancement module is usually separate
from the speech recognition module, which may lead to a
suboptimal solution [6]. Therefore, joint training of speech
enhancement and acoustic model was proposed to solve
the problem. Sainath et al. [7]–[9] presented a multichan-
nel neural network model trained directly from raw wave-
form input signal. Instead of filtering in the time domain,
Xiao et al. [10] estimated the parameters of the frequency-
domain beamformer from a generalized cross correlation
(GCC) between microphones. In [11], a neural network
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which estimated masks for a statistically optimum beam-
former was jointly trained with a neural network acoustic
model. An LSTM adaptive beamformer was proposed in
[12] to be jointly trained with an LSTM acoustic model.
Ochiai et al. [13] presented a unified architecture for end-
to-end multichannel speech recognition.

Some works [14], [15] have shown that DNNs can learn
suitable representations for multichannel speech recognition
by directly using multichannel outputs. These approaches,
however, simply concatenated contextual acoustic features
from multiple microphones without considering the tempo-
ral information within the contextual window of acoustic
features and the spatial information across different chan-
nels. Over the past few years, attention-based recurrent neu-
ral networks have shown promising results in end-to-end
speech recognition [16]–[18], in which the attention mech-
anism is used to learn the alignment between the input fea-
tures and transcripts. [19] proposed a deep convolutional
neural networks (CNNs) acoustic model which introduced
location-based attention by weighting the contribution from
each frame according to their distance to the current frame.
And Kim et al. [20] proposed to embed an attention mech-
anism at inputs for distant speech recognition. Moreover,
acoustic signals from microphone arrays can be used to im-
prove the robustness in distant speech recognition due to the
availability of additional spatial information. Therefore, ex-
ploiting the temporal and spatial information is essential for
multichannel speech recognition.

In our previous work [21], an attention mechanism
across time has been embedded successfully to improve the
performance of speech recognition. Some studies [22], [23]
have shown that performance can be improved by supply-
ing complementary features as inputs to the network in par-
allel with the regular acoustic features for speech recogni-
tion. Motivated by the above work, we propose augment-
ing the acoustic features from microphone array with the
spatial information to further improve the performance of
multichannel speech recognition. Generalized cross corre-
lation between microphones [24] is one of the representa-
tions that encode spatial information. It is considered as
auxiliary features for acoustic models. Benefiting from the
spatio-temporal information, significant improvements are
obtained on the AMI [25] multichanel speech recognition
task.
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2. Acoustic Model for Multichannel Speech Recogni-
tion

The proposed acoustic model for multichannel speech
recognition is shown in Fig. 1. The attention mechanism
proposed in [21] is adopted to utilize the temporal infor-
mation at input layer. And GCC between microphones is
supplied as spatial feature compensation. In this section, the
attention mechanism and feature extraction of GCC are de-
scribed respectively.

2.1 Temporal Information: Attention Mechanism

At each time step, a concatenation of features from each
microphone in a microphone array is considered as one in-
put frame for acoustic modeling. Traditionally, the input
of acoustic model is comprised of L input frames in a con-
textual window, which results in that the temporal informa-
tion within L frames is not well considered. However, the
contribution from each frame to the state prediction may
be diffferent. Therefore, an attention mechanism is used
here, which makes the model iteratively select relevant input
across a long time-scale.

As shown in Fig. 1, by scaling input xt with attention
weights αt, a weighted representation x̂t is generated for
the LSTM acoustic model, which estimates the probability
for context-dependent hidden Markov model (HMM) state
p (s|xt). The attention weights αt enable the LSTM model
to tune its attention to the input frames at each time step.
The attention-based LSTM model can be described by the
following equations:

et = Attention(xt, st−1, αt−1) (1)

αtl =
exp(etl)

L∑

l=1
exp(etl)

(2)

x̂tl = αtl xtl (3)

p (s|xt) = LSTM (x̂t) (4)

Fig. 1 Structure of acoustic model for multichannel speech recognition

where Attention() is a deep neural network that computes
the attention scores et, and LSTM() stands for LSTM acous-
tic model that predicts state labels. As in Eq. (1), the atten-
tion score et depends on the three inputs: the input feature
xt, the prediction from previous frame st−1, and the attention
weights history αt−1. Equation (2) shows that the attention
weights αtl are normalizations of the attention scores etl. In
Eq. (3), the weighted representation x̂t is generated by scal-
ing xtl with the attention weight αtl. Finally, the weighted
representation x̂t is served as input of the following LSTM
acoustic model, instead of the conventional raw input xt.

2.2 Spatial Information: Generalized Cross Correlation

Generalized cross correlation has been successfully used to
determine the time delay of arrival (TDOA) of propagating
waves between two spatially separated microphones. And
TDOA estimated from multiple microphone pairs can be
used to parameterize the source location. Hence, GCC en-
codes the spatial information. In this work, a generalized
cross correlation with phase transform (GCC-PHAT) algo-
rithm [26] is adopt to compute GCC between each pair of
microphones due to its robustness to reverberation.

Given two channel signals xi(n) and x j(n), and their
Fourier transforms Xi( f ) and Xj( f ), GCC is computed as
follows:

gcci j (n) = IFFT

⎛
⎜⎜⎜⎜⎜⎝

Xi ( f ) X∗j ( f )

|Xi ( f ) X∗j ( f ) |

⎞
⎟⎟⎟⎟⎟⎠ (5)

where ∗ denotes the complex conjugate, and IFFT means
inverse fast Fourier transform. Ideally, there exist phase dif-
ferences across channel signal xi(n) and x j(n), and gcci j(n)
should exhibit a peak over a restricted range, which cor-
responds to the TDOA between microphone i and j. The
separation distance of the microphones physically limits the
range of valid time delays. The acoustic path length of each
signal differs according to the location of the microphone,
and these differences in arrival time are even greater when
the space between microphones is larger. This finite range
is determined by the distance between the microphones di-
vided by the speed of sound.

In this work, our models are trained and evaluated on
the AMI meeting corpus, in which an 8-microphone 10cm
radius uniform circular array is used. As mentioned in [10],
we also use 588-dimensional GCC vectors as auxiliary fea-
tures for the neural network acoustic model. They are com-
puted as follows. The maximum distance between any pair
of microphones is 20cm. So the maximum delay between
two microphones is τ = 0.2m

340m/s = 0.588ms. It corresponds
to a less than 10 sample delay at a sample rate of 16kHZ.
Therefore, the center 21 correlation coefficients for each mi-
crophone pair are sufficient to encode the location of the
speaker. There are totally 28 microphone pairs in the 8-
microphone array. On the whole, the dimension of GCC
features is 21 × 28 = 588. It encapsulates the relevant spa-
tial information in this vector representation.
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As shown in Fig. 1, for both training and testing, the
GCC features are concatenated to the weighted acoustic fea-
tures x̂t at each time step. Thus the neural network acoustic
model is informed which speech segment comes from which
location. It enables the neural network acoustic model to
make better use of acoustic signals from different channels.

3. Experimental Setup

The AMI corpus contains around 100 hours of meetings
speech, in which acoustic signal is captured by individual
headset microphones, lapel microphones, and one or more
microphone arrays. The primary microphone array data, re-
ferred to as MDM, is used in the experiments. Our mod-
els are trained and tested using this split: a training set of
80 hours, a development set and a evaluation set, each of 9
hours. Kaldi [27] is exploited for building speech recogni-
tion systems. Three LSTM layers of 1024 memory cells are
used as acoustic models. 40-dimensional log-Mel filterbank
features are extracted from every recording. The network is
unrolled for 20 time steps for training with truncated back-
propagation through time (BPTT) and acoustic models are
trained with cross-entropy (CE) criterion.

For comparison, the results of single distant micro-
phone (SDM) and traditional beamforming are also shown.
Experiments with SDM make use of the first microphone
of the microphone array. For the beamforming experi-
ments, the BeamformIt toolkit [28] is adopted to implement
a weighted delay-and-sum beamforming, in which GCC-
PHAT is also used to compute the TDOA to create a single
enhanced signal. Meeting speech recognition is challenging
by speech overlapp. The overlapping segments not excluded
during training stage. We show results on the full set as well
as the subset that only contains the non-overlapping speech
segments.

4. Results

To find the best setup for the proposed model, we explore
the effect of input frame number on the attention mecha-
nism across time first and then the size of analysis window to
compute GCC. Lastly, performance comparison with base-
line models is shown.

4.1 Number of Input Frames

The effect of input contexts on the attention mechanism
across time is explored in this subsection. And GCC fea-
tures are not used in this group of experiments. The LSTM
model with attention mechanism is denoted as ALSTM. For
the baseline model, the concatenation of multiple micro-
phone outputs is used as input. The word error rate (WER)
results with different input contexts are shown in Table 1.

The configuration in the second column of Table 1
stands for spliced context. For instance, splicing together
frames from t − 3 to t + 3 at the input layer is written com-
pactly as [−3, 3]. From Table 1, it can be observed that

Table 1 WER with different input contexts

Data Input Context
LSTM ALSTM

dev eval dev eval

MDM
[−3, 3] 37.5% 42.4% 36.7% 41.7%
[−5, 5] 37.8% 42.7% 36.0% 41.4%
[−7, 7] 38.0% 43.3% 36.4% 41.5%

Table 2 WER with different window sizes of GCC

Window size (ms) 25 55 75 105 155
dev 36.6% 36.4% 35.9% 35.8% 36.5%
eval 41.7% 41.5% 41.0% 40.8% 41.5%

[−5, 5] is the optimal temporal context for the attention-
based LSTM model. This indicates that 11 frames at in-
put layer are sufficient for the attention mechanism. And
it achieves more than 1% absolute reduction in WER com-
pared with the LSTM baseline model.

4.2 Analysis Window Size of GCC

The computation of GCC between each microphone pair is
repeated along the recording in order to respond to changes
in the location of the speaker. During this computation, a
big analysis window leads to a reduction in the resolution
of changes in the location of the speaker. However, us-
ing a very small analysis window reduces the robustness
of the cross-correlation estimation, as less acoustic frames
are used to compute it. To match the time-scale of acoustic
features, GCC is also computed every 10ms. The attention
mechanism across time is not considered. The LSTM acous-
tic models are trained directly on the concatenation of mul-
tiple microphone outputs and the corresponding GCC fea-
tures. With different GCC window sizes, the WER results
are summarised in Table 2. It shows that more improve-
ments could be obtained with larger windows until 105ms.

4.3 Comparison to Baseline Models

Three baseline models are prepared: (1) training the LSTM
acoustic model on the SDM data; (2) beamforming the mul-
tichannel signals into a single channel and following the
standard acoustic modeling approach used for the SDM
case; (3) training the LSTM acoustic model directly on the
concatenation of features from each microphone in the ar-
ray.

Firstly, the frame accuracies on training set and valida-
tion set of these models are shown in Fig. 2. Three pair re-
sults are given: the red is the baseline model trained on the
beamformed signal, the blue is the baseline model trained
on the concatenation of microphone array, and the green is
the proposed model with attention mechanism and GCC fea-
tures. And the overlapping segments are not excluded from
the validation set and training set. It can be observed that
the proposed model achieves a significantly higher frame
accuracy than the baseline models, which shows that the
proposed model improves the ability to model the acoustic
signal from the microphone array.
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Fig. 2 Frame accuracy on the validation set and training set.

Table 3 Performance comparison on the AMI corpus

Data Model dev dev∗ eval eval∗
SDM - 42.8% 34.3% 47.2% 38.3%

MDM

Beamforming 39.5% 30.1% 43.3% 34.0%
Concatenated 37.8% 30.7% 42.7% 34.5%
+ attention 36.0% 29.7% 41.4% 33.6%
+ GCC 35.8% 29.5% 40.8% 32.9%

+ attention + GCC 34.4% 28.7% 39.5% 31.5%

Then, recognition performances of these models are
evaluated. To evaluate the effectness of spatial and tem-
poral information, experiments are conducted with atten-
tion mechanism or GCC respectively. Table 3 shows the
WER results. In the first row of Tabel 3, ones without star
mean full test data, while those with star means only non-
overlapping segments.

Compared MDM with SDM experiments, significant
improvements are achieved by using multichannel data. It
shows the benefit of additional spatial information in im-
proving the performance of distant speech recognition. Al-
though the beamformed model shows slight better results
than raw 8-channel concatenated model on non-overlapping
speech, it performs worse on the overlapping segments.
That is probably because the competing acoustic source re-
sults in less accurate TDOA estimations for beamforming.

From the fifth row, the attention mechanism across time
provides about a 4% relative improvement. It suggests that
the temporal information is well utilized by the attention
mechanism. From the next row, the GCC vectors are sup-
plied as auxiliary features for acoustic modeling. On av-
erage 5% relative improvements are observed on the two
testsets. This indicates that additional spatial information is
beneficial for the neural network acoustic model and could
be utilized directly by the neural network.

Finally, we combine the attention mechanism across
time and the spatial feature compensation. The results are
shown in the last row of Table 3. It shows that the im-
provements from the temporal and spatial information are
combined. Compared with the 8-channel baseline in the
forth row, the proposed model achieves 8.2% and 7.5%
relative improvements in WER for all segments and non-
overlapping segments. It performs better than the two base-
line models on both the overlapping and non-overlapping
segments.

5. Conclusion

In this letter, we add the spatio-temporal information into
neural network acoustic modeling for multichannel speech
recognition. The attention mechanism utilizes the temporal
information at input layer, which makes the acoustic model
focus more attention to more relevant frames. As for the spa-
tial information, GCC vectors are supplied to acoustic mod-
els. It is used as spatial feature compensation to improve
the performance of multichannel speech recognition. Ex-
periments on the AMI corpus show that the proposed model
outperforms the multiple input baseline model and beam-
forming baseline model.
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