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Extreme Learning Machine with Superpixel-Guided Composite
Kernels for SAR Image Classification

Dongdong GUAN†a), Xiaoan TANG†, Li WANG†, Nonmembers, and Junda ZHANG†, Student Member

SUMMARY Synthetic aperture radar (SAR) image classification is a
popular yet challenging research topic in the field of SAR image inter-
pretation. This paper presents a new classification method based on ex-
treme learning machine (ELM) and the superpixel-guided composite ker-
nels (SGCK). By introducing the generalized likelihood ratio (GLR) sim-
ilarity, a modified simple linear iterative clustering (SLIC) algorithm is
firstly developed to generate superpixel for SAR image. Instead of us-
ing a fixed-size region, the shape-adaptive superpixel is used to exploit the
spatial information, which is effective to classify the pixels in the detailed
and near-edge regions. Following the framework of composite kernels, the
SGCK is constructed base on the spatial information and backscatter in-
tensity information. Finally, the SGCK is incorporated an ELM classifier.
Experimental results on both simulated SAR image and real SAR image
demonstrate that the proposed framework is superior to some traditional
classification methods.
key words: extreme learning machine (ELM), superpixel, composite ker-
nels (CK), SAR image classification

1. Introduction

SAR image classification plays a very important role in
different applications, such as land use analysis, pollu-
tion monitoring, and military applications [1]. In the last
decades, many methods have been developed for SAR im-
age classification [2]. Among these methods, the support
vector machine (SVM) has played a dominant role in the
field of SAR image classification. Although the SVM is
superior in terms of accuracy, and robustness to noise, its
computational cost is usually high. Recently, a fast and ef-
fective machine learning method called ELM has been pro-
posed, which is competitive with SVMs in terms of accu-
racy and has very high computational efficiency. In addi-
tion, ELM can directly perform multiclass classification us-
ing multi-output nodes, while SVMs need to employ one-
against-all (OAA) or one-against-one (OAO) method to im-
plement multiclass classification.

Due to these remarkable advantages, ELM has been
widely used in the fields of hyperspectral images (HSIs) pro-
cessing [3]. Unfortunately, the use of the ELM for SAR im-
age classification has not yet been extensively explored. In
this work, we study and evaluate the application of ELM to
SAR image classification. Because SAR image is heavily
contaminated by speckle noise, directly applying the ELM
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cannot always obtain satisfactory classification results. In-
spired by the success of CK framework [4], [5], we consider
introducing local spatial information under the framework
of composite kernels to reduce the effect of speckle noise.
However, the traditional CK methods extract the spatial in-
formation in a fixed-size square window, which may dam-
age the structure and edge details. To solve the problem,
we introduce the adaptive superpixel-guided window to ex-
tract spatial information. Since superpixels adhere well to
edges, the extracted spatial information can capture the spa-
tial structure, and thus the corresponding classification re-
sult can preserve most structure details. In addition, the pro-
posed method (hereafter referred to as ELM-SGCK for sim-
plicity) inherits the high computational efficiency of ELM.

The main contributions of this article are summarized
as followings: 1) a new superpixel generation algorithm
based on the GLR similarity is proposed for SAR image;
2) the SGCK is designed to jointly utilize the backscatter
intensity information and the adaptive spatial information
for SAR image classification; 3) both the simulated and
real SAR image are used to evaluate the proposed ELM-
SGCK. The experimental results demonstrate the superior-
ity of ELM-SGCK over several traditional CK classification
approaches, in terms of classification accuracy, visual qual-
ity and computational speed.

2. Proposed Method

2.1 Extreme Learning Machine

This subsection briefly reviews the ELM classifiers. ELM
is a generalized single hidden layer feedforward neural net-
work (SLFN), where its hidden node parameters, namely
both weight connecting vectors and bias are randomly as-
signed and thus the output weights can be analytically com-
puted with a least squares solution [3]. Similar to SVM, the
inner product operation involved in the computation can be
replaced by a kernel matrix. Thus, we can obtain a kernel-
based ELM (KELM). Given N training samples {xi, yi}Ni=1,
where xi ∈ Rd is the feature vector and yi = [yi1, . . . , yiM]T ∈
RM is the label vector. For M classes, if yik = 1 and the other
elements in yi are −1, then the sample yi belongs to the kth
class. According to [5], the output function of the KELM
can be expressed as

f (x) = Kx

(
I
C
+K

)−1

Y (1)
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where K = [K(xi, x j)]N
i, j=1 is the kernel matrix between

training samples, Kx = [K(x, x1), . . . ,K(x, xN)] is the ker-
nel matrix between the test sample and training samples,
Y = [y1, . . . , yN]T ∈ RN×m is the label matrix, I ∈ RN×N is
the identity matrix, and C is a regularization parameter in-
troduced for better stability and generalization. During the
prediction phase, the label of each test sample xt is finally
determined according to the index of the output node with
the largest value in f (xt) calculated by (1). To calculate (1),
we need to define how to compute the kernel matrix. In this
paper, the proposed SGCK, as described in the following
sections, is used to compute the kernel matrix.

2.2 Generation of Superpixels in SAR Image

SLIC is a widely used superpixel generation algorithm in
the field of computer vision [6]. However, the original SLIC
used Euclidean distance to measure the pixel intensity simi-
larity, which is not robust for speckle noise. In recent, some
studies have shown that the GLR similarity is very powerful
to measure the pixel intensity similarity for SAR image [7].
Therefore, in this paper, we proposed to use more reasonable
GLR criterion instead of Euclidean distance to generate su-
perpixels for SAR image. Assuming that mutilook intensity
SAR image obeys the gamma distribution, based on [8], the
GLR similarity between two pixels in SAR image is defined
as

S GLR(i, j) = log

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√

Ii

I j
+

√
I j

Ii

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2)

where Ii and I j are intensity values of the two pixels. Similar
to SLIC, the finial similarity is defined as

S (i, j) = S GLR(i, j) + m · S XY (i, j) (3)

where S XY (i, j) is the pixel location similarity as described
in [6], m is a parameter that allows us to weigh the relative
importance between pixel intensity and location similarities.
Once the new similarity is defined, we can use it to generate
superpixels for SAR image by performing the same proce-
dures as SLIC. The superpixel generating results obtained
by the proposed modified SLIC are shown in Fig. 1. It can
be seen that superpixels adhere well to image boundaries.

2.3 Constitution of the SGCK

After the superpixel is generated, the spatial information

Fig. 1 Superpixel generating results by the proposed modified SLIC.

within the superpixel can be extracted. Here, the simple
mean filtering is used to explore the spatial information
within each superpixel. Then, the mean value is assigned
to all pixels in each superpixel, and all the filtered superpix-
els can constitute a mean feature image IMean. Given a pixel
xi, its spatial feature, namely the pixel value in the IMean, is
denoted as xs

i and its backscatter intensity is denoted as xb
i .

By means of the Gaussian radial basis function (RBF), two
kernels, the backscatter intensity kernel Kb and the spatial
feature kernel Ks, are defined as follows:

Kb(xi, x j) = exp

⎛⎜⎜⎜⎜⎜⎝−‖x
b
i − xb

j‖2
2σ2

b

⎞⎟⎟⎟⎟⎟⎠ (4)

Ks(xi, x j) = exp

⎛⎜⎜⎜⎜⎜⎝−‖x
s
i − xs

j‖2
2σ2

s

⎞⎟⎟⎟⎟⎟⎠ (5)

where σb and σs are the bandwidth of the RBF kernels.
Then, the composite kernels can be constructed

Kc(xi, x j) = (1 − μ)Kb(xi, x j) + μKs(xi, x j) (6)

where μ is the weight, which controls the relative propor-
tion of the backscatter intensity and spatial information in
the composite kernels. Finally, the composite kernels are
incorporated into (1) to solve the KELM model and imple-
ment classification.

3. Experiments

In this section, both simulated SAR and real SAR images
are used to test the performance of the proposed ELM-
SGCK method. The classification results of the proposed
method are visually and quantitatively compared with some
widely used classification methods, such as KELM, ELM
with CK (ELM-CK). In addition, SVM with the proposed
SGCK (SVM-SGCK) is also included for comparison. For
ELM-CK, the spatial feature is extracted within a fixed-size

Fig. 2 Classification results for the simulated SAR image. (a) The sim-
ulated SAR image. (b) Ground truth map and (c)-(f) classification maps
generated by different methods: KELM, ELM-CK, SVM-SGCK, and the
proposed ELM-SGCK.
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Fig. 3 Classification results for the real SAR image of China Lake Air-
port. (a) The original SAR image. (b) Google earth image and (c)-(f) clas-
sification maps generated by different methods: KELM, ELM-CK, SVM-
SGCK, and the proposed ELM-SGCK.

local region as described in [5]. The SVM-SGCK is im-
plemented using the LIBSVM toolbox [9]. All experiments
have been developed in MATLAB R2014b and executed on
a computer with an Intel 2.7-GHz CPU and 8-GB RAM. All
data have been normalized to the range [0, 1].

3.1 Data Set Description

The simulated SAR image is shown in Fig. 2 (a), which is
generated by adding three-look multiplicative speckle noise
to a test image. The test image, as presented in Fig. 2 (b), has
the size of 255 × 255 pixels and contains three classes with
three gray values (255, 117, and 0). The real SAR image
is a 3-m spatial resolution Ku-band SAR image (256 × 256
pixels) of the China Lake Airport, California, as shown in
Fig. 3 (a). It consists of three land covers: runway (dark),
vacancy area (gray), and airport buildings (bright). The cor-
responding Google earth image is shown in Fig. 3 (b). For
the quantitative comparison, the overall accuracy (OA), av-
erage accuracy (AA), and Kappa coefficient are adopted as
the metrics to evaluate the classification results [10].

3.2 Parameter Selection

The penalty parameter C and the RBF kernel parameter σ
involved in the four methods are selected by performing a
threefold cross-validation on the training set. The parame-
ter σ varies in the range {2−3, . . . , 23}, and C ranges from
100 to 105. As indicated in [5], the spatial kernel should be
assigned with larger weight to obtain smoother classifica-
tion results. Therefore, for ELM-CK, SVM-SGCK, and the
proposed ELM-SGCK, the kernel weight is set to 0.8. The
square window size is set to 11 × 11 for ELM-CK. For the
superpixel generating algorithm in Sect. 2.2, the number of
superpixels is set to 500 for the simulated SAR image and
1000 for the real SAR image. The parameter m is always set
to 0.1 for the two images so that the generating superpixels

Table 1 Classification accuracy of the simulated SAR image obtained
by various classification methods.

adhere well to image boundaries.

3.3 Classification Results and Analysis

The first experiment was performed on the simulated SAR
image. In this experiment, 1% of the total pixels were ran-
domly selected as the training samples and the remaining
99% of data as the test set. As shown in Fig. 2 (c)-(f), due
to speckle noise, KELM produces a noisy “salt-and-pepper”
classification map. By introducing the spatial information,
the ELM-CK can produce smoother classification maps.
However, the spatial information extracted from the fixed-
size square-window results in that ELM-CK cannot accu-
rately preserve the edges (e.g., red circle regions in Fig. 2).
Thanks to the proposed SGCK, both the SVM-SGCK and
ELM-SGCK can not only produce a smoother appearance
but also preserve more accurate edge details. The quantita-
tive results in terms of OA, AA, and the Kappa coefficient
for various classification methods are shown in Table 1. The
reported accuracy values are the average results over five
runs with randomly selected training samples. As can be
seen, the SVM-SGCK and ELM-SGCK obtain almost the
same classification accuracy, which is higher than the tradi-
tional KELM and ELM-CK.

The second experiment was conducted on the real SAR
image of China Lake Airport. Due to the lacking of the
ground truth, we manually labeled some easily recogniz-
able pixels for each class according to the corresponding
Google image and the related geographic information. The
labeled pixels are used as training samples, which make up
about 1% of the total pixels in the SAR image. Because
the ground truth corresponding to the China Lake Airport
real SAR image is absent, the evaluation of the proposed
method is based on visual inspection. According to [11],
the accurate location of runway contour and airport build-
ings and the regional consistency of the vacancy region are
concerned in the paper. Figure 3 (c) shows the classifica-
tion result of KELM. We can see that the classification re-
sult is noisy. That is because the spatial information is not
considered in KELM. Figure 3 (d) presents the classification
result of ELM-CK. It is observed that the label is more con-
sistent in the homogeneous region, but the contour of the
runway (e.g., red rectangle region) and buildings structures
(e.g., red ellipse region) are not well preserved. This is be-
cause the fixed-size window will inevitably damage the edge
and structure details in the near-edge regions. Figure 3 (e)
shows the classification result of SVM-SGCK. Although the
narrow runway in red rectangle region can be detected, the
edges of the runway in other region (e.g., blue rectangle re-
gion) and some buildings (e.g., red ellipse region) cannot
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Table 2 Computing time (in seconds) for the classification of the two
test images obtained by various classification methods.

be located accurately. In addition, some pixels belonging to
the vacancy area are misclassified as airport buildings. As
shown in Fig. 3 (f), the classification result of the proposed
ELM-SGCK gives clearer contour of the runway, more pre-
cise location of airport buildings, and better regional consis-
tency of the vacancy region than other methods.

In order to compare the efficiency of different classifi-
cation methods, the running times of various classification
methods for classifying the two images are reported in Ta-
ble 2. SVM-SGCK always consumes more time than ELM-
CK and ELM-SGCK. Particularly, it takes about 106s for
the real SAR image. That is because SVM-SGCK involves
in solving the numerical optimization problem, and its con-
vergence speed is related to characteristics of the data. In
contrast, the proposed ELM-SGCK can be analytically com-
puted, and therefore have higher computational efficiency
than SVM-SGCK. It takes about 5s for the two images. Not-
ing that the superpixel generating algorithm is very fast, its
computing time can be negligible. Overall, the proposed
ELM-SGCK can not only improve the classification perfor-
mance, but also has very high computational efficiency.

4. Conclusion

In this paper, a new classification method named ELM-
SGCK has been proposed. Firstly, a modified SLIC su-
perpixel generating algorithm based on the GLR similarity
criterion is developed for SAR image. Then, the SGCK is
designed to jointly utilize the backscatter intensity informa-
tion and the spatial information within each superpixel. Fi-
nally, the SGCK is incorporated into the ELM to implement
classification. Experimental results on both simulated and
real SAR images demonstrate that the proposed method out-
performs traditional CK classification approaches, in terms
of label consistency, detail preservation, and computational
speed. The future work will investigate more effective tech-
niques to exploit the spatial information within the super-
pixel.
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