
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017
2205

PAPER

Improving Feature-Rich Transition-Based Constituent Parsing
Using Recurrent Neural Networks

Chunpeng MA†∗a), Akihiro TAMURA††b), Lemao LIU††∗∗, Tiejun ZHAO†, Nonmembers,
and Eiichiro SUMITA††, Member

SUMMARY Conventional feature-rich parsers based on manually
tuned features have achieved state-of-the-art performance. However, these
parsers are not good at handling long-term dependencies using only the
clues captured by a prepared feature template. On the other hand, recur-
rent neural network (RNN)-based parsers can encode unbounded history
information effectively, but they perform not well for small tree structures,
especially when low-frequency words are involved, and they cannot use
prior linguistic knowledge. In this paper, we propose a simple but effective
framework to combine the merits of feature-rich transition-based parsers
and RNNs. Specifically, the proposed framework incorporates RNN-based
scores into the feature template used by a feature-rich parser. On English
WSJ treebank and SPMRL 2014 German treebank, our framework achieves
state-of-the-art performance (91.56 F-score for English and 83.06 F-score
for German), without requiring any additional unlabeled data.
key words: constituent parsing, recurrent neural network, system combi-
nation

1. Introduction

Constituent parsing, which aims to represent the phrase
structure of a sentence as a tree structure, is a fundamen-
tal task in natural language processing (NLP). Feature-rich
parsing, either chart-based [1], [2] or transition-based [3]–
[5], has yielded impressive results and been a dominant
parsing method. Transition-based parsing has two advan-
tages over chart-based parsing. First, its computational com-
plexity is O(n). Second, it can theoretically incorporate arbi-
trary feature templates, including both local and global fea-
tures. These feature templates can efficiently encode prior
linguistic knowledge for parsing. However, because of fea-
ture sparsity, only local features and quite limited global fea-
tures are usually practically integrated into transition-based
parsing, therefore this approach fails to capture long-term
syntactic structures.

On the other hand, recently recurrent neural networks
(RNNs) have been applied successfully to many NLP tasks,

Manuscript received January 4, 2017.
Manuscript revised April 14, 2017.
Manuscript publicized June 5, 2017.
†The authors are with the Machine Intelligence and Translation

Laboratory, Harbin Institute of Technology, China.
††The authors are with the ASTREC, National Institute of Infor-

mation and Communications Technology (NICT), Kyoto-fu, 619–
0289 Japan.

∗This work was done during the internship of the author at
NICT.
∗∗Presentky, with Tencent AI Lab, China.

a) E-mail: cpma@hit.edu.cn
b) E-mail: tamura@cs.ehime-u.ac.jp

DOI: 10.1587/transinf.2017EDP7003

particularly to constituent parsing [6]–[9]. By encoding the
unbounded history into a dense representation, RNNs are
able to capture the long-term dependencies and thus make
reliable parsing decisions. Despite these successes, it has
been shown that neural networks (NNs) are not good at en-
coding low-frequency words [10], especially when the size
of the training corpus is limited. Our experiments (see
Sect. 5.3 for details) reveal that RNNs cannot perform well
for small subtree structures containing low-frequency words
(e.g. X ⇒ wlow f req, whigh f req, where X is the label of the root
node of the subtree with wlow f req and whigh f req as two leaf
nodes), which can be easily handled by feature-rich models
using simple back-off features (e.g. features involving POS
Tags). In addition, integrating prior linguistic knowledge is
a non-trivial task for RNN models, especially given the in-
herent inefficiency of jointly training RNNs and feature-rich
models.

This paper proposes a simple yet effective framework
to avoid the respective problems of feature-rich models and
RNN-based models, meanwhile retaining their advantages.
The basic idea is quite simple: evaluating the whole pars-
ing history using RNN models and then integrating these
RNN-based evaluations into the feature-rich model as global
features. In this way, the proposed model is able to not
only capture long-term syntactic structures using the RNN
but also make reliable parsing decisions for small subtree
structures using feature templates incorporating linguistic
knowledge. As an instance under this framework, this pa-
per utilizes the sequence-to-sequence RNN model as the
implementation of RNN models, and the transition-based
parser [4] as a feature-rich model. Also, since the top-down
linearization method used by the sequence-to-sequence
RNN model in [8] is inconsistent with the transition-based
incremental decoding, we propose several novel bottom-up
linearization methods (Sect. 3). In order to capture the pars-
ing history in multi-granularity, we further incorporate mul-
tiple RNN models, which are different in linearization meth-
ods, into the feature-rich transition model (Sect. 4.1). For
the sake of training efficiency, we train the feature-rich and
the RNN models seperately rather than jointly (Sect. 4.2).

Our study makes two contributions.

• We systematically and quantitively analyze the respec-
tive demerits of feature-rich transition-based parsers
and RNN-based parsers. Based on the analysis, we pro-
pose a simple framework that incorporates RNNs into

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

2206
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

a transition-based feature-rich constituent parser. Ad-
ditionally, we explore several bottom-up linearization
methods for incremental decoding in transition-based
parsing.
• We show that the RNN model improves the perfor-

mance of the baseline feature-rich parser significantly
through experiments, demonstrating the effectiveness
of our framework. In addition, the experiments show
that the performance is further improved by combin-
ing different RNN models with different linearization
methods, achieving state-of-the-art performance with-
out any additional data, for both English and German.

The proposed framework is general to be applied on top of
other RNN models in [7], [9], [11], although the sequence-
to-sequence RNN model is instantiated in this paper.

2. Revisiting Feature-Rich Transition-Based Parsing

A transition-based parser processes a sentence through a se-
quence of transition actions between states. Given an in-
put sentence w = 〈w1, w2, · · · , w|w|〉, the transition-based
parser employs a stack of partially constructed constituent
tree structures and a queue of input words. At each step,
a transition action is applied to a state [S , k, f , i, ρ], where
S represents the stack of partially constructed trees, k indi-
cates the index of the next input word wk in the queue, f is
a flag indicating the completion of parsing, i.e., whether the
ROOT of a constituent tree covering all the input words has
been generated, i is the total number of actions leading to
the state, ρ is the scores of the state (to be defined later).

Figure 1 summarizes the transition action set of our
parser, following [4]. Here st represents the t-th element
from the top of the stack, and S |X means that the root label
of the subtree on the top of the stack S is X (S |s1s0 can be in-
terpreted similarly). “L” or “R” in the action “reduce-L/R-
X” indicates that the head child used for feature extraction
should be located in the left or right branch, respectively.
ρsh, ρre, ρun, ρfi, and ρid represent the incremental scores of
the different transition actions.

Note that reduce-L/R-X action operates on a pair of
trees in the stack S , which implies that such a transition-
based parser works on the binarizied constituency parse

Fig. 1 Transition action set of the baseline parser [4].

trees. Figure 2 shows a binarized constituent tree and
its non-binarized tree of the sentence “John has a dog.”.
Under the above action set, a transition-based parser can
achieve the binarized parse tree in Fig. 2 through the se-
quence of actions “shift unary-NP shift shift shift reduce-
R-NP reduce-L-VP shift reduce-L-S∗ reduce-R-S finish”.

Since each state is achieved by successively apply-
ing actions a = 〈a1, a2, · · · , a|a|〉 over the initial state
[∅, 0, f alse, 0, 0], we denote a state as its action sequence
a leading to itself, omitting the initial state for simplicity
reason throughout this paper. While parsing a sentence w,
the score ρ(a) of each state is formally defined as the total
score of all its prefix states ai

1 = 〈a1, a2, · · · , ai〉:

ρ(a,w; θ) =
|a|∑

i=1

θ · Φ(ai
1,w), (1)

where θ is a vector as the model parameter and Φ is the
feature vector of the state.

In this paper, Φ is specified by the feature template pre-
sented in [4], which mainly includes n-gram POS tag, con-
stituent label, and word features, thus fails to capture long-
term syntactic structures, which are beneficial to predicting
the constituent label for relatively long spans, as to be shown
in our experiments.

3. Sequence-to-Sequence RNN Parsing with Buttom-
Up Linearization

As feature-rich models can not make full use of all actions in
parse history when making a decision, we employ sequence-
to-sequence RNN models, which are able to encode un-
bounded action history during decoding in a feature-rich
transition-based model. In this section, we first overview a
conventional sequence-to-sequence RNN model (Sect. 3.1),
and then propose novel linearization methods to integrate
the RNN model into decoding of transition-based models
(Sect. 3.2).

3.1 Sequence-to-Sequence RNN Model

A sequence-to-sequence RNN model is a general framework
for sequence-to-sequence transformation tasks, where both
the input and output are sequences of tokens. The model
is simple yet powerful, and thus has been widely used for
many NLP tasks such as machine translation [12], [13], and
image captioning [14]. In particular, [8] utilized this model
for constituent parsing and demonstrated very competitive
results.

Suppose that the input sequence is w and the output
sequence is o = 〈o1, · · · , o|o|〉. Formally, the sequence-to-
sequence RNN model is the probability under the encoder-
decoder framework and can be calculated as following:

MA et al.: IMPROVING FEATURE-RICH TRANSITION-BASED CONSTITUENT PARSING USING RECURRENT NEURAL NETWORKS
2207

Fig. 2 Example of a constituent tree and its corresponding binarized tree. The “temporary nodes”
(marked by a star symbol (*) in the binarized tree) should be removed when the binarized tree is recov-
ered to the non-binarized tree.

Table 1 Comparison of different linearization methods for the constituent tree in Fig. 2. “TD” is the
top-down linearization method of [8]. The black box in the last row means that the model have to wait
for the decoder at that time step.

Method Result
TD (S (NP NNP)NP (VP VBZ (NP DT NN)NP)VP .)S

“bo1” SHIFT UNARY-NP SHIFT SHIFT
SHIFT REDUCE-R-NP REDUCE-L-VP SHIFT
REDUCE-L-S* REDUCE-R-S FINISH

“bo2” SHIFT UNARY-NP-LEAF SHIFT SHIFT
SHIFT REDUCE-R-NP-{LEAF,LEAF} REDUCE-L-VP-{LEAF,NP} SHIFT
REDUCE-L-S*-{VP,LEAF} REDUCE-R-S-{NP,S*} FINISH

“nb” SHIFT UNARY-NP SHIFT SHIFT
SHIFT REDUCE-NP-2 REDUCE-VP-2 SHIFT
� REDUCE-S-3 FINISH

P(o | w; θ) =
|o|∏

i=1

P(oi | oi−1
1 ,w; θ)

=

|o|∏

i=1

softmax
(
ϕ(hi)
)
[oi],

(2)

where θ is the model parameter; hi denotes a hidden vector
of o at timestep i; ϕ is the activation function of the hid-
den layer. softmax is the softmax function, and [oi] denotes
the component in a vector corresponding to the index of oi

in its vocabulary. Furthermore, hi is defined by a recurrent
function over both the previous hidden vector hi−1 and the
context c(w, oi−1

1), i.e., hi = f (hi−1, c(w, oi−1
1)). In this pa-

per, we employ the GRU [15] to define hi and an attention
mechanism [13] to define c(w, oi−1

1).
In [8], the input sequence w is a sentence of words

while the output sequence o is a sequence of tokens obtained
via linearizing a parsing tree of w in a top-down manner by
depth-first traversal order. Table 1 shows such a linearized
sequence for the constituent tree in Fig. 2.

Since transition-based parsing models process the word
sequence in a bottom-up style, the RNN model with the
top-down linearization method cannot be incorporated into

decoding of transition-based models†. Therefore, in the
next subsection, we propose several linearization methods
to convert a tree into a sequence of tokens in a bottom-up
manner.

For simplicity, in the next subsection, each bottom-up
linearization is defined on a complete tree. However, it is
straightforward to extend their definitions on a set of sub-
trees in the stack S .

3.2 Bottom-Up Style Linearization

3.2.1 Binarized Order-1 Linearization (“bo1”)

The transition-based parser represents a constituent tree as a
transition action sequence, which is generated in a bottom-
up manner, and this correspondence (i.e., a constituent tree
and its action sequence) is one-to-one. Therefore, it is natu-
ral to linearize a tree using the transition action sequence of
the transition-based parser. In other words, each token in the
linearized sequence is exactly the same as an action in the
action sequence. For example, the tree in Fig. 2 (a) is firstly

†The RNN model with top-down linearization can be used for
reranking, but as shown by our experiments, reranking using RNN
models does not work (see Sect. 5.2 for details).

2208
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

binarized into the tree in Fig. 2 (b) by our baseline transition-
based parser based on the binarization rules of [1], which is
then linearized as a sequence of transition actions in Fig. 1,
generating the token sequence in the second row of Table 1.

3.2.2 Binarized Order-2 Linearization (“bo2”)

Inspired by [16], we propose a binarized order-2 lineariza-
tion method (“bo2”), which can utilize the information of
high-order features, which have been proven to be useful for
parsing. Concretely, for the “unary-X” or “reduce-L/R-X”
action, its corresponding token is augmented with the labels
for its child nodes. Note that for all nodes representing the
POS-tag (i.e., the pre-leaf node), we assign a special symbol
“LEAF” to their labels regardless of its actual label. The
other actions are the same as “bo1”. By using this “bo2”
method, the tree in Fig. 2 (b) is linearized to the token se-
quence in the third row of Table 1.

The “bo2” linearization method is fine-grained, utiliz-
ing more information for decision compared with “bo1”.
However, because the label information of the child nodes
is involved in “bo2”, the token vocabulary size of the lin-
earized sequences is much larger than that of “bo1”, which
might make the prediction of each token more difficult.

3.2.3 Non-Binarized Linearization (“nb”)

The above two linearization methods operate on binarized
trees, and the resulting linearized sequence is longer than the
number of nodes in its non-binarized tree, due to the import
of “temporary nodes”. Since it is well known that prediction
on long sequences is challenging for RNN models [17], [18],
we propose another linearization model directly operating
on non-binarized trees, making the token sequence shorter.
Instead of discriminating “unary” and “reduce”, in the “nb”
method, we directly record the number of subtrees involved
in an “reduce” action. This method generates the linearized
token sequence in the last row of Table 1.

The “nb” linearization shortens the length of the se-
quence. Since the constituent tree generated by the baseline
transition-based parser is a binarized tree, while the “nb”
linearization method does not need binarization, the “nb”
model has to delay the decision of the next action, which is
represented as the black square in Table 1 (see Sect. 4.1 for
details).

4. Improved Feature-Rich Transition-Based Parsing
with RNN Models

4.1 Decoding

In order to cope with the limitation on long-term syntactic
structures for a feature-rich transition-based model, we in-
tegrate multiple sequence-to-sequence models encoding the
whole action history into the feature-rich transition-based
model as global features. Formally, we augment the feature-
rich model with RNN models using the linear combination:

ρ̂(a,w; θ̂) = ρ(a,w; θ) +
J∑

j=1

λ j · P(o j(a) | w; θ j), (3)

where θ̂ = {θ, θ1, · · · , θJ , λ1, · · · , λJ} denotes the parameter
of our proposed model ρ̂, and ρ(a,w; θ) is the feature-rich
model as defined in Eq. (1). J is the number of different
RNN models with respect to different linearization methods
o j(a) presented in Sect. 3, and o(a) denotes the linearized
sequence of the subtrees obtained by an action sequence a.
P(o j(a) | w; θ j) is an RNN model as defined in Eq. (2).

The parsing procedure with RNN models is similar to
the baseline transition-based parser, except the incremental
calculation of RNN models based on different linearization
methods. Suppose that the current state is available by ap-
plying an action sequence ai−1

1 , and the next valid action is
ai. For the RNN model with “bo1” linearization, it is trivial
to calculate the RNN-based score of ai

1, i.e., P(oi | oi−1
1 ; θ)

in Eq. (2). For the RNN model with “bo2” linearization, it
is similar to the case of “bo1” if ai is “shift” or “finish”;
while if ai is “unary” or “reduce-L/R”, we have to lookup
the child labels for the first subtree in the stack in order to
get the corresponding token of ai. For the RNN model with
“nb” linearization, it is also similar to the case of “bo1” if
ai is “shift”, “finish” or “unary”, but it is non-trivial if ai

is “reduce-L/R”. For example, in Fig. 2 (b), if ai generates
a non-temporary node “S”, in order to obtain the number of
its child nodes, we have to collapse this binarized subtree
into non-binarized one, getting the token reduce-S-3 for ai.
However, if ai generates a temporary node “S∗”, there is no
corresponding token in “nb” linearization method and thus
we have to wait until a non-temporary node like “S” been
generated. In all linearization methods, the “idle” action is
ignored and the RNN models just set the score of the “idle”
action as 0.

4.2 Training

Ideally, we can jointly train each element of the parame-
ter vector θ̂ using an optimization algorithm such as the
widely-used structured perceptron algorithm in traditional
feature-rich constituent parsing [4]. Unfortunately, this joint
training involves repeatedly decoding and this leads to ex-
haustive calculation of P(o j(a) | w; θ j), which is very time-
consuming in practice.

To improve the training efficiency, we train our pro-
posed model in a pipeline manner instead of training jointly.
In our training process, the parameter θ for the transition
model ρ and parameters θ j of each RNN model are firstly
separately optimized. For θ, we use the standard structured
perceptron. For θ j, we employ the maximum log-likelihood
algorithm, which does not require decoding. Then, we fix
the optimized θ and θ j (for all j) and then learn λ j only.

In our experiments, for the first stage, we use the train-
ing data for optimization; while for the second stage we use
the development set for tuning λ j, because there are only
a few parameters. In particular, for the second stage, we

MA et al.: IMPROVING FEATURE-RICH TRANSITION-BASED CONSTITUENT PARSING USING RECURRENT NEURAL NETWORKS
2209

employ a simple grid search procedure [19], which learns
one parameter λ j while fixing other λ j′ (j′ � j) each time†.
Even though our seperate training may lead to suboptimal
solution in theory, our experiments empirically show that it
works well in practice.

5. Experiments

5.1 Settings

To demonstrate the effectiveness of our framework, we ex-
perimentally investigated the parsing performance for two
languages: English and German (a morphologically rich
language). Following previous works such as [7], for En-
glish data, we used the Wall Street Journal (WSJ) part of the
Penn Treebank [21]. Sections 2-21, 22, and 23 were used for
training, development, and testing, respectively. For Ger-
man, we used the data from SPMRL 2014 shared task [22].
The SPMRL datasets are already divided into training, de-
velopment, and testing sets. For both languages, the sen-
tences were POS tagged using the Stanford NLP tools††. For
German, we also give the experiment results for the case of
golden POS-tags.

We use Zpar††† as the implementation of the feature-
rich parser and the RNN model from GroundHog†††† as the
implementation of the sequence-to-sequence RNN parsing
models. Following the default configuration of Zpar, the
beam size is set to 16. For GroundHog, the dimension of
word embedding is 620, the dimension of hidden units is
1000, and the batch size is 32. We used the most frequent
35K words and 50K words in the training data for English
and German, respectively. The input vocabulary size is set
manually, which is a trade-off between the word coverage
on the corpus and the decoding speed.

5.2 Comparison of Models for Different Linearization

Our proposed models with different linearization methods
were compared against the baseline parser [4]†††††. Table 2
summarizes the parsing performance of each model on each
test set. The best results are highlighted in bold font. The
significance test was performed by the McNemar’s test. The

†We did try the sophisticated algorithm MERT [20] to optimize
λ j, which needs much more rounds of decoding, but we did not
observe significant improvements over the simple grid search in
our preliminary experiments.
††http://nlp.stanford.edu/software/tagger.html
†††https://github.com/frcchang/zpar/releases
††††https://github.com/lisa-groundhog/GroundHog
†††††If we only use the pure RNN model trained by GroundHog to

parse using the bottom-up linearization (e.g., bo1), the F-score is
only 84.03 on the development set of WSJ (with one bo1 model).
The F-score might seem to be low when compared with the F-
score 90.5 reported in [8]. However, as we will demonstrate in our
experiments, even with this poor model, the performance of the
baseline parser can still be improved. If better RNN models (such
as the models in [7]) are used, we can expect that our framework
can get higher F-score than what is reported in this paper, which
implies the potential of our framework.

χ2 test statistics were also reported in Table 2. The column
“SI” shows whether the methods significantly outperform
the corresponding baseline. Table 2 shows that, for both lan-
guages and all three models, the sequence-to-sequence RNN
models improved the performance of the baseline parser.

Among the proposed three linearization methods, the
“bo1” linearization method achieved the best result. As
described in Sects. 3.2.2 and 3.2.3, we proposed the “nb”
model and the “bo2” model to address two problems in the
“bo1” model, respectively: (1) the sequence might be too
long due to binarization, (2) the grandchildren information
was not utilized. However, these results imply that new
problems occurred in these two new models: the decision-
delay problem (in the “nb” model) and the sparsity problem
(in the “bo2” model). For the “nb” model, although the se-
quence is shorter since no binarization is needed, there ex-
ists some mismatch between the action sequence of the “nb”
model and the action sequence implemented by the baseline
parser, which makes the calculation of the score given by the
“nb” model be delayed until all the child nodes of a node
been generated. According to our statistics, for all 2,416
sentences of Section 23 of WSJ (the test set), if we con-
vert the golden trees to the action sequences that should be
implemented by the baseline parser, the total number of ac-
tions is 117,321. If we convert the golden trees to the action
sequences of the “nb” model, the total number of actions
is 100,866, which is only about 14.0% smaller. However,
among these actions, 11,557 actions (about 11.5%) are mis-
matched. The poor result of the “nb” model could be caused
by this reason. For the “bo2” model, although the grand-
children information is utilized, the vocabulary size of the
action sequences is enlarged, causing the problem of spar-
sity. For Section 23 of WSJ, the vocabulary size increased
from 92 (“bo1”) to 1335 (“bo2”), about 15 times enlarged.
This could be the reason that the performance of the “bo2”
model is worse than that of the “bo1” model.

Our method did not perform very well on German.
The improvement is less than the improvement on English.
This is caused by the difference of the existence of OOV
in these two languages. Compared with German, a typi-
cal fusional language, English has a more analytic structure,
which makes the number of different words in German cor-
pus much larger than that of English corpus (both training
corpus and test corpus), causing the number of OOV in Ger-
man test data larger. In our experiments, although we make
the vocabulary size of German (50k) larger than that of En-
glish (35k), the percentage of OOV (6.2%) of German is still
larger than that of English (1.7%). This limits the potential
of RNNs.

Furthermore, to show the effectiveness of the proposed
integration of the RNN models, i.e., integration into decod-
ing, we compared to the parser where RNN models are used
for reranking. Concretely, we use each RNN model to score
the n-best list (n = 16 in our experiments) generated by
the baseline parser, and generate the parsing result with the
highest score, which is calculated by adding the score given

2210
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

Table 2 Comparison between the baseline parser and the proposed parsers using one RNN model.
“LR”, “LP”, and “F1” denote the recall, precision, and F-score of parsing, respectively. “gold” and
“auto” represent the case of using gold POS-tags and automatically labelled POS-tags, respectively.
“SI” means whether the improvement is “statistical significant improvement”.

Data Model LR LP F1 χ2 SI

English

baseline 90.20 90.70 90.40 - -
bo1 91.56 91.05 91.30 25.30 Yes (p < 0.001)

nb 91.25 90.84 91.05 20.27 Yes (p < 0.001)
bo2 91.41 91.05 91.23 18.52 Yes (p < 0.001)

German
(gold)

baseline 86.11 82.59 84.31 - -
bo1 87.08 82.76 84.87 5.27 Yes (p < 0.025)

nb 86.86 82.67 84.71 1.46 No
bo2 86.78 82.64 84.66 0.35 No

German
(auto)

baseline 82.24 83.07 82.65 - -
bo1 82.54 83.12 82.83 3.92 Yes (p < 0.05)

nb 82.51 83.13 82.82 1.21 No
bo2 82.48 83.10 82.79 1.06 No

Table 3 Examples of parsing results for short and long tree-span length. Here, we only show the
labels of the root nodes of the subtrees. The low-frequency words are highlighted in bold.

Tree-span Zpar RNN parser Our parser Gold
very satisfactorily ADVP ADJP ADVP ADVP
See related story: “And Bills to Make Wishes Come True” – WSJ Oct. 17, 1989. NP S S S

Fig. 3 Difference of F-score over baseline (y−axis) w.r.t. tree-span length (x−axis).

Table 4 Results of reranking. “TD” is the RNN model using the
top-down linearization method of [8].

Data Model LR LP F1

English
baseline 90.20 90.70 90.40

rerank (TD) 90.25 90.73 90.49
rerank (bo1) 90.30 90.75 90.52

German
baseline 82.24 83.07 82.65

rerank (TD) 82.27 83.00 82.63
rerank (bo1) 82.30 83.10 82.70

by the RNN model. Table 4 shows the results†. We can
see that the reranking methods can only improve the pars-
ing performance slightly, while our method outperforms the
reranking method.

Additionally, we evaluated the performance of combin-
ing different models by ensemble. The experiment results
are listed in Table 5, where the numbers in the parentheses
denote the numbers of combined models. For example, the
“bo1(5)” model combines five “bo1” models with different

†For simplicity, we report only rerank (TD), the RNN-model
with the top-down linearization method, and rerank (bo1), which
achieves best performance among the proposed bottom-up lin-
earization methods.

initializations. Again, we reported the result of McNemar’s
test. The baseline is the same as the baseline in Table 2.

Comparing the English results in Table 2 with the first
three rows in Table 5 (e.g. row 2 in Table 2 vs. row 1 in Ta-
ble 5), we observe that combining several models with the
same linearization methods improves the performance of all
linearization methods. In addition, the fourth row in Table 5
shows that averaging the models using different lineariza-
tion methods also improves the performance. On German
dataset, similar phenomenon can be observed. Furthermore,
by combining models with different linearization methods,
the performance can be improved further. The final results
(91.56 F1 for English and 84.97 F1 for German) outperform
the best results in Table 2 (91.30 F1 for English and 84.87
for German).

5.3 Analysis on Different Length of Tree-Span

We examined the performance on different sized constituent
trees. For a subtree with the root node X and leaf nodes
{w1 . . . wn}, we define {w1 . . . wn} as the tree-span of X, and
regard the length of this tree-span, i.e., n, as the size of the
tree.

MA et al.: IMPROVING FEATURE-RICH TRANSITION-BASED CONSTITUENT PARSING USING RECURRENT NEURAL NETWORKS
2211

Table 5 Results of the proposed parsers using several RNN models.

Data Models LR LP F1 χ2 SI

English

bo1(5) 91.80 91.32 91.56 78.93 Yes (p < 0.001)
nb(5) 91.57 91.03 91.30 32.11 Yes (p < 0.001)

bo2(5) 91.71 91.30 91.51 80.93 Yes (p < 0.001)
bo1(1)+nb(1)+bo2(1) 91.68 91.26 91.47 70.06 Yes (p < 0.001)

bo1(5)+nb(5) 91.79 91.25 91.52 60.63 Yes (p < 0.001)
bo1(5)+bo2(5) 91.72 91.18 91.45 54.48 Yes (p < 0.001)

German
(gold)

bo1(5) 87.04 82.68 84.81 1.85 No
nb(5) 86.80 82.69 84.70 2.52 No

bo2(5) 86.97 82.76 84.81 5.53 Yes (p < 0.025)
bo1(1)+nb(1)+bo2(1) 87.11 82.70 84.85 2.73 Yes (p < 0.1)

bo1(5)+nb(5) 87.13 82.62 84.81 0.21 No
bo1(5)+bo2(5) 87.34 82.72 84.97 5.49 Yes (p < 0.025)

German
(auto)

bo1(5) 82.55 83.14 82.84 1.92 No
nb(5) 82.50 83.10 82.80 1.31 No

bo2(5) 82.50 83.12 82.81 2.71 Yes (p < 0.1)
bo1(1)+nb(1)+bo2(1) 82.82 83.21 83.01 2.01 No

bo1(5)+nb(5) 82.14 83.31 82.72 1.52 No
bo1(5)+bo2(5) 81.66 84.51 83.06 6.72 Yes (p < 0.01)

Table 6 Comparison with other parsers. TB: using treebank only, AD: using additional unlabelled
data, star symbol (∗): parsers based on neural networks. “Gold”: using golden POS-tags.

English (WSJ) German (SPMRL 2014)
TB AD TB & AD

[2] 90.1 [23] 90.4 [24] 77.15
[4] 90.4 [25] 90.7 [26] 78.43
[8]∗ 90.5 [27]∗ 91.1 [28] 81.66
[7]∗ 90.7 [4] + Semi 91.3 [27]∗ 80.95
[29] (rerank) 91.0 [8]∗ + Semi 92.1 [30]∗ 82.00
[3] 91.1 [31] 92.3 Baseline [4] 82.65
[32]∗ 91.3 [11]∗ 93.8 This work∗ 83.06
This work∗ 91.5 [30]∗ (Gold) 84.60
[9]∗ (rerank) 92.4 This work∗ (Gold) 84.97
[11]∗ (rerank) 92.6

Figure 3 shows how parsing performance changes with
respect to the length of tree-span. We evaluate the F-score
of the baseline parser, the RNN-based parser, and our parser
(“bo1(5)”) on the subtrees with different tree-span length
on the test set of WSJ. Here, the baseline parser is Zpar (a
state-of-the-art feature-rich parser), the RNN-based parser
is the parser proposed by [7] (a state-of-the-art RNN-based
parser). For the RNN-based parser, we did not use our di-
rect baseline, i.e., the pure RNN model without rich fea-
tures, because the pure RNN model performed quite bad for
parsing†. We did not use the parser proposed by [8], ei-
ther, because we failed to reproduce their outstanding result,
which may caused by something unreported in their paper
about the experiment configuration. However, we succeed
to reproduce the result reported by [7], another outstanding
RNN-based parser, so we chose this for comparison. Note
that we evaluated only subtrees whose leaf nodes contain
low-frequency words (specifically, frequency less than 5 in
the training corpus) in order to demonstrate the influence of
them. Figure 3 is split to three sub-figures based on tree-

†Although the performance was bad, the experiments showed
that when using the pure RNN model without rich features, the
tendency was similar to Fig. 3, i.e., performing worse for shorter
tree-spans, and performing better for longer tree-spans.

span length (short, middle, long). To make the illustrations
clear, we plot the difference of the F-score from the baseline
parser, rather than plotting the F-scores of each parser di-
rectly. In addition, Table 3 gives the examples of the parsing
results of each parser for short and long tree-span length.

As can be seen in Fig. 3 and Table 3, the RNN-based
parser cannot parse short tree-spans accurately. This in-
dicates that, for short tree spans containing low-frequency
words, the feature-rich parser can parse them with the help
of simple back-off features, while RNN-based parsers can-
not get enough data to learn. On the other hand, for middle-
length and long-length tree spans, the RNN-based parser
outperforms the baseline parser. This indicates that the
RNN-based parser can utilize enough history information
to make correct decision while the feature-rich parser can-
not use a feature template to capture this global informa-
tion due to the problem of sparseness. Figure 3 and Ta-
ble 3 also shows that our parser performs well on both short
and long tree-spans. This indicates that our parser combines
the advantages of the RNN-based parser and the feature-rich
parser, which coincides our motivation.

5.4 Comparison with State-of-the-Art Constituent Parsers

Table 6 compares the parsing performance (F1) of our

2212
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

framework and other state-of-the-art parsers on the test set
of the German SPMRL dataset and on Section 23 (test set)
of the English WSJ treebank.

On the English dataset, our parser is competitive to
the state-of-the-art parsers trained on WSJ data only. As
reported in [9], reranking with the generative RNN mod-
els deliver gains over end-to-end discriminative RNN mod-
els, our framework thereby has the potential to advance the
reranking models [9], [11] by integrating these generative
RNN models into decoding†, which remains a future work.
On the German dataset, particularly, our parser outperforms
other state-of-the-art parsers both when using auto-labelled
POS tags and gold tags.

6. Related Works

There have been several notable works on RNN-based con-
stituent parsing. For example, [7] proposed an end-to-end
RNN parser whose performance is comparable to the state-
of-the-art feature-rich parsers, and [9] proposed a variant
RNN model for parsing. Unlike their pure neural network
models, ours is a hybrid model consisting of neural networks
and feature-rich models, which can combine their merits.
Furthermore, our framework is general and can be applied
on top of their RNN models.

There have been some other efforts about using NNs to
improve the feature-rich parsers. [25] used feedforward neu-
ral networks (FFNNs) to automatically learn the optimized
features for parsing, but their work cannot capture the infor-
mation of the whole parsing history. [27] integrated FFNNs
into CRF-based parsing, but their parser relied on additional
datasets in order to match the state-of-the-art. Compared
with these works, our parser uses RNNs, which can encode
the information of the whole parsing history, and can yield
quite good results without using any additional datasets.

7. Conclusions

We proposed a novel framework that improves the perfor-
mance of the feature-rich transition-based constituent parser
by using RNN models. The proposed framework combines
the merits of feature-rich parsers and RNNs: it can make
reliable parsing decisions for both short tree-spans by infor-
mative features and long tree-spans by encoding the pars-
ing history with RNN models. Consequently, our parser
achieves competitive performance on the standard English
WSJ task without using any additional data. Furthermore,
our parser set a new state-of-the-art result on German, a
morphologically-rich language.

References

[1] M. Collins, “Head-driven statistical models for natural language
parsing,” Ph.D. thesis, University of Pennsylvania, 1999.

†In this sense, the RNN language model in [11] is considered
as a generative model [33].

[2] S. Petrov and D. Klein, “Improved inference for unlexicalized pars-
ing,” HLT-NAACL, 1, vol.7, pp.404–411, 2007.

[3] X. Carreras, M. Collins, and T. Koo, “TAG, dynamic programming,
and the perceptron for efficient, feature-rich parsing,” Proc. Twelfth
Conference on Computational Natural Language Learning, pp.9–16,
Association for Computational Linguistics, 2008.

[4] M. Zhu, Y. Zhang, W. Chen, M. Zhang, and J. Zhu, “Fast and ac-
curate shift-reduce constituent parsing,” Proc. 51st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long
Papers), Sofia, Bulgaria, pp.434–443, Aug. 2013.

[5] Z. Wang and N. Xue, “Joint POS tagging and transition-based con-
stituent parsing in Chinese with non-local features,” Proc. 52nd An-
nual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), Baltimore, Maryland, pp.733–742, Associa-
tion for Computational Linguistics, June 2014.

[6] J. Henderson, “Inducing history representations for broad coverage
statistical parsing,” Proc. 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human
Language Technology-Volume 1, pp.24–31, Association for Com-
putational Linguistics, 2003.

[7] T. Watanabe and E. Sumita, “Transition-based neural constituent
parsing,” Proc. 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), Beijing,
China, pp.1169–1179, Association for Computational Linguistics,
July 2015.

[8] O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton,
“Grammar as a foreign language,” Advances in Neural Information
Processing Systems, vol.28, pp.2773–2781, 2015.

[9] C. Dyer, A. Kuncoro, M. Ballesteros, and N.A. Smith, “Recurrent
neural network grammars,” Proc. 2016 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, San Diego, California, pp.199–209,
Association for Computational Linguistics, June 2016.

[10] Y. Kim, Y. Jernite, D. Sontag, and A.M. Rush, “Character-aware
neural language models,” arXiv preprint arXiv:1508.06615, 2015.

[11] D.K. Choe and E. Charniak, “Parsing as language modeling,” Proc.
Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp.2331–2336, 2016.

[12] I. Sutskever, O. Vinyals, and Q.V. Le, “Sequence to sequence learn-
ing with neural networks,” Advances in Neural Information Process-
ing systems, vol.27, pp.3104–3112, 2014.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[14] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R.S.
Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention,” arXiv preprint arXiv:1502.03044,
vol.2, no.3, p.5, 2015.

[15] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F.
Bougares, H. Schwenk, and Y. Bengio, “Learning phrase represen-
tations using RNN encoder–decoder for statistical machine transla-
tion,” Proc. 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Doha, Qatar, pp.1724–1734, Associa-
tion for Computational Linguistics, Oct. 2014.

[16] T. Koo and M. Collins, “Efficient third-order dependency parsers,”
Proc. 48th Annual Meeting of the Association for Computational
Linguistics, pp.1–11, 2010.

[17] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” IEEE Trans. Neural
Netw., vol.5, no.2, pp.157–166, 1994.

[18] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of train-
ing recurrent neural networks.,” ICML ’13, Proc. 30th International
Conference on Machine Learning, vol.28, no.3, pp.1310–1318,
2013.

[19] J. Bergstra and Y. Bengio, “Random search for hyper-parameter op-
timization,” Journal of Machine Learning Research, vol.13, pp.281–

http://dx.doi.org/10.3115/1596324.1596327
http://dx.doi.org/10.3115/v1/p14-1069
http://dx.doi.org/10.3115/1073445.1073459
http://dx.doi.org/10.3115/v1/p15-1113
http://dx.doi.org/10.18653/v1/n16-1024
http://dx.doi.org/10.18653/v1/d16-1257
http://dx.doi.org/10.3115/v1/d14-1179
http://dx.doi.org/10.1109/72.279181

MA et al.: IMPROVING FEATURE-RICH TRANSITION-BASED CONSTITUENT PARSING USING RECURRENT NEURAL NETWORKS
2213

305, 2012.
[20] F.J. Och, “Minimum error rate training in statistical machine transla-

tion,” Proc. 41st Annual Meeting on Association for Computational
Linguistics-Volume 1, pp.160–167, Association for Computational
Linguistics, 2003.

[21] M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini, “Building a
large annotated corpus of English: The Penn treebank,” Computa-
tional Linguistics, vol.19, no.2, pp.313–330, 1993.

[22] D. Seddah, S. Kübler, and R. Tsarfaty, “Introducing the SPMRL
2014 shared task on parsing morphologically-rich languages,” Proc.
First Joint Workshop on Statistical Parsing of Morphologically Rich
Languages and Syntactic Analysis of Non-Canonical Languages,
pp.103–109, 2014.

[23] M. Zhu, J. Zhu, and H. Wang, “Exploiting lexical dependencies from
large-scale data for better shift-reduce constituency parsing,” Proc.
COLING 2012, pp.3171–3186, 2012.

[24] B. Crabbé and D. Seddah, “Multilingual discriminative shift-reduce
phrase structure parsing for the SPMRL 2014 shared task,” Proc.
First Joint Workshop on Statistical Parsing of Morphologically Rich
Languages and Syntactic Analysis of Non-Canonical Languages,
2014.

[25] Z. Wang, H. Mi, and N. Xue, “Feature optimization for constituent
parsing via neural networks,” Proc. 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers), Beijing, China, pp.1138–1147, Association for Computa-
tional Linguistics, July 2015.

[26] D. Hall, G. Durrett, and D. Klein, “Less grammar, more features,”
Proc. 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp.228–237, 2014.

[27] G. Durrett and D. Klein, “Neural CRF parsing,” Proc. 53rd Annual
Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), Beijing, China, pp.302–312, Association
for Computational Linguistics, July 2015.

[28] A. Björkelund, Ö. Çetinoğlu, R. Farkas, T. Mueller, and W. Seeker,
“(re) ranking meets morphosyntax: State-of-the-art results from the
SPMRL 2013 shared task,” Proc. Fourth Workshop on Statistical
Parsing of Morphologically Rich Languages, pp.135–145, 2013.

[29] E. Charniak and M. Johnson, “Coarse-to-fine n-best parsing and
MaxEnt discriminative reranking,” Proc. 43rd Annual Meeting on
Association for Computational Linguistics, pp.173–180, Associa-
tion for Computational Linguistics, 2005.

[30] J. Legrand and R. Collobert, “Deep neural networks for syntac-
tic parsing of morphologically rich languages,” Proc. 54th Annual
Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp.573–578, 2016.

[31] D. McClosky, E. Charniak, and M. Johnson, “Effective self-training
for parsing,” Proc. Main Conference on Human Language Technol-
ogy Conference of the North American Chapter of the Association
for Computational Linguistics, pp.152–159, Association for Com-
putational Linguistics, 2006.

[32] J. Cross and L. Huang, “Span-based constituency parsing with a
structure-label system and provably optimal dynamic oracles,” Proc.
2016 Conference on Empirical Methods in Natural Language Pro-
cessing, Austin, Texas, pp.1–11, Association for Computational Lin-
guistics, November 2016.

[33] K.S. Jones, “Language modelling’s generative model: Is it ratio-
nal,” master thesis, Computer Laboratory, University of Cambridge,
2004.

Chunpeng Ma is currently a Dr. student
of Harbin Institute of Technology. His advi-
sor is Prof. Tiejun Zhao. He received his B.E.,
M.E. from Harbin Institute of Technology in
2010 and 2014, respectively. From July 2013
to January 2014, he interned at Baidu Inc. with
instruction from Xianchao Wu. From October
2015 to September 2016, he interned at Na-
tional Institute of Information and Communi-
cations Technology, with the instruction from
Akihiro Tamura, cooperating with Lemao Liu.

His research intests include syntactic parsing and machine learning.

Akihiro Tamura received his B.E., M.E.,
and Dr. Eng. from the Tokyo Institute of Tech-
nology in 2005, 2007, and 2013, respectively.
After serving as a researcher at NEC and NICT,
he is currently an assistant professor at Ehime
University. His research interests include natu-
ral language processing and machine learning.
He is a member of the Association for Compu-
tational Linguistics, the Information Processing
Society of Japan, the Japanese Society for Artifi-
cial Intelligence, and the Association for Natural

Language Processing.

Lemao Liu received his Ph.D. degree from
Harbin Institute of Technology, Harbin, China,
in 2013. Then he started his career as a postdoc
at the City University of New York in Novem-
ber 2013, with Prof. Liang Huang. During the
research for this paper, he was a research in the
National Institute of Information and Commu-
nication Technology, Japan. His research in-
terests include natural language processing, ma-
chine translation and parsing.

Tiejun Zhao is a professor of Research Cen-
ter of Language Technology, School of Com-
puter Science and Technology, Harbin Institute
of Technology. He is associate dean of SCST
and director of Ministry of Education-Microsoft
Key Laboratory of NLP & Speech in HIT. He is
associate director of Machine Translation Sub-
ject Committee of Chinese Information Pro-
cessing Society, the member of editorial board
of Journal of Chinese Information Processing,
Journal of Automation, the senior member and

associate director of Chinese Computing Committee of China Computer
Federation. His research fields include: natural language understanding,
content-based web information processing, applied artificial intelligence.

http://dx.doi.org/10.3115/1075096.1075117
http://dx.doi.org/10.3115/v1/p15-1110
http://dx.doi.org/10.3115/v1/p14-1022
http://dx.doi.org/10.3115/v1/p15-1030
http://dx.doi.org/10.3115/1219840.1219862
http://dx.doi.org/10.18653/v1/p16-2093
http://dx.doi.org/10.3115/1220835.1220855
http://dx.doi.org/10.18653/v1/d16-1001

2214
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

Eiichiro Sumita received the M.S. de-
gree in computer science from the University of
Electro-Communications in 1982 and the Ph.D.
degree in engineering from Kyoto University
in 1999. He is the Associate Director Gen-
eral, ASTREC (Advanced Speech Translation
Research and Development Promotion Center),
NICT. Before joining NICT, he worked for ATR
and IBM. His research interests include machine
translation and e-Learning.

