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PAPER

Community Discovery on Multi-View Social Networks via Joint
Regularized Nonnegative Matrix Triple Factorization

Liangliang ZHANG†a), Longqi YANG†, Yong GONG†, Nonmembers, Zhisong PAN†, Member, Yanyan ZHANG†,
and Guyu HU†b), Nonmembers

SUMMARY In multi-view social networks field, a flexible Nonnega-
tive Matrix Factorization (NMF) based framework is proposed which in-
tegrates multi-view relation data and feature data for community discov-
ery. Benefit with a relaxed pairwise regularization and a novel orthogonal
regularization, it outperforms the-state-of-art algorithms on five real-world
datasets in terms of accuracy and NMI.
key words: data mining, community discovery, social network, nonnega-
tive matrix factorization

1. Introduction

In recent years, research on community discovery has re-
ceived considerable attention in the data mining field [1]–
[3], particularly in the area of social media.

Finding a community in a social network corresponds
to identifying a set of nodes such that they interact with
each other more frequently than with those nodes outside
the group.

Community discovery can facilitate other social com-
puting tasks and is applied in many real-world applications.
For instance, the grouping of customers with similar inter-
ests in social media leads to efficient recommendations that
expose customers to a wide range of relevant items to en-
hance transaction success rates. Communities can also be
used to compress an extremely large network, thereby re-
sulting in a smaller network. In other words, problem solv-
ing is accomplished at the group level rather than at the node
level. Similarly, an extremely large network can be visual-
ized at different resolutions, offering an intuitive solution for
network analysis and navigation.

However, community discovery in social networks
with heterogeneous entities and interactions is still challeng-
ing.

Take Twitter as an example. A network in Twitter can
encompass entities such as users, tweets and lists. Multiple
interactions can exist between users: a user x may follow,
retweet or mention another user y. Thus, a variety of in-
teractions exist between the same set of users in a network.
Each type of interaction between users forms a view of the
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Fig. 1 JoNMTF framework

network, i.e., relation view; thus, the relation views of Twit-
ter could be named follow, retweet and mention. Moreover,
the entities of Twitter such as lists and tweets form feature
views, which may be named lists and tweets, respectively.
These distinctive types of entities or interactions form multi-
type, multi-view networks in social media. With a heteroge-
neous network, our goal is to determine the hidden commu-
nities through integrating multi-view relations and features.

Nonnegative matrix factorization (NMF) has a solid
theoretical basis, good interpretability and high computa-
tional efficiency, and it has recently been widely applied in
community discovery [4]–[7].

In this work, we propose a framework named joint-
regularized nonnegative matrix triple factorization (JoN-
MTF), which extends NMF to integrate two distinct types
of data sources, as shown in Fig. 1. JoNMTF is discussed in
Sect. 4.

The main contributions of this paper are as follows:

• Proposing the flexible JoNMTF framework that com-
bines multi-type, multi-view data sources (i.e., relation
views and feature views);

• Introducing two novel regularizations (i.e., pairwise
regularization and orthogonal regularization) to extend
NMF for multi-type, multi-view community discovery;

• Applying JoNMTF to five real-world datasets and
demonstrating the effectiveness of these solutions for
community discovery.

Section 2 surveys the works related to multi-view clus-
tering. In Sect. 3, we formalize our research problem and
study the problem in a preliminary study on multi-view
methods. Section 4 outlines the proposed joint-regularized
NMTF framework and discusses its correctness. In Sect. 5,
we evaluate our proposed method. The paper is concluded
in Sect. 6.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers
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2. Related Works

We first review the literature on the general problem of
single-view NMF-based community discovery. We then re-
view works on multi-view community discovery, which rep-
resent a collection of methods of which our specific proposal
of JoNMTF is an instance.

The NMF-based methods for community discovery on
social networks can be classified as single-view community
discovery and multi-view community discovery according
to the amount of views (i.e., networks).

2.1 Single-View NMF-Based Community Discovery

NMF can be traced back to the 1970s (notes from G. Golub)
and was extensively studied by Paatero [8]. The work of Lee
and Seung [9] brought considerable attention to NMF in the
fields of machine learning and data mining. Most applica-
tions make use of the clustering aspect of NMF, which is
inspired by the work of Lee and Seung.

In general, the input data for single-view NMF methods
include relation data, feature data (i.e., content data), and so
forth.

For feature data, normal NMF factorizes a nonnegative
input feature data matrix X ∈ Rp×n

+ , as shown in Eq. (1),

X ≈ FGT , (1)

where F ∈ Rp×k
+ and G ∈ Rn×k

+ .
Some preliminary work was conducted in 2006; Ding

et al. [10] presented Non-negative Matrix Tri-Factorization
(NMTF), as shown in Eq. (2),

min
F≥0,G≥0,S≥0

||X − FS GT ||, (2)

where ||·|| denotes the squared sum of all elements in the ma-
trix, F ∈ Rp×k

+ , S ∈ Rk×l
+ , and G ∈ Rn×l

+ . To simultaneously
cluster the rows and columns of the input data matrix, F pro-
vides row clusters, G provides column clusters, and S pro-
vides additional degrees of freedom such that the low-rank
matrix representation remains accurate. More precisely, we
solve Eq. (3)

min
F≥0,G≥0,S≥0

||X − FS GT ||, s.t.FT F = I,GT G = I. (3)

The value of X − FS GT with bi-orthogonal constraints is
smaller than that without bi-orthogonal constraints. We typ-
ically set k = l. If the orthogonal constraint is only applied
on G, namely, one-sided ONMF, then it makes no differ-
ence by setting F ← FS , and NMTF can be transformed
to X ≈ FGT , which is a normal NMF 1. This form Eq. (3)
gives a good framework for simultaneously clustering the
rows and columns of X.

For relation data, when the input X is a symmetric ma-
trix of pairwise similarities, i.e., Xi j = Xji, it is a special
case of NMTF. Ding et al. [10] proposed the symmetric
NMTF (symNMTF) method to solve this problem by set-
ting X = XT = W and F = G = H as

min
H≥0,S≥0

JsymNMT F = ||W − HS HT ||, s.t.HT H = I. (4)

Although these NMF-based algorithms exhibit high in-
terpretability, they are limited for community discovery in
single-view networks. We will discuss some NMF-based
methods for multi-view community discovery in the next
section.

2.2 Multi-View NMF-Based Community Discovery

Single-view NMF focused on only one aspect of a network;
it performs well when the data source is complete and accu-
rate. In reality, the poor performance of single-view NMF is
due to missing data, data errors and so on. Integrating mul-
tiple types of measurements for the same users allows us to
gain a deeper understanding of the data and refine the clus-
tering. It is intuitive to integrate multiple-view information
to obtain a more stable and accurate partition.

Multi-view NMF-based community discovery methods
can be grouped into three categories [6] - early, immedi-
ate and late integration - according to when the information
from single views are integrated.

• Early integration. In these approaches, the individ-
ual views are directly integrated into a unified view be-
fore learning. Then, the classical clustering algorithm
can be performed on the views. Greene and Cunning-
ham [11] proposed a scheme to effectively solve the
multi-view problem. Their proposed scheme unifies
multi-view data into a single graph, and the classical
clustering method k-nearest neighbor was applied to
this graph. This scheme could handle both relation and
feature data. The main weakness of this study is that in-
formation may be lost at the integration step. However,
verifying the correctness and accuracy of the unified
graph based only on clustering performance is difficult.

• Late Integration. In these approaches, the clustering
algorithm is first conducted on the individual views.
Then, a strategy is adopted to combine the individ-
ual results. Hindle et al. [12] generated the clustering
of different views by treating the optimal clustering as
hidden factors. PLSA was adopted to solve this prob-
lem.

• Immediate integration. In these approaches, mul-
tiple views are fused during the clustering process.
Jing et al. [6] proposed a multi-view clustering algo-
rithm called MultiNMF, which formulates a joint ma-
trix factorization process with the constraint. Multi-
NMF pushes the clustering solution of each view to-
ward a common consensus, which may be too strict in
some fields. As the regularization parameter increases,
the membership matrices become similar, which may
be not a good approximation of real data. He et al. [7]
proposed CoNMF, the pair-wise regularization which
relaxed the regularization of MultiNMF. CoNMF is
reported has better performance. Hidru and Gold-
enberg [13] proposed a graph-regularized multi-view
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NMF-based method named EquiNMF. Due to the var-
ious different network types (e.g., undirected, directed
and compound networks), Wang et al. proposed a series
of NMF-based algorithms (SNMF, ANMF, and JNMF)
for different networks [5]. JNMF is designed for com-
pound networks; it combines user-user, user-movie and
movie-movie information into one model.

3. Preliminaries

Before describing JoNMTF, we discuss some necessary pre-
liminaries. We first present a formal problem statement for
multi-type, multi-view community discovery and then in-
troduce the evaluation criteria. We then conduct an ini-
tial study on a multi-view community discovery method
- CoNMF [7]. Inspired by CoNMF and the advantages
of symmetric NMTF, we propose a community discovery
method called CoNMTF for multi-view relation data.

3.1 Problem Formulation

In this paper, we define a multi-type, multi-view social net-
work as a collection of relation views and feature views. We
investigate how relation data and feature data are best used
to assist community discovery.

Input: For relation views, G consists of nr view net-
works. Formally, we are given nr view relation data denoted
as G = {G1, . . . ,Gnr } ∈ Rn×n

+ , where n denotes the total num-
ber of users. For view i, Gi = (Vi, Ei), where Vi and Ei are
the set of nodes and set of edges, respectively. A node may
appear in one or multiple views.

For feature views, X consists of n f data matrices for
each view network. Define N = nr + n f . Let X =

{Xnr+1, . . . , XN} be n f views of a set of Vi data points such
that each row of Xi represents a user and each column rep-
resents an attribute.

Output: H ∈ Rn×k
+ denotes the community member-

ship matrix, i.e., indicator matrix. The i-th row of H not
only indicates the degree of attribution of the nodes in all
communities but also depicts the distribution structure and
characteristics of nodes in k-dimensional space.

Thus, the target of community discovery in multi-view
social networks is to integrate both relation views and fea-
ture views and then factorize into H.

3.2 Evaluation Metrics

Clustering accuracy (AC) and the normalized mutual infor-
mation metric (NMI) are used to measure the community
discovery performance [14].

Let li and αi be the cluster label and the ground truth
label, respectively. The AC is defined as follows:

AC =

∑n
i=1 δ(αi,map(li))

n
, (5)

where n denotes the total number of nodes; δ(x, y) is the

delta function, which equals one if x = y and equals zero
otherwise; and map(li) is the mapping function that maps
each cluster label li to the equivalent label from the ground
truth. The best mapping can be found by using the Kuhn-
Munkres algorithm.

Moreover, given two sets of communities C and C′,
their mutual information metric MI(C,C′) is defined as fol-
lows:

MI(C,C′) =
∑

ci∈C,c′j∈C′
p(ci, c

′
j) � log2

p(ci, c
′
j)

p(ci)p(c′j)
, (6)

where p(ci) and p(c
′
j) denote the probabilities that a user

belongs to community ci or c
′
j, respectively. p(ci, c

′
j) denotes

the joint probability that user belongs to ci and c
′
j.

For example, the indicator matrix is H ∈ Rn×k
+ , where n

is the number of users and k is the number of communities.
Considering the hard (single-assignment) clustering prob-
lem, we take the most likely cluster in the soft assignment
to yield a hard assignment.

For the i-th user, Hi j denotes the probability that the
i-th user belongs to the j-th cluster. We define A(i) =
arg max j Hi j, which means that the i-th user is assigned to
the j-th cluster.

We now discuss the calculation of p(ci), p(c
′
j) and

p(ci, c
′
j).

p(ci) =
1
N

N∑

x=1

δ(ci, (A(x))), (7)

where Ic(x) is the indicator function, which equals one if x =
c and equals zero otherwise. The ground truth of clustering
is denoted as GT such that

p(c
′
j) =

1
N

N∑

x=1

δ(c
′
j, (GT (x))). (8)

p(ci, c
′
j) =

1
N

N∑

x=1

δ(ci, (A(x))) × δ(c′j, (GT (x))). (9)

H(C) and H(C′) are the entropies of C and C′, respec-
tively. The normalized metric (NMI) is:

NMI(C,C′) =
MI(C,C′)

max(H(C),H(C′))
, (10)

where the � in this matrix context denotes element-wise
multiplication.

3.3 Co-Regularized Non-Negative Matrix Factorization

He et al. [7] proposed an approach named Co-regularized
Non-negative Matrix Factorization (CoNMF), which is for
multi-view community discovery, and it used a pairwise
constraint to force each pair of indicator matrices H to be
similar.

Given nv view data denoted as {X1, . . . , Xnv }, each view
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is factorized as Xi ≈ HiVi, where Hi have the same dimen-
sions n × k, and Vi have dimensions k × mi, differing per
view.

The objective function of CoNMF is Eq. (11)

JCoNMF =

nv∑

i=1

θi||Xi − HiVi|| + Rp

s.t.Hi ≥ 0,Vi ≥ 0, (11)

where Rp =
∑nv

i=1

∑nv
j=1 ||Hi − H j|| is the pairwise regulariza-

tion that relaxed the regularization of MultiNMF [6].

3.4 Community Discovery for Multi-View Relation Data

Consider an undirected network, the relation data can be for-
mulated as a symmetric matrix of pairwise user similarities,
we denote it as W ∈ Rn×n

+ .
Symmetric NMTF is reported to have good perfor-

mance on symmetric data [15], [16]. It is formulated as
W ≈ HS HT s.t.HT H = I, where W ∈ Rn×n

+ , H ∈ Rn×k
+ ,

and S ∈ Rk×k
+ .

NMTF has the following four advantages:

• S absorbs both positive and negative eigenvalues such
that W ≈ HS HT has a better approximation than W ≈
H̃H̃T .

• S in HS HT provides extra degrees of freedom such that
H is much closer to the form of cluster indicators. One
key of W ≈ HS HT is the orthogonal constraints on H,
which lead to a more sparse H than that in W ≈ H̃H̃T .

• There is a special meaning on k-by-k matrix S . H
are vigorous cluster indicators, and HT H = I. Con-
sider the derivative ∂JsymNMF

∂S ; we obtain S = HT WH or

S lk = hT
l Xhk =

∑
i∈Cl

∑
j∈Ck
wi j√

nlnk
. S represents the within

cluster sum of weight (l = k) and between cluster sum
of weights (l � k). The elements of the off diagonal of
S are considerably smaller than the diagonal elements
if the clusters are well separated.

• In social networks, the relation view data are often
symmetric. Each node represents one user, and each
link represents the relationship between users. In 2011,
Wang et al. [5] first used NMTF for community discov-
ery. Specifically, Wang has reported a widely discussed
position that HS HT has a clear physical interpretability
compared to other clustering methods.

3.4.1 CoNMTF

Inspired by CoNMF [7], we proposed a multi-view commu-
nity discovery solution (CoNMTF) by using symNMTF to
factorize a relation view instead of standard NMF.

Formally, given nr view relation data denoted as
{W1, . . . ,Wnr }, each view is factorized as Wi ≈ HiS iHiT ,
where Hi have the same dimensions n × k. S i are of di-
mensions k × k. S i denotes the relationship of communities.
The multi-view relation data can be solved by optimizing

the following objective function Eq. (12),

JCoNMT F =

nr∑

i=1

θi||Wi − HiS iHiT || + Rp

s.t.Hi ≥ 0, S i ≥ 0, (12)

where θi is the weight of each view; Rp is a pairwise con-
straint, and it relaxes the MultiNMF’s [6] constraints and
forces the indicator matrices of each pair of views to com-
plement each other during the factorization process.

CoNMTF and CoNMF are the basis for constructing
the multi-type, multi-view community discovery method,
and they will be conducted as baseline methods to compare
with the proposed method during the experiments.

4. Joint-Regularized Nonnegative Matrix Tri-Factor-
ization

Our solution is finding a principled method to combine
multi-type, multi-views (i.e., relation views and feature
views) adopting the NMF technique.

After briefly reviewing solutions on multi-view data
(CoNMF and CoNMTF) in Sect. 3, we introduced our solu-
tion - the JoNMTF to integrate multi-type, multi-view data.
In addition, we prove the correctness and derive the time
complexity of our proposed method.

4.1 JoNMTF Framework

The idea behind multi-type, multi-view community discov-
ery is that different types of views should admit the same
underlying community of the data.

Thus, the indicator matrices H of relation views and
feature views are similar. Symmetric NMTF and standard
NMF are applied to factorize relation views and feature
views, respectively. Thus, the objective function of the pro-
posed JoNMTF can be formulated as follows,

J =
nr∑

i=1

θi||Gi − HiS iHiT || +
N∑

i=nr+1

θi||Xi − HiVi|| + R

s.t.Hi ≥ 0, S i ≥ 0,Vi ≥ 0, (13)

where θi balances the factorization of different views. R is a
proposed multi-view joint regularization function for multi-
type, multi-view social networks. The regularization func-
tion R is defined as the sum of a pairwise regularization
function Rp and an orthogonal regularization function Ro.
We will detail these in the following sections.

4.2 Pairwise Regularization

As He introduced in [7], pairwise constraints relax Mult-
iNMF’s constraints rather than imposing similarity con-
straints on each pair of views. We expect that the indicator
matrices Hs learned from two views can complement each
other during the factorization process. The corresponding
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co-regularization function Rp is intuitively defined as fol-
lows:

Rp =

N∑

i=1

N∑

j=1

||Hi − H j||. (14)

4.3 Orthogonal Regularization

The orthogonality principle was first employed by Li et
al. [17] to minimize the redundancy between different bases,
and then Ding et al. [10] broached the concept of orthogo-
nal NMF explicitly. Under the condition of nonnegativity,
orthogonality will necessarily result in sparseness [18].

Recall the NMTF, which is discussed in the related
works section; from the perspective of NMTF, W ≈ HS HT

is a more effective factorization than W ≈ H̃H̃T , and the
orthogonal constraint on indicator matrix H is necessary to
construct NMTF [15].

The orthogonality regularization can be formulated as
follows:

Ro =

nr∑

i=1

||HiT Hi − I||, (15)

where I is the identity matrix.

4.4 Optimization

We propose two algorithms: one with an orthogonal con-
straint (JoNMTF-OP) and the other without an orthogonal
constraint (JoNMTF-P).

First, we ignore the orthogonal constraint, only consid-
ering the pairwise constraint in our model. Let R = Rp; by
substituting R into Eq. (13), we obtain the objective function
of JoNMTF-P:

JJoNMT F−P =

nr∑

i=1

θi||Gi − HiS iHiT ||

+

N∑

i=nr+1

θi||Xi − HiVi||

+

N∑

s=1

N∑

t=1

||Hs − Ht ||

s.t.H ≥ 0, S ≥ 0,V ≥ 0, (16)

Second, we consider both the pairwise constraint and
orthogonal constraint in our model. Let R = Rp + Ro; by
substituting R into Eq. (13), we obtain the objective function
of JoNMTF-OP:

JJoNMT F−OP =

nr∑

i=1

θi||Gi − HiS iHiT ||

+

N∑

i=nr+1

θi||Xi − HiVi||

+

N∑

s=1

N∑

t=1

||Hs − Ht || +
nr∑

k=1

||HkT
Hk − I||

Algorithm 1 Joint-regularized Nonnegative Matrix TriFac-
torization (JoNMTF)
Require: Relation matrices {G1, . . . ,Gnr }, feature matrices {X1, . . . , Xn f },

parameters {θ1, . . . , θN , α}, and number of community K;
Ensure: Membership matrix H∗
1: Normalize each relation-based view Gi such that ||Gi

s. || = 1;
2: Initialize matrices {Hi}, {H j}, {S i} and {V j}.
3: while Eq. (17) not converges do
4: for each i from 1 to nr do
5: Update Hi and S i using Eq. (A· 8)
6: end for
7: for each j from nr + 1 to N do
8: Update H j and V j using Eq. (A· 9)
9: end for

10: end while
11: H∗ = 1

N

∑N
i=1 Hi

12: Normalized the membership matrix H∗ such that
∑

j H∗i j = 1.
13: return H∗

s.t.H ≥ 0, S ≥ 0,V ≥ 0, (17)

The optimizations of Eq. (16) and Eq. (17) are similar;
thus, we only discuss the process for Eq. (17).

After solving the optimization problem of Eq. (17), we
derive the update rules. The details of the optimization are
provided in the Appendix.

Since matrices G, X, H, S , and V are all nonnegative
during the updating process, the final X, S and V will also
be nonnegative. Therefore, we prove the correctness of our
algorithm. The convergence of the proposed Algorithm 1
can be proven via an auxiliary function following [4].

After convergence, we applied a simple late integration
strategy to the membership matrices {H1, . . . ,HN} of each
individual view. The obtained H∗ is simply the scale parti-
tion matrix, whose i-th row corresponds to the community
membership of the i-th user. H∗ is normalized as

∑
j H∗i j = 1

such that H∗ik corresponds to the posterior probability that
the i-th user belongs to the k-th community.

H∗ =
1
N

N∑

i=1

Hi. (18)

4.5 Time Complexity Analysis

We discuss the computational complexity of the proposed
JoNMTF algorithm in contrast to standard NMF using big
O notation.

The cost for NMF’s update rules in each iteration is
O(nmk).

Now, consider one iteration of the proposed method.
For relation-based views, the cost for update rule Hi and S i

in each single view is O(n2k). For feature-based views, the
cost for update rule H j and V j in each single view is O(nmk).

Suppose that the algorithm converges after T iterations
and that the computational cost of JoNMTF is O(T (nrn2k +
n f nmk)). The total number of relation-based views nr

and the total number of feature-based views n f are always
small constants in the context of multi-view social networks.
Therefore, the overall running time of JoNMTF is linear
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with respect to the number of users, communities and at-
tributes. The computational complexity of the proposed
method is equal to that of a standard NMF up to a constant
term.

5. Experiments

Our evaluation focuses on evaluating JoNMTF for multi-
type, multi-view clustering. We first benchmark the perfor-
mance computed from single views, and then we contrast it
against the performance on multi-view clustering. We also
compare JoNMTF against other multi-view clustering tech-
niques.

5.1 Dataset

We experiment with five real-world datasets from Twitter:
football, olympics, politics of UK (politics-uk), politics of
Ireland (politics-ie) and rugby.

Each dataset includes relation views and feature
views. The relation views consist of follows, mentions and
retweets. Follows, mentions and retweets are constructed by
binary user profile vectors based on the user whom they fol-
low, mention and retweet, respectively. The feature views
include listmerged500, lists500 and tweets500. List500
means list content profiles, constructed from the concate-
nation of both the names and the descriptions of the 500
Twitter lists to which each user has most recently been as-
signed. Listmerged500 (listmgd500) merges the items from
list500 according to the name. Tweets500 means user con-
tent profiles, constructed from the concatenation of the 500
most recently posted tweets for each user. Table 1 lists the
details of the five Twitter datasets.

5.2 Baselines

In addition to the baseline NMF, we also compare with the
following five algorithms.

1.NMF. Since the proposed method is an extension of
NMF, it is reasonable to choose NMF as the baseline of the
single-view clustering algorithm. The worst and best perfor-
mances of NMF for single view are reported as WorstNMF
and BestNMF, respectively.

2.UniNMF. UniNMF is a two-step algorithm. The first
step is an early integration process; it combines all rela-
tion views and feature views into a unified graph using the
method in [11], and then standard NMF is performed on this

Table 1 Summary of five Twitter data sets.

Datasets football olympics politics-ie politics-uk rugby
users 248 464 348 419 854
communities 20 28 7 5 15
follows 3819 10642 16856 27340 35757
mentions 3312 9615 6318 14788 33832
retweets 1350 3740 3019 7270 12472
lists500 7814 4942 1047 3614 5900
listmgd500 3601 3907 1051 2879 3785
tweets500 11806 18455 14377 19868 28903

graph as a single-view community discovery problem.
3.MultiNMF [6]. MultiNMF solve a multi-view com-

munity discovery problem by optimizing following objec-
tive function,

JmultiNMF

=

nv∑

v=1

||X(v) − U(v)(Vv)T ||2F +
nv∑

v=1

λv||V (v) − V∗||2F

s.t.1 ≤ k ≤ K, ||U(v)
.,k ||1 = 1andU(v),V (v),V∗ ≥ 0. (19)

We set the regularization parameters λv uniformly as
0.01 as suggested.

4.CoNMF [7]. CoNMF solves the problem of Eq. (11).
The parameters are set to 1 as suggested by the authors.

5.CoNMTF. CoNMTF is discussed in Sect. 3, it solves
the problem of Eq. (12). It is based on the non-negative ma-
trix triple factorization. The parameters are set to 1.

The five baselines cover all three types of integration
strategy. UniNMF is an early integration algorithm, whereas
MultiNMF is an immediate integration algorithm. CoNMF,
CoNMTF and JoNMTF are immediate and late integration
algorithms, and the late integration strategy is applied to ob-
tain the final clustering result. Table 2 presents the compar-
ison of these algorithms.

5.3 Setup

In our JoNMTF settings, the regularization parameters are
set to 1 for all views. For each algorithm, 10 test runs with
different random initializations were conducted, and the av-
erage score is reported. In the following, we report the sta-
tistical significance (judged at the 5% level by a one-tailed
two-sample t-test) where appropriate.

5.4 Result and Analysis

Tables 3 and 4 show the algorithm performance for all five
datasets, the average performance along with the standard
deviation are reported.

From the results in Table 3 and Table 4, we can see that
the proposed JoNMTF-P and JoNMTF-OP methods con-
sistently outperformed the other compared methods, some-
times very significantly, which demonstrate the advantage
of our approaches in terms of clustering performance.

The results show that JoNMTF-P outperformed the
second-best baseline algorithm in terms of accuracy/NMI
(1.60%/1.60%,for the football dataset; 3.66%/2.77% for the

Table 2 Summary of six algorithms

Algorithm Data Type Data Source Integration
WorstNMF single-view relation none
BestNMF single-view relation none
UniNMF multi-type multi-view relation + feature early
MultiNMF multi-type multi-view relation + feature immediately
CoNMF multi-type multi-view relation + feature immediately+late
CoNMTF single type multi-view relation immediately+late
JoNMTF multi-type multi-view relation + feature immediately+late
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Table 3 Average of accuracy on five real world datasets (%)

Algorithm football olympics politics-ie politics-uk rugby
WorstNMF 20.16 ± 0.03 15.95 ± 0.01 58.47 ± 0.09 57.76 ± 0.04 12.53 ± 0.07
BestNMF 25.00 ± 0.01 18.32 ± 0.02 64.73 ± 0.12 61.61 ± 0.11 17.21 ± 0.03
UniNMF 42.63 ± 3.43 33.27 ± 3.52 59.00 ± 0.15 56.30 ± 0.17 46.60 ± 3.23
MultiNMF 57.66 ± 0.04 65.23 ± 0.06 64.08 ± 0.03 68.39 ± 0.03 62.93 ± 0.04
CoNMF 79.63 ± 0.03 77.58 ± 0.03 55.35 ± 0.02 64.94 ± 0.03 59.95 ± 0.03
CoNMTF 86.69 ± 0.12 80.82 ± 0.20 76.15 ± 0.14 86.16 ± 0.17 57.61 ± 0.11
JoNMTF-P 88.29 ± 0.21 84.48 ± 0.19 83.05 ± 0.13 89.32 ± 0.12 65.53 ± 0.32
JoNMTF-OP 89.11 ± 0.32 86.76 ± 0.13 85.34 ± 0.21 90.84 ± 0.32 67.11 ± 0.39

Table 4 Average of NMI on five real world datasets (%)

Algorithm football olympics politics-ie politics-uk rugby
WorstNMF 29.25 ± 0.33 27.48 ± 0.58 48.49 ± 0.87 53.64 ± 0.55 6.38 ± 0.21
BestNMF 33.91 ± 0.54 30.37 ± 0.63 68.53 ± 0.34 62.56 ± 0.29 9.23 ± 0.13
UniNMF 47.15 ± 2.54 44.89 ± 4.19 33.09 ± 0.05 37.98 ± 0.14 43.74 ± 4.31
MultiNMF 61.67 ± 0.06 51.40 ± 0.03 50.11 ± 0.04 58.06 ± 0.43 48.74 ± 0.02
CoNMF 82.72 ± 0.01 85.29 ± 0.01 49.66 ± 0.05 67.60 ± 0.04 62.32 ± 0.02
CoNMTF 89.81 ± 0.31 89.99 ± 0.43 80.46 ± 0.41 78.20 ± 0.65 61.10 ± 0.77
JoNMTF-P 91.41 ± 0.20 92.76 ± 0.31 82.09 ± 0.25 83.20 ± 0.34 65.46 ± 0.35
JoNMTF-OP 92.35 ± 0.17 93.41 ± 0.26 84.12 ± 0.28 85.32 ± 0.13 68.94 ± 0.59

Olympics dataset; 6.90%/1.63% for the politics-ie dataset;
3.16%/5.00% for the politics-uk dataset, and 2.60%/3.14%
for the rugby dataset).

For the football dataset, JoNMTF-P outperformed the
baseline methods with a margin (1.60%/1.60%). MultiNMF
achieves (57.66% and 61.67%) while the performance of
JoNMTF is approximately 90%. One of the possible reasons
is that the relaxed constraint involved the complement infor-
mation regarding each pair of views. The best and worst per-
formances of NMF for individual view were approximately
25%/20%. JoNMTF-P was able to detect the true commu-
nities by finding the right direction during optimization pro-
cess.

For the Olympics dataset, JoNMTF-P performed well
(over 84%/92%). Notably, CoNMF achieved 77%/85%
which outperformed MultiNMF (65%/51%).

For the politics-ie and politics-uk datasets, the per-
formance of individual view was comparable with that of
CoNMF (approximately 50% and 65%), while JoNMTF-P
achieves a performance over 80%. These results support
our claim that the proposed JoNMTF-P algorithm is useful
when dealing with multiple types of data sources.

For the rugby dataset, JoNMTF-P performed the worst
among all the five datasets, which is close to the best of
baseline methods. Notably, the multi-view method still out-
performed the standard NMF with a large margin over 30%.

Next, we consider the orthogonality of H, whose
importance w.r.t. clustering is emphasized in Sect. 2 and
Sect. 3. The difference between JoNMTF-P and JoNMTF-
OP is that JoNMTF-OP with an orthogonal constraint and
JoNMTF-P without orthogonal constraint. We compute the
normalized orthogonality, (HT H)nm = D−1/2(HT H)D−1/2,
where D = diag(HT H). Thus the diagonal is normalized
to 1, and derivation can be clearly judged. The off-diagonal
elements in (HT H)nm reflect the orthogonality of H. We
compute the max and mean value of off-diagonal elements

Table 5 The mean and max value of off-diagonal elements in (HT H)nm

Dataset
JoNMTF-P JoNMTF-OP

Mean Max Mean Max
football 0.0356 0.3616 0.0280 0.1473
olympics 0.0337 0.6617 0.0201 0.4447
politics-ie 0.1356 0.5620 0.0787 0.3958
politics-uk 0.1362 0.5121 0.0718 0.2336
rugby 0.0398 0.1762 0.0355 0.1652

and results are given in Table 5. One can see that off-
diagonal elements of JoNMTF-OP (with orthogonal con-
straint) is smaller than that of JoNMTF-P (without orthog-
onal constraint) on five datasets. With the orthogonal con-
straints on H, JoNMTF-OP outperformed JoNMTF-P on all
five datasets.

6. Conclusions

Community discovery in social networks with multi-type
multi-view data is more difficult than that for single-view
data. Data from different perspectives can be complemen-
tary, making multi-view data more adequate than informa-
tion obtained from a single view. In this paper, we proposed
an algorithm (JoNMTF) for combining multi-view relation
data and feature data in social networks. A pairwise regular-
ization was introduced in the algorithm to complement each
pair of views. A novel orthogonal regularization was pro-
posed for an better approximation and a more sparse solu-
tion. The correctness and time complexity of the algorithm
were discussed. The algorithm was tested on five real world
datasets, and the results were compared with those obtained
using existing methods. The results demonstrated that our
algorithm is an improvement over existing methods.
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Appendix: Optimization

We adopt alternating optimization to minimize the objective
function Eq. (17). First, the value of S i is fixed while mini-
mizing J over Hi. Then, the value of Hi is fixed while min-
imizing J over S i. After that, the value of V j is fixed while
while minimizing J over H j. Then, the value of H j is fixed
while minimizing J over V j. These steps are iteratively ex-

ecuted until the stop condition was satisfied. The stop con-
dition was either convergence or exceeding the threshold of
iteration.

Rewritten the objective function J from Eq. (17) as:

J =
nr∑

i=1

θitr(WiT Wi + HiS iT HiT HiS iHiT

−WHiS iT HiT −WT HiS iHiT )

+

N∑

j=nr+1

θ jtr(X jT X j − 2X jT H jV j + V jT H jT H jV j)

+

N∑

s=1

N∑

t=1

tr(HsT Hs − 2HsT Ht + HtT Ht)

+ α

N∑

k=1

tr(HkT
HkHkT

Hk − 2HkT
Hk + I) (A· 1)

where tr(·) denotes the trace function. Let ω1, ω2, ω3 and ω4

be the Lagrange multiplier matrix for the constraint, respec-
tively. L be the Lagrange,

L = J + ω1tr(HiT ) + ω2tr(HiT ) + ω3tr(S iT )

+ ω4tr(V jT ) (A· 2)

Then, we obtain the derivatives of L with respect to
Hi,H j, S i and V j.

∂L
∂Hi
= 4θi(H

iS iHiT HiS i −WHiS i) +
N∑

j=1

2(Hi − H j)

+ 4α(HiHiT Hi − Hi) + ω1 (A· 3)

∂L
∂H j

= 2θ j(−X jV jT + H jV jV jT ) +
N∑

i=1

2(H j − Hi)

+ 4α(H jH jT H j − H j) + ω2 (A· 4)

∂L
∂S i
= 2θi(H

iT HiS iHiT Hi − HiT WiHi) + ω3 (A· 5)

∂L
∂V j
= θ j(−2H jT X j + 2H jT H jV j) + ω4 (A· 6)

Let ω1(s, t)Hi(s, t) = 0, ω2(s, t)H j(s, t) = 0,
ω3(s, t)S i(s, t) = 0 and ω4(s, t)V j(s, t) = 0. Follow the
Karush-Kuhn-Tucker (KKT) complementary slackness con-
dition, we have

∂L
∂Hi
� Hi = 0,

∂L
∂H j

� H j = 0,

∂L
∂S i
� S i = 0,

∂L
∂V j
� V j = 0 (A· 7)

where the � and the division symbol in this matrix context
denote element-wise multiplication and division. For exam-
ple, (A � B)i j = Ai jBi j. Same for element-wise division.

Solving the above equations, we derive the following
update rules:
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Hi ← Hi � θiWHiS i + αHi +
∑N

j=1 H j

θiHiS iHiT HiS i + αHiHiT Hi +
∑N

j=1 Hi

(A· 8)

H j ← H j � θ jX jV jT + αH j +
∑N

i=1 Hi

θ jH jV jV jT + αH jH jT H j +
∑N

i=1 H j

(A· 9)

S i ← S i � HiT WiHi

HiT HiS iHiT Hi
(A· 10)

V j ← V j � H jT X j

H jT H jV j
(A· 11)
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