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PAPER

Articulatory Modeling for Pronunciation Error Detection without
Non-Native Training Data Based on DNN Transfer Learning

Richeng DUAN†a), Nonmember, Tatsuya KAWAHARA†, Member, Masatake DANTSUJI††,
and Jinsong ZHANG†††, Nonmembers

SUMMARY Aiming at detecting pronunciation errors produced by sec-
ond language learners and providing corrective feedbacks related with ar-
ticulation, we address effective articulatory models based on deep neural
network (DNN). Articulatory attributes are defined for manner and place of
articulation. In order to efficiently train these models of non-native speech
without such data, which is difficult to collect in a large scale, several
transfer learning based modeling methods are explored. We first investi-
gate three closely-related secondary tasks which aim at effective learning of
DNN articulatory models. We also propose to exploit large speech corpora
of native and target language to model inter-language phenomena. This
kind of transfer learning can provide a better feature representation of non-
native speech. Related task transfer and language transfer learning are fur-
ther combined on the network level. Compared with the conventional DNN
which is used as the baseline, all proposed methods improved the perfor-
mance. In the native attribute recognition task, the network-level combina-
tion method reduced the recognition error rate by more than 10% relative
for all articulatory attributes. The method was also applied to pronunciation
error detection in Mandarin Chinese pronunciation learning by Japanese
native speakers, and achieved the relative improvement up to 17.0% for de-
tection accuracy and up to 19.9% for F-score, which is also better than the
lattice-based combination.
key words: CALL, CAPT, pronunciation error detection, articulation mod-
eling, transfer learning

1. Introduction

With the accelerating process of globalization, there is an
increasing need for learning a second language. Although
one-to-one interactive lesson by experienced teachers is the
most effective way, there is financial and time constraint for
most students. With Computer-assisted Language Learning
(CALL) systems, students can study wherever and whenever
they like. Computer-assisted pronunciation training (CAPT)
is an indispensable component of CALL system. For ef-
fective learning pronunciation, the system should provide
learners their pronunciation assessments and individualized
corrective feedbacks.

Over the last decades, CAPT based on statistical
modeling techniques has made considerable progress [1]–
[8]. There are two main approaches to pronunciation
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assessment. One is to give learners pronunciation scores
which involve from segmental level to speaker level [9]–
[15], and the other detects individual errors such as spe-
cific phone substitution errors [16]–[25]. The score in the
sentence or speaker level can be measured over long peri-
ods of time, and computed with a number of different pho-
netic and prosodic features. According to the scores, learn-
ers can know their pronunciation proficiency, but they can-
not know what the errors are and how to correct them when
getting a low score. Regarding the segmental pronuncia-
tion error detection, most of prior works focused on detec-
tion of phone substitution errors. Some researchers target
a few specific problematic phones. They analyze the most
frequent errors of those phones, and explore the distinctive
features and classifiers [16]–[18]. Others build systems with
the automatic speech recognition (ASR) technology, either
incorporating the possible errors into the lexicon or directly
adding them into the decoding grammar [19]–[25]. The
ASR-based method is more general than the specially de-
signed ones since it can detect any phones in a unified frame-
work. A typical scenario is: “You made an r-l substitution
error.” When a user pronounces the word “red” as “led”. In-
stead of providing phone substitution feedbacks, giving the
feedbacks directly related with articulation is more attrac-
tive. Facing the same pronunciation error described above,
learners could be instructed with “Try to retract your tongue
and make the tip between the alveolar ridge and the hard
palate”. This approach has been demonstrated more help-
ful in many areas, such as speech comprehension improve-
ment [26], speech therapy [27] and pronunciation perceptual
training [28].

One direct way of achieving this goal is to train the ar-
ticulatory models of language learners. However, it is not
easy to collect a non-native speech corpus in a large scale.
Moreover, it is much more difficult to precisely annotate
non-native speech. In this work, we propose methods to
detect articulatory errors without using non-native training
data. Effective articulation modeling of non-native speech
is focused. We achieve this through modeling the place
and the manner of articulation based on transfer learning.
The idea of transfer learning, which should trace back to 20
years ago, has been successfully employed in broad research
fields [29]–[32]. This study presents how to employ transfer
learning on the articulation modeling of non-native speech
with deep neural networks (DNNs). Inter-language transfer
learning, related-task transfer learning, and combination of
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these two methods are explored. For effective and efficient
learning of DNN articulatory models, three different related
tasks are firstly investigated. In the language transfer learn-
ing method, two large native speech corpora of learners’ na-
tive language (Japanese) and a target language (Chinese) are
used to model the inter-language phenomenon since many
articulatory attributes are shared between the two languages
and we can easily get a large-scale corpus. In order to get
benefit from both learning methods, their combination is re-
alized in a new network architecture.

The rest of this paper is organized as follows: Context-
dependent articulation modeling with DNN is firstly de-
scribed in Sect. 2. Section 3 and Sect. 4 present the DNN ar-
ticulatory modeling based on related task transfer and inter-
language transfer learning. Section 5 addresses combining
these two methods. Section 6 and Sect. 7 respectively report
the performance of these modeling and learning methods in
the native attribute recognition task and the non-native pro-
nunciation error detection task. Conclusions are in the final
section.

2. Context-Dependent Articulation Modeling with
DNN

Articulation means the movement of the tongue, lips, and
other organs to make speech sounds. Generally, place of ar-
ticulation and manner of articulation are used to describe
the attributes of consonant sounds, while vowels are de-
scribed with three-dimensional features: horizontal dimen-
sion (tongue backness), vertical dimension (tongue height),
and lip shape (roundedness). We investigate articulatory
models to recognize the attributes of second language (L2)
learners. The L2 learners in this study are Japanese students
who learn Mandarin Chinese. As a consequence, Mandarin
and Japanese articulatory attributes are considered in this
paper.

2.1 Articulatory Attribute Transcription

The place and manner transcription is derived from the
phone transcription using mapping tables (Tables 1–3)
which are made according to the rules [33], [34]. In these
tables, Chinese attributes are presented first, followed by
the shared attributes and Japanese attributes. Each conso-
nant has one manner attribute and one place attribute, while
vowels are described by the three dimensional attributes.
Considering many-to-many mapping relation between at-
tributes and phones, we model these attributes with four
DNNs. In the manner DNN, all vowels are mapped to the
attribute named vowel. In place DNN, vowels are mapped
into three-dimensional attributes. Therefore, we build three
place DNNs, i.e. place-backness DNN, place-height DNN,
place-roundedness DNN. An example of attribute labels
mapped from phone labels is shown in Table 4. Note that in
Mandarin Chinese, there are compound vowels which are
composed of more than one vowels. These compound vow-
els are mapped into the several attributes according to its

Table 1 Chinese (CH) and Japanese (JP) constant list with manner
attributes.

Table 2 Chinese (CH) and Japanese (JP) constant list with place
attributes.

Table 3 Chinese (CH) and Japanese (JP) vowel list with place attributes.

Table 4 Converting phone labels to articulatory labels.
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Fig. 1 Context-dependent modeling of articulatory attributes.

components. Hence the vowel “ao” in Table 4 is mapped
into “unroundedness roundedness” attributes.

2.2 Context-Dependent Modeling Method for Articula-
tory Attributes

Considering co articulation effect, we employ context-
dependent tri-attribute modeling. Similar to context-
dependent tri-phones used in ASR, labels for tri-manners
and tri-places are generated by taking into account the labels
of neighboring attributes. We exploit Chinese native data to
train the “standard” articulatory models (see Fig. 1). These
target articulatory models can be directly used to detect pro-
nunciation errors of L2 learners. This traditional DNN mod-
eling method is served as our baseline method.

3. Multi-Task Learning on Articulatory Attribute
Modeling

Multi-task learning is an approach of transfer learning that
learns a task together with other related tasks at the same
time. Multi-task DNN (MT-DNN) has been successfully
applied to various machine learning tasks [35]–[37]. The
goal is to improve the performance of learning algorithms
by learning classifiers for multiple tasks jointly. It works
particularly well if these tasks are closely related. Learning
one task can help learning the other in the form of mutual
regularization. Our aim of employing multi-task learning is
effective and efficient learning of DNN articulatory models.
The structure of MT-DNN is same to conventional DNN ex-
cept for the multiple output layers.

In this study, we tried three different closely-related
secondary tasks for enhancing our primary task. One
is context-independent mono-attribute classification, which
encourages the discrimination of the different attributes
rather than different contexts of the same attribute. The
other two are phone classification tasks (mono-phone and
tri-phone classification), which aim at helping the primary
task learn better feature representation of attributes with the
phonetic information. We also investigate using different
weights of the secondary task. Figure 2 gives the schematic

Fig. 2 Context-dependent modeling of articulatory attributes.

diagram of MT-DNN training.

4. Multi-Lingual Learning on Articulatory Attribute
Modeling

Some of the articulation manners or places are shared
among different languages, while others are different. For
example, the place of phones /b, p, m/ is bilabial in both
Chinese and Japanese. However, the stop consonants /p, t,
k/ are pronounced with different manners of articulation. In
Chinese, they are all aspirated stop while they are unvoiced
stop in Japanese. According to the language transfer the-
ory [38]–[40], which refers to speakers applying knowledge
from one language to another language, we know the follow-
ing: When the relevant unit of both languages is the same,
linguistic interference can result in positive language trans-
fer. So Japanese students can easily pronounce an accented
but correct place of Chinese phones /b, p, m/. On the other
hand, when they are similar but not the same, negative trans-
fer will occur. When Japanese students learning the Chinese
aspirated consonants /p, t, k/, they are prone to pronounce
them without sufficient aspiration and the phones sound like
their native unvoiced ones.

Considering these, we investigate modeling of inter-
language phenomena and learning it without non-native
speech data. In the current study, we adopt a multi-lingual
DNN (ML-DNN) to exploit two large Chinese and Japanese
native speech corpora to model the difference at the sep-
arated output layer while learning the commonality in the
language-independent hidden layers. The structure of ML-
DNN is similar to MT-DNN. However, all of the tasks are
trained simultaneously in MT-DNN while the output layer
is separately trained in ML-DNN. In other words, only hid-
den layers are trained by all samples in the ML-DNN train-
ing process. To be more specific, shared hidden layers can
be considered as an intelligent feature extraction module
which aims at learning the bilingual articulation represen-
tation. Features learned from this module coverage better
acoustic characteristics of learners’ speech. Figure 3 shows
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Fig. 3 Non-native articulatory attribute modeling with ML-DNN.

how to train the Chinese-Japanese bilingual manner using
ML-DNN: two training samples (one is native Chinese /p/
with aspiration-manner, the other is native Japanese /p/ with
unvoiced-manner) are sequentially presented to the network.
Each frame is fed into the shared hidden layers and then
the language-dependent output layer. Shared hidden lay-
ers learn the commonality across these two languages while
separated output layers learn the difference. This archi-
tecture allows for learning non-native articulatory features
without using a non-native speech data set.

5. Enhancing Articulatory Attribute Modeling by
Combining Multi-Lingual and Multi-Task Learning

Above mentioned multi-task and multi-lingual learning can
be regarded as two particular implementation of trans-
fer learning. Multi-task learning learns the commonality
through co-supervision (each frame data has two labels). It
can be seen as a kind of regularization approach on model
level. Multi-lingual learning adopted here aims at learning
a better feature representation of non-native speech. As a
result, it is natural to investigate the combination of the two
above-mentioned transfer learning methods.

The simplest method of combination is output-level
combination such as recognizer output voting error reduc-
tion (ROVER) [41] or lattice-level combination such as con-
fusion network combination (CNC) [42]. In this study, a
new DNN architecture for network-level combination is de-
signed as shown in Fig. 4. It also consists of shared hid-
den layers and language dependent output layers, which is
similar to ML-DNN. However, the target language output
layer is made of two tasks, i.e. phone classification and at-
tribute classification tasks. This kind of architecture allows
the model to learn general features among different tasks
and also different languages at the same time.

Fig. 4 Enhancing the articulatory models with network-level combina-
tion of MT-DNN and ML-DNN.

Table 5 Data set in native attribute recognition.

6. Native Attribute Recognition Experiment

6.1 Database

Two native speech corpora are used in this experiment.
One is recorded by Chinese native speakers, which is used
to train the standard articulatory models (DNN and MT-
DNN) and validate different modeling methods. The other
is recorded by Japanese native speakers. It is used in the
ML-DNN and the combination model training.

The native Chinese corpus named db863, which is a
corpus for speech recognition of Chinese National “863”
Project [43]. It has a total of about 110-hour record-
ings spoken by 166 speakers (83 females and 83 males).
Mandarin Chinese is based on a particular Mandarin dialect
spoken in the northern part of China, and almost same as the
Beijing dialect. As our goal is to build a standard Chinese
model, we use all the 64 speakers (36 females and 28 males)
whose hometown is Beijing to train the standard articula-
tory model. We also use 8 speakers (5 males and 3 females)
from the northern China for evaluation. The duration for
training and testing sets are about 42 hours and 5.3 hours.
The Japanese corpus used for training is JNAS corpus [44],
which is also a commonly used database for Japanese large-
vocabulary continuous speech recognition research. We ran-
domly select 42 hours speech data (80 males and 73 fe-
males) from it. All of these data sets are listed in Table 5.

6.2 System Configuration

All different methods use the following DNN configura-
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tion: the acoustic feature consists of 40-dimensional Fourier
transform based filter banks plus their first and second tem-
poral derivatives. The input to the network is 11 frames, 5
frames on each side of the current frame. The neural net-
work has 7 hidden layers with 2048 nodes per layer. This
configuration is determined by a preliminary experiment, in
which we compared the performance of different numbers of
layers (from 6 to 8) and nodes (1024 or 2048). DNN train-
ing consists of unsupervised pre-training and supervised
fine-tuning.

6.3 Experimental Results

The experimental results of different articulatory attributes
are shown in Fig. 5 to Fig. 8. From these 4 figures,
we observe the effect of all three transfer learning based
methods. Compared with the conventional DNN, all the

Fig. 5 Error rate of manner attribute recognition.

Fig. 6 Error rate of place-height attribute recognition.

Fig. 7 Error rate of place-roundedness attribute recognition.

Fig. 8 Error rate of place-backness attribute recognition.

methods achieve lower recognition error rates. Among
the different configurations (different secondary task and
weights) of multi-task learning method, the secondary task
of context-dependent tri-phone improves the attribute recog-
nition task most effectively. When we use the triphone as
the secondary task, there is no significant difference in the
performance among different weight values. We highlight
the effect of combining multi-lingual and multi-task learn-
ing methods (ML+MT), which can reduce the recognition
error rate by more than 10% relative in all articulatory at-
tribute recognition tasks, though the conventional DNN has
achieved a good performance with recognition error rate less
than 5%.

7. Pronunciation Error Detection of L2 Learners

7.1 Evaluation Database

The evaluation data for pronunciation error detection is con-
tinuous speech of the Japanese part in the BLCU inter-
Chinese speech corpus, including 7 female speakers of
Japanese native. All of them have learned Mandarin
Chinese for many years and they all have an intermediate
or advanced proficiency of Mandarin. Each learner uttered
a same set of 301 daily-used sentences. There are 1896 ut-
terances in total. The speech data were also annotated by
6 graduate students who majored in phonetics, and checked
by a professor when they are inconsistent. The annotation
contents are erroneous articulation described in [45]. For ex-
ample, Chinese aspirated constant /p/ is pronounced with an
incorrect articulation manner such as without meeting the
required length of aspiration. Annotators used a diacritic
“p{;}” indicating this insufficient-aspiration error. Table 6
gives some statistics of the database.

7.2 Construction of Detection Graph

We employ finite state network decoding for pronunciation
error detection, which includes the canonical pronunciation
and possible pronunciation errors. Figure 9 shows an exam-
ple of how to construct a manner graph given the canonical
pronunciation. The phone /t/ is an aspirated consonant in
Chinese, while a voiceless constant in Japanese. Japanese
learners are prone to pronounce it without sufficient aspi-
ration so that the phone sounds like its counterpart unaspi-
rated one. The aspirated manner and its counterpart can be
represented as branching states in the decoding graph. We

Table 6 Summary of non-native evolution database.
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Fig. 9 Example of grammar-based detection graph.

generate a detection graph for every sentence in this manner.

7.3 Evaluation Metrics

Two common used metrics Detection accuracy (DA) and
F-score [15], [50] are used to evaluate the detection perfor-
mance of different methods:

DA =
NT E + NTC

N

F-score =
2 ∗ Precision ∗ Recall

Precision + Recall

Precision =
NT E

ND

Recall =
NT E

NE

NT E is the number of true errors detected as pronunciation
errors by the system. NTC is the number of correct pronun-
ciation detected as correct one by the system. N is the total
number of test samples. ND is the number of all detected
pronunciation errors. NE is the total number of pronuncia-
tion errors in the test set.

7.4 Pronunciation Error Types

In this experiment, four pronunciation error types are fo-
cused which involve 12 specific phones:

· Insufficient aspiration: insufficient aspiration when pro-
ducing aspirated constants (e.g. p).
· Insufficient retroflex: insufficient retroflex when produc-

ing retroflex constants (e.g. zh).
· Lip rounding or spreading: vowels with spread lips have

problems of rounded sound and vice versa (e.g. ü).
· Tongue backness: inappropriate tongue position with a

little back (e.g. an).

All of them are typical and salient pronunciation er-
rors even for advanced learners [46]–[48]. By reviewing the
sound systems shown in Tables 1–3, we can have an intu-
itive sense why these errors are representative. For exam-
ple, comparing the manner of articulation in Chinese and
Japanese (Table 1), we can see both Chinese and Japanese
languages have the phones /p, t, k/. However, they are aspi-
rated ones in Chinese while unvoiced in Japanese. As a re-
sult of language negative transfer, it will create a challenge
for Japanese learners to mimic this new manner of articula-
tion. Japanese learners are therefore prone to replace these

Fig. 10 Overall detection accuracy (DA) and F-score of different
methods.

aspirated phones with their native similar phones.

7.5 Experimental Results

Figure 10 compares the overall detection performance of
five different methods: conventional DNN, MT-DNN, ML-
DNN, the combined ML+MT DNN and lattice-based com-
bination of MT-DNN and ML-DNN. In output level com-
bination method, we assign a weight θi (from 0.1 to 1.0) to
each system, where i = 1, 2 and θ1 + θ2 = 1. The com-
bined lattice is generated by considering the Levenshtein
edit distance [49]. We can see that both MT-DNN and ML-
DNN are better than the conventional DNN, as observed
in the native attribute recognition. MT-DNN improves DA
by 10.2% relative and F-score 13.5% relative. ML-DNN
improves the performance by 14.2% (DA) and 16.3% (F-
score) relative. While MT-DNN is consistently better than
ML-DNN in the previous native attribute classification ex-
periment, ML-DNN is generally more effective for model-
ing non-native speech. This is because MT-DNN is trained
with Chinese data only while we add Japanese characteris-
tics by using both Chinese and Japanese data. The combined
ML+MT DNN further improves the performance. The rela-
tive improvement is up to 17.0% for DA and up to 19.9%
for the F-score. From this improvement, it is clear that
MT-DNN and ML-DNN are complementary to each other
though they are both transfer learning based methods. This
network level combination of multi-lingual and multi-task
learning shows better performance than the lattice combina-
tion on the output level (ML+MT Lattice).

Detailed detection results of individual error types are
shown from Fig. 11 to Fig. 14. Among these four articula-
tory errors, the system detects the tongue backness error best
shown in Fig. 13 (both DA and F-score are more than 80%),
while the insufficient retroflex error detection is less accu-
rate (F-score is about 60% shown in Fig. 12). Less accu-
racy in detecting the insufficient retroflex error is partly due
to the subtle acoustic difference among Mandarin retroflex,
alveolar and palatal articulation placement [50]. It should
also be noted that pronunciation error detection of advanced
learners is conducted in this study. Although with perceptual
pronunciation errors judged by native speakers, their artic-
ulation deviates only a little from the canonical one. This
brings a bigger challenge than detecting the errors made
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Fig. 11 Detection accuracy (DA) and F-score for insufficient aspiration
error.

Fig. 12 Detection accuracy (DA) and F-score for insufficient retroflex
error.

Fig. 13 Detection accuracy (DA) and F-score for tongue position error.

Fig. 14 Detection accuracy (DA) and F-score for lip shape error.

by beginners. A promising solution is designing and using
more specific features, for example, adding the voice onset
time (VOT) feature for discriminating stop consonants.

8. Conclusions

For detecting articulatory errors of second language learn-
ers’ speech without using non-native training data, we pro-
pose to exploit large native speech corpora to model articula-
tory attributes of non-native speech. Several methods based
on transfer learning are explored. The conventional DNN,
which is used to model the standard articulatory attributes
with Chinese native data, is firstly enhanced by multi-task
learning. Multi-task learning improves the model training
through co-supervision with different labels (attribute la-
bels and phone labels). In order to include the Japanese
learners’ characteristic, another Japanese native corpus is
added. Based on the articulatory attributes shared by these
two languages, multi-lingual learning method is also ex-
plored, which aims at learning a better feature representa-
tion of non-native speech by language knowledge transfer
(Chinese and Japanese). Finally, a new model architecture
is introduced to make use of both transfer learning methods.
This new architecture further improves generalization by al-
lowing the model to jointly learn the commonality among
different tasks and different languages at the same time. Ex-
perimental results have demonstrated that these approaches
significantly improve the classification accuracy of native
articulatory attributes and also detection of pronunciation
errors produced by the learners.

In theory, the proposed approach can be applied to any
language pairs as long as there is a native standard corpus. It
opens new possibilities in language-independent pronuncia-
tion error detection. In future, we will apply these methods
on Japanese or Chinese students learning English.
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