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A Two-Layered Framework for the Discovery of Software
Behavior: A Case Study

Cong LIU†, Jianpeng ZHANG††a), Guangming LI†††, Nonmembers, Shangce GAO††††b), Member,
and Qingtian ZENG†c), Nonmember

SUMMARY During the execution of software, tremendous amounts of
data can be recorded. By exploiting the execution data, one can discover
behavioral models to describe the actual software execution. As a well-
known open-source process mining toolkit, ProM integrates quantities of
process mining techniques and enjoys a variety of applications in a broad
range of areas. How to develop a better ProM software, both from user
experience and software performance perspective, are of vital importance.
To achieve this goal, we need to investigate the real execution behavior of
ProM which can provide useful insights on its usage and how it responds to
user operations. This paper aims to propose an effective approach to solve
this problem. To this end, we first instrument existing ProM framework
to capture execution logs without changing its architecture. Then a two-
layered framework is introduced to support accurate ProM behavior dis-
covery by characterizing both user interaction behavior and plug-in calling
behavior separately. Next, detailed discovery techniques to obtain user in-
teraction behavior model and plug-in calling behavior model are proposed.
All proposed approaches have been implemented.
key words: software behavior discovery, user behavior, plug-in calling
behavior, process mining

1. Introduction

Software systems form an integral part of the most com-
plex artifacts built by humans, and we have become to-
tally dependent on these complex software artifacts. Con-
sidering for example, communication, healthcare, education
and government all increasingly rely on software. Mod-
ern enterprises continue to investing more and more in cre-
ation, maintenance and change of complex software sys-
tems. During the execution of software, execution data can
be recorded. By fully exploiting the recorded data, one can
discover behavioral models describing the actual execution
of software.
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Process mining [1] is an active research discipline that
aims to extract process models from historic running logs.
Researchers have proposed various process discovery tech-
niques that take an event log as an input to produce a pro-
cess model without using any priori information. Currently,
the meaning of process mining is not limited to process dis-
covery, but covers an even wider spectrum, such as con-
formance checking, model repair, performance predictions.
For a comprehensive overview of process mining, one is re-
ferred to [1]. Most existing process mining techniques are
implemented as plug-ins in the open-source process min-
ing toolkit named ProM [2]. It takes event logs extracted
from various information systems as inputs, and generates
insightful analysis and verification results. Currently, ProM,
as the de facto standard for process mining, contains more
than 600 process mining plug-ins that have been success-
fully used in more than one hundred case studies to analyze
business processes of organizations, such as banks, hospi-
tals, municipalities, etc [1]. Moreover, worldwide research
groups are being involved in contributing to its development
and thousands of enterprises and organizations are down-
loading it. Given the popularity of ProM, how to develop
a better ProM providing satisfying user experience is of vi-
tal importance. Obviously, as the first step to do so, one
needs to understand the real ProM usage by characterizing
its behaviors from history executing logs. Since our focus
is on ProM software behavior understanding and not on its
structure, process models plays a central role.

The scope of this work is to discover software behavior
from its execution log by taking ProM as a case study. Here,
software behavior refers to both user interaction behavior,
i.e., how user interacts with software (ProM) and what op-
erations are performed in what order, and the functional as-
pects of software (plug-in calling behavior for ProM). Ex-
isting ProM framework does not support the logging func-
tionality, so our first step is to instrument it with event log-
ging module without changing its original framework. XES,
stands for eXtensible Event Stream [3], is a new logging for-
mat especially for process mining. We choose to log the
execution information to XES formats, as it has the follow-
ing four excellent features: (1) Simplicity. XES logs use the
simplest way to represent information and it is easy to parse
and generate; (2) Flexibility. XES standard is capable of
capturing event logs from any background with regardless
of its application domain; (3) Extensibility. It has transpar-
ent extension standard and maintains backward and forward
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compatibility. Similarly, it is also possible to extend for spe-
cial requirements, e.g. for specific software process mining
domains; and (4) Expressivity. Only those elements that can
be identified in virtually any setting are explicitly defined
by the standard, and additional information is deferred to
optional attributes.

The remainder of this paper is organized as follows.
Section 2 briefly introduces some related work. Section
3 presents how to instrument ProM framework to capture
event logs without changing its original architecture. Then
a two-layered framework is proposed to support the soft-
ware behavior discovery by taking ProM as a case study in
Sect. 4. Section 5 addresses its detailed behavior discovery
approaches, including both plug-in calling relation discov-
ery and user behavior discovery. Section 6 shows our exper-
imental results. Finally, Sect. 7 concludes the paper.

2. Related Work

With the great flush of process mining techniques, it enables
new forms of software runtime analysis, we call it software
process mining [4]. Generally speaking, software process
mining can be investigated at least in the following three per-
spectives: (1) mining software development processes, i.e.,
how software product is developed; (2) mining software sys-
tems running behavior, i.e., how software itself operates, un-
derstanding the functional aspects of a software system; and
(3) mining user-software interaction process, i.e., how user
interacts with software. The first aspect focuses on the anal-
ysis of software development lifecycle while the last two are
about software runtime behavior discovery and analysis.

For the first perspective, Astromskis et al. [5] evaluated
whether the creation of artifacts by a software development
team violates certain CMMI practices previously defined
rules. Lemos et al. used process mining to verify the con-
formance of a given software development process against
an organizational standard [6]. Using process mining tech-
niques, Poncin et al. addressed how software developers
interact with software repositories [7], and Sebu and Cio-
carlie [8] investigated the life cycles of entries (or artifacts)
in issue tracking systems. For the other two perspectives,
Rubin et al. [9] first discussed the application of some pro-
cess mining algorithms to mining software and systems en-
gineering processes from the information that is available in
Software Configuration Management Systems. They argued
that ProM could be used for analyzing and verifying some
properties of these processes. In their recent work [10], they
presented several process mining examples of different pro-
ductive software systems used in the tourism domain. Based
on their approach, Astromskis et al. [11] presented an indus-
trial case to investigate how users interact with an enterprise
resource planning software using process mining.

On one hand, our work belongs to a typical kind of soft-
ware process mining case study, which emphasizes the real
software behavior (ProM) analysis and typical user interac-
tion behavior discovery. On the other hand, our method can
be regarded as a special kind of hierarchical process min-

ing, specifically tailored for the software domain. To over-
come the “spaghetti-like” models which contain all details
without any hierarchies, Gunther and van der Aalst [12] pro-
posed the fuzzy mining approach. In this approach, activi-
ties and their relations are clustered and abstracted accord-
ing to their importance to demonstrate different hierarchies
or levels. However, the fuzzy miner does not have any se-
mantic significance with respect to the domain, therefore it
may suffer the risk of aggravating some irrelevant activities
together to a cluster. Towards this limitation, Bose et al. [13]
proposed hierarchical discovery approaches using a set of
interrelated plug-ins in ProM to deal with fine-grained event
logs and less structured process models. Different from the
traditional fuzzy miner, the hierarchies are obtained through
the automated discovery of pattern abstractions [14]. It is
proved that the discovered patterns always have its specific
domain semantics. Our work moves a step further by first
discovering the domain related patterns (i.e., plug-in calling
relations), and based on these discovered domain knowledge
a hierarchical process model can be obtained to represent
software behavior with more accuracy.

3. ProM Execution Log Collection

To discover the behavior of ProM, an event log that captures
its real execution information is required. To create such an
event log, this section introduces how to instrument the ex-
isting ProM framework with event recording function with-
out changing its original architecture and runtime behavior.

3.1 Instrumentation

As existing ProM suit does not support event logging mod-
ule, it is extremely rewarding to do this supplement. Similar
to [15], we also attempt to manually instrument the source
code to generate event log while software is running. Before
adding the logging code manually to ProM framework, we
need to define what we mean by an activity (event type) and
how events are grouped, i.e., a case. Choosing an appropri-
ate case notion is important as it can influence the results of
our analysis. Considering for example, if we group events
improperly without any repeat the discovered model may be
extremely complex as it has to demonstrate every case. In
our context, an event type corresponds to a user operation,
essentially it is a plug-in execution. We assign a new case
each time when the ProM is initialized, i.e., a case starts with
the moment one launches the ProM software and ends when
a user explicitly clicks the “exit” button. To capture runtime
software execution logs, we do the following modification
for the core ProM framework †.

In this paper, we choose to store the captured event
log using XES format [3], which is a standard format devel-
oped by the IEEE Task Force for logging events. Here we
make the justification to choose XES briefly. It is an XML-
based standard for recording event logs, and its purpose is

†https://svn.win.tue.nl/repos/prom/Framework/trunk/



LIU et al.: A TWO-LAYERED FRAMEWORK FOR THE DISCOVERY OF SOFTWARE BEHAVIOR: A CASE STUDY
2007

to provide a generic format for the interchange of event log
data among different applications. It is dedicated for pro-
cess mining, i.e. the analysis of operational processes based
on event logs. We collect name, event execution timestamp
(start and end in milliseconds), originator and lifecycle in-
formation for each event.

A LoggingEventsXES class is added to perform the
main log recording module. It is totally based on the
OpenXES library, and contains three main functions, naming
saveCaseStart(), saveCaseEnd() and saveEventToLocal().
The following code shows how to record the event that a
user has started the ProM:

public void saveCaseStart(Date timestamp) {
XAttributeMap attMap = new XAttributeMapImpl();
XLogFunctions.putLiteral(attMap, "org:resource", "C.Liu");
XLogFunctions.putTimestamp(attMap, "time:timestamp", timestamp);
XLogFunctions.putLiteral(attMap, "concept:name", "End ProM");
XLogFunctions.putLiteral(attMap, "lifecycle:transition", "start");
XEvent event = new XEventImpl(attMap);
trace.add(event);}

The saveCaseStart() function is added to Boot.java to
record the start of ProM. Then the saveCaseEnd() function
is added to class UITopiaFrameLC, which is an extension
of UITopiaFrame, to record the end of ProM. Finally, we
add saveEventToLocal() function to the invoke() of class Ab-
stractPluginDescriptor, to capture start and complete events
of each plug-in. Source code of the instrumented ProM
framework with logging functionality is available online †.

3.2 Simple Introduction of Recorded Event Logs

In this sub-section, we give a brief introduction of our
recorded running logs. According to the XES standard,
on the top level of an XES document there is one log ob-
ject, which contains all event information that is related to
one specific business process. One log contains an arbi-
trary number (may be empty) of traces, and each trace de-
scribes the execution of one specific instance or case. Every
trace contains an arbitrary number (may be empty) of events.
Each event represents an atomic activity that has been ob-
served during the execution of a process. In our case, each
activity refers to execution of a plugin, which is the basic
function unit of ProM.

A screenshot of our recorded ProM execution running
log fragment is shown in Fig. 1 which presents the typical
information used for process mining, and its original event
log is available in [16]. This log records the real usage of
ProM with 69 cases, i.e., 69 times independent execution of
ProM. The basic statistic information of our log is obtained
using the log visualization option in ProM 6. Based on the
visualization, we can see that (1) this event log contains 69
traces, 1033 events and 104 event classes; (2) on the right
hand of the log visualization dashboard, the start and end
date of the event log are August 14, 2015 and September
22, 2015 respectively; (3) the average event per case are 15
and the average event class per case are 10, but the distribu-
tion of the number of recorded events per case varies greatly.

†https://svn.win.tue.nl/repos/prom/Packages/CongLiu/

Fig. 1 Fragment of an XES File

According to Fig. 1, the running log of one event records
its event name, resource, timestamp, and lifecycle informa-
tion. For example, the event Alpha Miner starts at [2015-08-
18T16:37:57.312] and ends at [2015-08-18T16:37:57.357],
and it is operated by C. Liu.

Basic definitions and notions on event logs used for
ProM behavior mining are recalled for self-completeness of
the paper.

Definition 1: (Event) An event is defined as a 5-tuple
e = (AName,Cid,Org, S tartT ime, EndTime), where (1)
AName is the name or ID of the operation; (2) Cid refers
the case which the operation runs in; (3) Org refers to the
origination which execute this operation; (4) S tartT ime is
the start time of the operation; and (5) EndTime is the end
time of the operation.

Definition 2: (Case, Log) A Case is composed of a set of
events and a Log is composed of a set of cases.

Definition 3: (Activity Set) Let RLogs be an event log, for
any RCase ∈ RLogs, ActivityS et(RCase) = {AName(e)|e ∈
RCase} is the activity (or operation) set of RCase.

Basically, an event log contains recordings related to
ProM execution. In addition, each event in the log needs
to refer to a specific ProM execution instance, and often re-
ferred as a running case. Also, events are related to real
ProM operations. In Fig. 1, events refer to activities (ProM
operations) like Alpha Miner, Construction Log Relations,
etc.

3.3 Petri Net

Petri net [17]–[28], is a type of bipartite graph with two
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Fig. 2 A labeled petri net example

types of nodes, i.e., places and transitions. Transitions rep-
resent plug-ins and places are used to control the routing of
transitions. To make our mining results more understand-
able, we add the formal definitions of Petri net and also
presents an example Petri net to introduce its firing rule in
the following.

Definition 4: (Labeled Petri net) A Labeled Petri net is a
4-tuple PN = (P,T, F, l), satisfying: (1) P is a finite set of
places and T is a finite set of transitions where P ∩ T = ∅,
P ∪ T , ∅; (2) F ⊆ (P × T) ∪ (T × P) is set of directed arcs,
called flow relation; and (3) l : T → A is a labeling function
where A is a set of labels and τ ∈ A denotes invisible label.

For each x ∈ P ∪ T , •x = {y|(y, x) ∈ F} is the preset of
x and x• = {y|(x, y) ∈ F} is the postset of x. A marking m
of PN is a multiset of places, i.e., m ∈N P, indicating how

many tokens each place contains. (PN,m0) is a marked net
where m0 is its initial marking. Figure 2 shows a marked
Petri net example. [source] is its initial marking. A tran-
sition t ∈ T is enabled in marking m ∈N P, denoted as

(PN,m)[t > if for each p ∈• t : m(p) ≥ 1. Considering the
example Petri net with m = [p3, p4], transition d is enabled,
i.e., (PN,m)[d >. An enabled transition t may fire and re-
sults in a new marking m′ with m′ = m \• t ∪ t•, denoted by
(PN,m)[t > (PN,m′). We have (PN, [p3, p4])[d > (PN, [p5])
for the example Petri net.

4. A Two-Layered Framework for Software Behavior
Discovery

In the previous section, we show how to extract ProM exe-
cution log by instrumentation. Next, we dive into the ProM
behavior discovery approach by taking the recorded running
log as inputs. To justify the necessity of our framework, we
start with the limitations of existing approaches when ana-
lyzing real ProM execution log.

4.1 Why Existing Approaches Fail

First, we use two of the most widely used process mining
techniques, Fuzzy miner and Inductive miner, to discover
the behavior model of ProM usage by taking our event log as
an input. The screenshots of their mining results are shown
in Fig. 3 and Fig. 4 respectively.

By inspecting the discovered behavior models in de-
tails, we argue that they turn out to be less structured and
spaghetti-like containing all kinds of details without dis-
tinguishing what is important (or relevant) and what is not
from different angles. Specifically, they contain an excessive

Fig. 3 Mining result using the fuzzy miner (with default setting)

Fig. 4 Excerpt of mining result using the inductive miner (with default
setting)

number of events which are not relevant with real user inter-
action behavior, i.e., they cannot demonstrate user behavior
accurately. A ProM user may get confused by the resulting
model, because some plug-ins are not explicitly triggered by
them, but they are indeed recorded in the log. Considering
for example, users may choose the Alpha Miner plug-in to
discover a Petri net, therefore its start and end events are
recorded as shown in Fig. 1. In addition, the start and end
events of Construct Log Relations are also recorded. This is
because that execution of Alpha Miner plug-in will implic-
itly call the Construct Log Relations plug-in during execu-
tion.

In general, this deficiency can be attributed to the fol-
lowing two assumptions of traditional process mining: (1)
Any event type found in the log is assumed to have a cor-
responding ProM operation; and (2) All recorded events are
recorded in the same level, and thus they are treated equally
important. However, these assumptions are proved to be un-
reasonable. The recorded log contains not only the explicit
user operations, but also automatically or implicitly calling
action of some plug-ins. In other words, events on different
levels are flattered into the same log without any discrimi-
nations. Motivated by the notion of fuzzy miner [12] and hi-
erarchical process model discovery methods [4], [13], [14]
which provide suitable abstractions of operational processes
by clustering activities, we treat the ProM behavior with hi-
erarchies. More specifically, the abstraction-based process
mining idea by separating the original log into different lev-
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Fig. 5 A two layered discovery framework

els is adopted. A two-layered framework to discover ProM
behavior on different abstractions is introduced in the next
sub-section.

4.2 A Two-Layered Framework to Discover Software Be-
havior: A ProM Case Study

In last sub-section, we illustrate that existing mining tech-
niques cannot do a satisfying work to discover real ProM
behavior because they treat all recorded events equally. Ac-
tually, the log is a mixture of both user operation behav-
iors and plug-in automatically calling behaviors. In addi-
tion, some events are essentially related as their usage is
confined to certain context or dedicated for some specific
functionality. To achieve a better result, we first classify the
log into two levels, naming the user interaction level and
plug-in automatically calling level respectively. The former
records the real and explicit user behavior while the latter
implies the inherent plug-in calling relation of ProM. A de-
tailed framework for ProM behavior discovery is illustrated
in Fig. 5, which mainly includes the following two layers.

Layer 1: Recording ProM Running Logs and Pre-
processing. While the ProM runs, actual execution informa-
tion can be recorded in an XES formatted event logs. The
event logs include information about event name, event orig-
inator, its start and end timestamps, etc. Because the logs are
a mixture of both user interaction operations with ProM and
plug-in automatically calling operations of ProM itself, we
then classify them into user interaction related running
logs and plug-in calling related event logs. The former
contains all user interaction behavior related recordings and
the latter involves only those plug-in calling information.

Layer 2: Discovering User Interaction Behavior and
Plug-in Calling Behavior. After applying process mining
techniques to user interaction related running logs, we can
derive the real user operation process model which provides
insights on the real usage of the ProM from a user perspec-
tive. Similarly, a plug-in calling graph can be discovered
from the plug-in calling related event logs, which illustrates

Fig. 6 Integrated ProM behavior representation

how ProM software really works and its running time plug-
in calling relation. It is essentially a kind of ProM domain
knowledge, which is kept in plug-in developer’s mind.

Finally, to show the real ProM behavior one should
combine the above two behavior models together with dif-
ferent hierarchies, and the final behavior model should look
like the one shown in Fig. 6 where (1) the user operation
behavior shows the real behavior of ProM from a user per-
spective; (2) plug-in calling behavior illustrates its run-time
plug-in calling relations; and (3) the integrated behavior rep-
resents how ProM really works in real-life cases.

Different from the Fuzzy miner [12], the proposed two-
layered behavior discovery approach is essentially domain-
specific. We take the plug-calling relation as our dedicated
domain knowledge which can be further used to realize
ProM behavior abstraction. This way can overcome the de-
ficiencies of aggravating some irrelevant activities together
to a cluster. It is proved that the pattern-based hierarchi-
cal discovery technique [14] always has its specific domain
semantics. Our approach moves a step further by directly
discovering the domain related patterns (i.e., plug-in call-
ing relations), and based on which a hierarchical behavior
model is obtained. Some efforts in process mining try to
address the semantic problems in the log specification [29].
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However, it is required that domain experts have to come
up with the ontologies to describe the domain concepts and
relationships between them. Even though ontologies can as-
sist in defining hierarchies of concepts over activities and
providing abstractions, to ask domain experts to build this
from scratch would extremely time-consuming and cost too
much. From this perspective, one of the most interesting
byproducts of our framework is the recognition of ProM do-
main knowledge, plug-in calling relation which is kept in
plug-in developer’s mind.

5. Comprehensive ProM Behavior Analysis

Section 4 introduced our two-layered framework to discover
real ProM behaviors, including both plug-in calling behav-
ior (can be treated as a kind of ProM domain knowledge
which is kept in developers’ mind) and user interaction
behavior. This section details our behavior discovery ap-
proaches.

5.1 Plug-in Calling Behavior Discovery

The plug-in calling relation in Fig. 6 indicates that the ex-
ecution of plug-in A needs to call plug-ins F and G, and
the execution of plug-in G needs to call plug-in G. On the
other hand, the execution of plug-in D calls plug-ins H and
I, and the execution of plug-in H calls G. To illustrate the
plug-in calling relation in a vivid manner, we propose to use
plug-in calling graph which is motivated by the idea of call
graph [30] in the programming area. More specifically, a
plug-in calling graph is a directed graph that represents call-
ing relationships between plug-ins. Each node represents
a plug-in and each edge (M,N) indicates that plug-in M
calls plug-in N. Formal definition of plug-in calling graph
is given in the flowing.

Definition 5: (Plug-in Calling Graph) A plug-in calling
graph is a tuple PCG = (P,R) where P is a set of plug-ins,
and R represents the calling relations of plug-ins.

The plug-in calling relations in Fig. 6 can be abstracted
as P = {M,N,O, P} and R = {(M,N), (M,O), (O, P)}, and
drawn in a plug-in calling graph PCG1 which should look
like the one in Fig. 7.

To construct a plug-in calling graph directly from a
ProM execution log, we need to investigate the dependency
relations among each plug-ins. Here dependency relations
among plug-ins can be inferred from their corresponding
execution duration, i.e., the start and end timestamp of each

Fig. 7 Example of plug-in calling graph PCG1

plug-in.

Definition 6: (Dependency Relation) Let RLogs be the
running logs, and ∃RCasei ∈ RLogs, ∀Ai, A j ∈
ActivityS et(RCasei), Ai is dependent on A j (or A j is one of
the dependent of Ai), denoted as Ai c⃝A j if Ai.S tartT ime <
A j.S tartT ime and Ai.EndTime < A j.EndTime holds in
RLogs.

Definition 7: (Dependency Set) DependencyS et(Ai) is
defined as the dependency set of Ai, if ∀A j ∈
DependencyS et(Ai), Ai c⃝A j holds.

The basic principle to define dependency relations
among plug-ins is introduced as: if the recorded exe-
cution duration of plug-in A is completely covered by
the other plug-in B, then B is dependent on A (or
A is one of the dependent plug-ins of B). Consid-
ering for example, the start time of Alpha Miner is
[2015-08-18T16:37:57.312] and its end time is [2015-08-
18T16:37:57.357], while the start time of Construct Log Re-
lations is [2015-08-18T16:37:57.320] and it ends at [2015-
08-18T16:37:57.332], and their execution dependency rela-
tion is illustrated in Fig. 8. According to Definition 6, we
know Alpha Miner is dependent on Construct Log Rela-
tions, denoted as Alpha Miner c⃝Construct Log Relations or
Construct Log Relation ∈ DependencyS et(Alpha Miner).

According to the basic notion of Definition 6, Algo-
rithm 1 is given to discover plug-in dependency relations
from an XES event log automatically.

Algorithm 1 To Obtain the Plug-in Dependency Relation
from Event Logs.
Input: RLogs;
Output: DependencyS et.

1: DependencyS et ← ∅; DependencyS et(Activityi) ← ∅; P ←
∅; R← ∅.

2: For each RCasei ∈ RLog Do
For each Activityi ∈ RCasei Do

For each Activity j ∈ RCasei Do
If Activityi.S tartT ime < Activity j.S tartT ime and

Activityi.EndTime > Activity j.EndTime then
DependencyS et(Activityi) ←

DependencyS et(Activityi) ∪ {Activity j};
End if

End do
End do
DependencyS et ←
DependencyS et ∪ DependencyS et(Activityi);

End do
3: return DependencyS et.

Fig. 8 Dependency relation example
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Fig. 9 Plug-in dependency relations

The complexity of Algorithm 1 is mainly determined
by its second step whose complexity is O(|RLog|∗|RCasei|2)
where |RCasei| is the number of activities in |RCasei| and
|RLog| is the number of cases in a log. Therefore, its com-
plexity is O(|RLog| ∗ |RCasei|2).

Considering the plug-in dependency relations in
Fig. 9, we have DependencyS et = {DependencyS et(A),
DependencyS et(F),DependencyS et(G),DependencyS et(J),
DependencyS et(D),DependencyS et(H),DependencyS et(I)}
where DependencyS et(A) = {F,G}, DependencyS et(F) =
∅, DependencyS et(G) = {J}, DependencyS et(J) = ∅,
DependencyS et(D) = {H, I}, and DependencyS et(H) =
{J}, DependencyS et(A) = ∅.

Based on the plug-in dependency relations obtained
from Algorithm 1, we can derive the plug-in calling graph
easily using the following algorithm.

Algorithm 2 To Obtain the Plug-in Calling Graph from De-
pendency Relation.
Input: DependencyS et;
Output: PCG = (P,R).

1: P← ∅; R← ∅.
2: For each DependencyS et(Activityi) ∈ DependencyS et Do

P← P ∪ {Activityi};
For each Activity j ∈ DependencyS et(Activityi) Do

P← P ∪ {Activity j};
R← R ∪ {(Activityi, Activity j)};

End do
End do

3: PCG ← (P,R);
4: return PCG.

In Algorithm 2, the complexity of the second step
is O(|DependencyS et| ∗ |DependencyS et(Activityi)|). Be-
cause |DependencyS et| ≥ |DependencyS et(Activityi), its
complexity is O(|DependencyS et|2). Hence, the com-
plexity of Algorithm 2 is O(|DependencyS et|2) where
|DependencyS et| is the number of activities (plug-ins) in the
log.

By taking the plug-in DependencySet in Fig. 9 as
an input, we execute Algorithm 2 to discover its cor-
responding plug-in calling graph which should look
like the one in Fig. 10. Following Definition 6, this
plug-in calling graph can be formulated as PCG2 =

(P2,R2) where P2 = {A,D, F,G,H, I,G} and R2 =

{(A, F), (A,G), (D,H), (D, I), (G, J), (H, J)}.

Fig. 10 Example of plug-in calling graph of Fig. 9

5.2 User Behavior Discovery

To discover the user behavior model, we first introduce how
to filter the event log to containing only explicit user interac-
tion information. The plug-in calling information needs to
be removed from the original event log. By taking the orig-
inal event log as an input, we use the following algorithm
to generate user interaction related event log following the
next algorithm.

Algorithm 3 To Obtain the User Interaction Related Event
Log.
Input: RLogs and DependencyS et;
Output: URLogs.

1: URLogs← ∅; TempCase← ∅; P← ∅; R← ∅.
2: For each RCasei ∈ RLog Do

For each Activityi ∈ RCasei Do
TempCase← RCasei;
For each Activity j ∈ RCasei Do

If Activityi.S tartT ime < Activity j.S tartT ime and
Activityi.EndTime > Activity j.EndTime then

TempCase← TempCase − {Activity j};
End if

End do
End do
URLogs← URLogs ∪ TempCase;

End do
3: return URLogs.

The complexity of Algorithm 3 is mainly determined
by its second step whose complexity is O(|RLog|∗|RCasei|2)
where |RCasei| is the number of activities in |RCasei| and
|RLog| is the number of cases in a log. Therefore, its com-
plexity is O(|RLog| ∗ |RCasei|2).

By running Algorithm 3, we obtain the user interac-
tion related event log, based on which the user behavior can
be discovered directly. It is worth noting that the behavior
discovery process is not limited to some specific mining al-
gorithms and all existing miners that are capable of dealing
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with basic process patterns can be applied.

6. Experimental Results

To show the effectiveness and applicability of the proposed
approach in discovering software behavior, we developed
the corresponding functions as ProM plug-ins. The first

Fig. 11 Excerpt of plug-in calling graph using mine the plug-in calling
graph plug-in

Fig. 12 Mining result of filtered log using inductive miner (with default
setting)

plug-in, Mine the plug-in Calling Graph plug-in is devel-
oped to discover the plug-in calling graph from the original
event log. It implements Algorithms 1- 2, which first dis-
covers the plug-in dependency relations and then converts
them to plug-in calling graph. By taking our recorded run-
ning logs in [16] as an input, we run this plug-in and the
excerpt of the plug-in calling graph mined from the original
log should look like the one shown in Fig. 11. Consider-
ing for example, the plug-in construct log relation is called
by both Alpha Miner and ILP Miner. Plug-in calling rela-
tions that are kept in developers mind can be regarded as a
kind of ProM domain knowledge. It can be used for (1) plu-
gin developers to check if the real execution is performed as
programmed; and (2) new plugin developers to refer to the
realization principle of some existing plugins which have
the same functionality.

The second plug-in, named as Plug-in Behavior Filter
is developed to obtain explicit user interaction information
from the event log, i.e., plug-in calling information needs to
be removed from the original event log. It is the implemen-
tation of Algorithm 3. By taking our recorded running log in
[16] as an input, we run the Plug-in Behavior Filter plug-in.
The user interaction related running log can be obtained and
this event log contains 69 traces, 534 events and 78 event
classes.

Using the obtained user interaction related running log,
user behavior model can be discovered. As mentioned previ-
ously, the behavior discovery is not limited to some specific
mining algorithms and all existing miners that are capable of
dealing with basic process patterns can be applied. To give a
clear demonstration of effectiveness and applicability of the
proposed two-layered approach, we use the Inductive Miner
which is considered as the state-of-the-art process discovery
algorithm. The screenshot of the mining result (in terms of
Petri net) is shown in Fig. 12.

By carefully looking at the discovered behavior model,
we can see that it turns out to be well structured and con-
tains only user interaction related behaviors, i.e., it reveals
user behavior accurately. The implicitly calling plug-in in-
formation is excluded, and a ProM user may know quite well
of its own operation behavior by the resulting model.

7. Conclusion

During software execution, actual execution information
can be recorded as an event log. To character the ProM be-
havior in an accurate manner, we project the original log to a
user interaction related event log and a ProM plug-in calling
related event log. After applying process mining techniques
to both logs, we can derive ProM plug-in calling behavior
model and user interaction behavior model. These mod-
els provide insights on the real usage of the software (or
how ProM really functions), and can enable usability im-
provement and further ProM redesign. Our scope focuses
on software behavior analysis by using the well-known pro-
cess mining toolkit ProM as a case study. The proposed
framework is readily applicable on real-time ProM behav-
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ior monitoring to gain insights on both explicit user oper-
ating behavior and implicit ProM plug-in calling behavior.
Note that the current technique is only valid when the ac-
tions are executed in foreground processes and background
(e.g., fork, asynchronous) processes are not supported yet.

Currently, we manually instrument ProM framework to
capture the plug-in level recordings which are very high-
level. To discovery the execution behavior of the software
(ProM) with more accuracy, one may prefer to capture the
method-level event log. Based on method-level event log, it
is possible to discover detailed software runtime behavior.
However, the low-level recordings cannot reveal high-level
operations (like user behavior) directly. Therefore, how to
bridge the gap between low-level logs and high-level user
operations is a pressing work. In addition, some more prac-
tical questions can be answered based on the discovery re-
sults. For example, what is the average/minimum/maximum
execution of each case? To answer such questions, we need
to enrich the user behavior model time factors. Similarly, to
answer questions like which plug-in has the highest calling
frequency?, we need to enrich the plug-in calling graph with
frequency information according to the log.
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