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PAPER

Modeling Content Structures of Domain-Specific Texts with
RUP-HDP-HSMM and Its Applications

Youwei LU†a), Nonmember, Shogo OKADA††b), and Katsumi NITTA†††c), Members

SUMMARY We propose a novel method, built upon the hierarchical
Dirichlet process hidden semi-Markov model, to reveal the content struc-
tures of unstructured domain-specific texts. The content structures of texts
consisting of sequential local contexts are useful for tasks, such as text re-
trieval, classification, and text mining. The prominent feature of our model
is the use of the recursive uniform partitioning, a stochastic process taking a
view different from existing HSMMs in modeling state duration. We show
that the recursive uniform partitioning plays an important role in avoiding
the rapid switching between hidden states. Remarkably, our method greatly
outperforms others in terms of ranking performance in our text retrieval ex-
periments, and provides more accurate features for SVM to achieve higher
F1 scores in our text classification experiments. These experiment results
suggest that our method can yield improved representations of domain-
specific texts. Furthermore, we present a method of automatically discov-
ering the local contexts that serve to account for why a text is classified as
a positive instance, in the supervised learning settings.
key words: hidden semi-Markov models, content structure, local features,
text mining, rapid switching

1. Introduction

In this paper, we present a novel nonparametric Bayesian
model called RUP-HDP-HSMM, aiming to uncover the con-
tent structures of unstructured texts of a specific domain.
Besides, we show that content structures discovered in texts
are useful for different kinds of application.

The content structure is defined in terms of the local
contexts underlying a text. A local context here is referred
to as a fragment of the text, exhibiting a salient word distri-
bution, that is, a local feature or a topic. For instance, ar-
ticles about earthquakes may comprise local contexts each
containing information about quake strength, damage, gov-
ernment response, etc. In general, the existence of local
contexts in an arbitrary collection of texts cannot be guar-
anteed; however, texts from the same domain are shown to
have high similarity, and word recurrence patterns in them
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indeed exist [1], [2]. Domain-specific texts widely exist as
digital resources both on the Internet (for example, news re-
ports or discussions on a social issue) and in our daily life
(such as meeting scripts). Revealing content structures of
texts helps to extract insightful local information, and thus
result in a more accurate representation of a text, than those
algorithms that simply view each text as a “bag of words”,
e.g., topic models.

Inspired by [3], which, associating the topic of local
contexts with a hidden state, employs a hidden Markov
model (HMM) to capture the relations between topics and
reveal drifts between different local contexts in texts, we
propose a novel method, aiming at resolving two critical is-
sues of modeling the content structure of real-world domain-
specific texts with HMM/HSMM-based models—inference
of the number of topics and avoidance of rapid switching.

To infer the number of topics, we adopt the nonpara-
metric Bayesian approach, by which the number of topics
can be estimated in the process of model inference. In spe-
cific, we put our method within the framework of the hierar-
chical Dirichlet process hidden semi-Markov model (HDP-
HSMM) [4], an extension to the nonparametric Bayesian
HMM (HDP-HMM) [5]. It is well known that if the dura-
tion times of hidden states are not properly modeled with
HDP-HMM, rapid switching is very likely to occur, a situ-
ation where unrealistic states are created and rapidly switch
between one another [6]. HDP-HSMM can succeed in pre-
venting rapid switching in certain tasks [4]. However, for
unstructured real-world natural language texts, suppressing
rapid switching is even more challenging, because it is most
probable that the duration times of a hidden state—lengths
of local contexts associated with a specific topic—have such
a complicated distribution that a conventional HDP-HSMM
assuming simple duration distributions, like Poission or neg-
ative Binomial distributions, is still insufficient to avoid
rapid switching. To address the rapid switching issue, we
introduce a stochastic process called recursive uniform par-
titioning (RUP). Combining the RUP and the idea of HDP-
HSMM, we propose the RUP-HDP-HSMM, which not only
allows the number of hidden states to be inferred, but also
succeeds in avoiding rapid switching for discovering content
structures of domain-specific texts.

Modeling content structures can be used in different
tasks, such as text retrieval, classification, and text mining.
In particular, we propose a method of automatically finding
texts’ local contexts that contribute to explain why they are
classified as positive instances.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



LU et al.: MODELING CONTENT STRUCTURES OF DOMAIN-SPECIFIC TEXTS WITH RUP-HDP-HSMM AND ITS APPLICATIONS
2127

In summary, the contributions of this paper are as fol-
lows. First, we propose the RUP-HDP-HSMM, a novel non-
parametric Bayesian HSMM-based model for discovering
the context structure of domain-specific texts, along with the
corresponding model inference algorithms; in particular, we
develop a stochastic process called recursive uniform parti-
tioning, playing a critical role of preventing rapid switching.
Second, we propose a text mining method of finding the in-
formative local contexts that lead the text to be a positive
instance. Finally, we empirically show that inferred content
structures underlying texts can provide meaningful features
for text retrieval and classification tasks.

2. Related Work

Existing unsupervised learning methods of modeling the
content structures of texts generally include HMM/HSMM-
based and topic model-based methods. We briefly review
these methods here, and highlight their difference from our
work.

2.1 HMM/HSMM-Based Methods

The content model proposed in [3] is the first attempt to re-
veal the content structures of domain-specific texts, which
is however closely related to prior research on text segmen-
tation [7], [8]. [3] employs a hidden Markov model, where
a hidden state corresponds to a distinct topic, and a bigram
language model is embedded in each topic, responsible for
generating sentences that are assigned this topic. Because
the topics are shared among all texts and the Markovian re-
lations between topics are modeled with a transition matrix,
both the inter-sentential relations within a text and inter-
topic relations can be captured. A noticeable contribution
of [3] is that it concentrates on the texts within a particular
domain according to the findings of [2] and [1], differing
from more recent topic model-based models that put little
emphasis on the domain of texts.

However, the use of a simple HMM in [3] inherently
has two disadvantages: (1) the number of involved hidden
states is a fixed number that has to be set as a model param-
eter; (2) the duration times of a hidden state in HMMs im-
plicitly have a geometric distribution, which is an unrealistic
assumption for real-world texts, as the probability exponen-
tially decays as local contexts increase in length. To over-
come these weaknesses, the hierarchical Dirichlet process
hidden semi-Markov model (HDP-HSMM) is proposed [4],
which can explicitly specify the distributions of duration
times of hidden states as traditional hidden semi-Markov
models (HSMM) [9], and can infer the number of hid-
den states in the nonparametric settings as HDP-HMM [5].
However, as discussed earlier, simple duration distributions,
usually employed in conventional HDP-HSMMs, cannot
properly model the complicated duration times of local con-
texts in real-world texts. A further extension of the HDP-
HSMM is therefore needed, leading to our method called
RUP-HDP-HSMM, which is discussed in detail in Sect. 3.

2.2 Topic Model-Based Methods

Traditional topic models like LDA are built upon the “bag-
of-words” assumption, which completely ignores local word
patterns in texts. Hence, they are unsuitable for analyzing
the content structure of domain-specific texts.

Nevertheless, a number of variants of LDA have
emerged that relax the “bag-of-words” assumption, by in-
corporating local context information. The model that is
most closely related to our method is the hidden topic
Markov model (HTMM) [10]. The HTMM posits a gener-
ative process, where the generation of words in a sentence
depends on not only the topic assigned to the sentence but
also the topic of the previous sentence; the probability of
two adjacent sentences having the same topic is governed by
a global Bernoulli distribution. In HTMM, the transitions
between topics within a text are still modeled in a Marko-
vian fashion. However, instead of a global transition matrix
as assumed in [3], HTMM generates a transition matrix for
every document, with all rows being the same as the topic
distribution of the text in LDA. As an extension of LDA, the
HTMM provides an efficient framework of incorporating the
local information for topic inference. Yet it is still a para-
metric model like the LDA, and thus cannot make inference
over the number of topics given the data. Besides, HTMM
assumes that topics are independently generated given the
topic distribution in a text, and thus the absence of the global
transition matrix makes it unable to capture the topic rela-
tions in domain-specific texts.

[11] proposed another topic model-based model for ex-
plicit content modeling. In contrast to our focus on unstruc-
tured texts, [11] analyzes the underlying structures of struc-
tured texts (e.g., articles from the Wikipedia about famous
cities in the world). Although the content model of [11] is
particularly effective in modeling the structured texts, the
use of the GMM prior is too limited for unstructured real-
world texts, as the topic orders may be very different in dif-
ferent texts.

The Multi-grain LDA [12] makes topic inference based
on the local context information. To this end, a sequence
of sliding windows are used, each covering several adja-
cent sentences. Every sliding window is associated with a
topic distribution over local topics, and a topic distribution
over global topics is shared among all sliding windows in a
text. The Multi-grain LDA is flexible and powerful in topic
modeling. However, the loose connection between topic dis-
tributions in adjacent sentences makes Multi-grain LDA so
sensitive to local information that the underlying relations
between sentences in a longer range tend to be overlooked.

It is worth noting that topic segmentation based on
topic models [13], [14] is different from modeling content
structure. In these topic segmentation models, all segments
are locally identified, which can have different topic distri-
butions. Because similar segments are not directly grouped
together, the content structure of domain-specific texts can-
not be explicitly represented.



2128
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

Fig. 1 An illustration of RUP generating a partition of S -word text. Each
node here represents a word. After a few steps of uniformly drawing the
ending position of a segment from the remaining nodes, a partition for the
text is obtained.

3. The Model

In this section, we present our method called RUP-HDP-
HSMM, which derives from combining the RUP and HDP-
HSMM. Because we associate the underlying topics in
domain-specific texts with the hidden states in the HDP-
HSMM, topics and hidden states are interchangeably used
here for describing our method.

3.1 Notation

Let C = {d1, · · · , dM} represent the corpus consisting of M
texts, where di denotes the i-th text. Each text is composed
of a sequence of words, with the length denoted by S . We
use a superscript to denote the text number, and a subscript
to index a word. Let wi

j denote the j-th word in text di, and
its hidden topic zi

j. Let ai
c represent the topic associated with

the c-th local context in di. Let the length of the c-th local
context in di be T i

c. We use vectors to represent the sets
of corresponding variables in all texts. For example, w and
z represent the sets of all words and hidden topics, respec-
tively. We use φk to represent the parameters of a multi-
nomial distribution, associated with the k-th topic. All φk

are drawn from a symmetric Dirichlet distribution with the
parameter η. Rows of the transition matrix are denoted by
{πk}, which are generated from a hierarchical Dirichlet pro-
cess (HDP) prior, where two concentration parameters γ and
α0 are involved.

3.2 Recursive Uniform Partitioning

Unlike HDP-HSMM generating duration times of a hid-
den state with a state-dependent duration distribution, RUP-
HDP-HSMM utilizes the recursive uniform partitioning
(RUP) to draw a partition for each text. Given a partition, the
duration time of the i-th local context in a text is equal to the
length of the i-th segment of the partition. The generating
process of drawing a partition by RUP is illustrated in Fig. 1.

Fig. 2 Simulation of drawing partitions of documents of different
lengths, i.e., the number of words. For each length, we simulate 10,000
draws according to RUP, and depict the mean, 25th and 75th percentiles of
the number of segments.

Let P = {T1, · · · ,TN} represent a partition for an S -word
text, consisting of N segments. T1, · · · ,TN are random vari-
ables over positive integers, each representing the length of
a segment and subject to the constraint T1+T2+· · ·+TN = S .
The procedure of drawing a partition for this text is as fol-
lows. First, we draw T1 uniformly from {1, 2, · · · , S }. If T1

is equal to S , then all sentences constitute the one-segment
partition P = {T1}; otherwise, we proceed to draw the sec-
ond segment. With the first segment fixed that consists of
the first T1 words, T2 is drawn from the discrete uniform
distribution over {1, 2, · · · , S − T1}. If T2 = S − T1, then
the partition consisting of two segments P = {T1,T2} is ob-
tained. Otherwise, we recursively draw the length of each
segment from the remaining words, until there is no words
left. The probability of drawing P = {T1, · · · ,TN} is shown
as follows.

P{P|S } = 1

S × (S − T1) × · · · × (S −∑N−1
i=1 Ti)

(1)

Although we cannot precisely yield some statistical
properties of RUP, we can simulate drawing samples accord-
ing to RUP. The simulation results as shown in Fig. 2, reveal
that RUP tends to use much less segments to make up a par-
tition than the traditional HSMM as the document length
increases, which explains why RUP is useful for avoiding
rapid switching.

Note that RUP puts no explicit constraint on the num-
ber of segments in the resulting partition, allowing the num-
ber of segments to take a value from 1 to S . For unstructured
texts with very different content structures, it is difficult and
time-consuming to determine their numbers of segments in
advance. And since RUP is capable of generating partitions
of different lengths encouraging partitions containing a rel-
atively small number of segments, RUP provides a conve-
nient prior here.

3.3 RUP-HDP-HSMM

RUP-HDP-HSMM combines the RUP and HDP-HSMM,
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Fig. 3 The graphical representation of RUP-HDP-HSMM. The only one
parameter that RUP takes for generating a partition of the text is the text
length, denoted by S in the graph, which is observable and hence shaded.
However, the partition generated by the RUP are unobserved.

with RUP responsible for generating the partition, and HDP-
HSMM for generating global topics and topic allocation in
each text. As with HDP-HSMM, RUP-HDP-HSMM also
requires the diagonal elements of the transition matrix to be
zeros, i.e., πkk = 0 for all k. The graphical representation
of the RUP-HDP-HSMM is shown in Fig. 3, and the corre-
sponding generative process is given as follows:

1. Generate transition probabilities

a. Draw β ∼ GEM(γ)
b. Draw πk ∼ DP(α0, β), k = 1, 2, · · ·
c. Map πk to π̄k with the transform π̄i j =

πi j

1−πii
(1 −

δi j), j = 1, 2, · · ·
2. Draw multinomial parameters φk ∼ Dirichlet(η), k =

1, 2, · · ·
3. For each document di, i = 1, · · · ,M

a. Draw a partition Pi = (T1,T2, · · · ,TN) ∼ RUP(S )
b. For each segment s = 1, 2, · · · ,N

i. Draw a hidden state ai
s ∼ π̄ai

s−1

ii. Draw Ts words in the s-th segment indepen-
dently according to Multinomial(φai

s
)

where GEM denotes a stick breaking process [15] and
DP(α0, β) denotes a Dirichlet process with a base probabil-
ity distribution β and a strength parameter α0 [5]. Accord-
ing to this generative process, The hidden variables involved
include {β, π, φ,T, a}; hidden topics z in Fig. 3 will be auto-
matically fixed, as long as T and a are drawn.

3.4 Model Inference

Gibbs sampling algorithms are frequently used for model
inference in nonparametric Bayesian models. We give
two Gibbs samplers for RUP-HDP-HSMM here—a direct
Gibbs sampler (DG) and a forward-backward Gibbs sam-
pler (FB)—both based on the weak-limited Gibbs sam-
pler [4].

In a weak-limited Gibbs sampler, the HDP prior is ap-
proximated with two finite dimensional Dirichlet distribu-
tions having the same dimension; the dimension is called
truncation level, denoted by L. In particular, we have

β ∼ Dirichlet(γ/L, · · · , γ/L), (2)

and

πk ∼ Dirichlet(α0β1/L, · · · , α0βL/L). (3)

There is the theoretical guarantee that the resulting finite
prior converges in distribution to the true HDP prior, as
L → ∞. As for the probabilities of initial hidden states,
we can assume an unknown multinomial distribution gen-
erated from its prior β, denoted by π0. Sampling β in both
DG and FB is the same as that in HDP-HSMM, and hence
is omitted here (see [4] for details).

3.4.1 Direct Gibbs Sampler

The direct Gibbs sampler (DG) samples each hidden state
zi

j at a time, from the conditional distribution p(zi
j =

k|z−(i, j), β), where z−(i, j) denotes z with zi
j excluded. When

we compute p(zi
j = k|z−(i, j), β), hidden variables π and φ can

be marginalized out, because of closed-form posterior pre-
dictive distributions for multinomial parameters πk and φk,
both having Dirichlet priors.

p(zi
j = k|z−(i, j), β) can be computed as follows

p(zi
j = k|z−(i, j), β) ∝ αβk + nx1,k

α + nx1,·︸�������︷︷�������︸
left-transition

· αβx2 + nk,x2

α + nk,·︸��������︷︷��������︸
right-transition

(4)

× p(P(z− j
i , z j = k))︸��������������︷︷��������������︸

partition

· p(wj|z j = k)︸��������︷︷��������︸
emission

,

where x1 and x2 denote the hidden states of the segments
preceding and following the segment that contains z j respec-
tively.

The first and second terms of Eq. (4) correspond to the
posterior predictive probabilities of left-transition from x1

to k, and right-transition from k to x2, where nx,y denotes
the number of transitions from x to y, and nx,· represents the
total number of transitions from x, in all texts. The third
term is the probability of the partition of di, resulted from
letting zi

j = k yet keeping the other hidden states in di un-

changed. We can compute p(P(z− j
i , z j = k)) according to

Eq. (1), by finding the corresponding partition represented
by a sequence of hidden states, as illustrated in Fig. 4. The
fourth term can either be directly computed by integrating
out φk, or takes the value φk,w j . Note that if zi

j = k leads
wi

j to be contained in the first segment of the text, the left-

transition probability should be replaced with αβk+mk

α+M , where
mk represents the number of texts with starting segment of
topic k, including the current text di.
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Fig. 4 An illustration of mapping a sequence of hidden states to the cor-
responding partition. Each number represents the hidden state of a word,
with the one marked with an asterisk being the current state being con-
sidered, namely zi

j = 3. zi
j taking different values would lead to different

partitions.

3.4.2 Forward-Backward Gibbs Sampler

In addition to DG, we develop the forward-backward Gibbs
sampler (FB) here. While DG updates each hidden state z j

i
at a time, FB draws a sequence of hidden states each time.
After sampling the hidden states, we need to explicitly sam-
ple φ and π.

Given π and φ, we show the forward recursive algo-
rithm for computing the probability p(wi|φ, π) in RUP-HDP-
HSMM, based on which a sequence of hidden states in di

can be drawn. Note that Eq. (1) is important, because the
probability of all possible partitions of a text can be com-
puted. Based on the results of the forward algorithm, we
can sample the whole sequence of hidden states zi in di at a
time. Inspired by recursive algorithm given in [16], we give
the modified version using RUP to generate duration times
of hidden states for a text. Let

α(m, k) = p(wm+1, . . . ,wS |zm = k � zm+1) (5)

=
∑

zm+1,..,zS

p(zm+1, . . . , zS ,wm+1, . . . ,wS |zm = k � zm+1).

We have, for m ≤ S − 2

α(m, k) =
∑
j�k

{
πk j

{∑
n∈{m+1,...,S−1}

{ 1
S − m

p(wm+1, . . . ,wn|φ j)α(n, j)
}

+
1

S − m
p(wm+1, . . . ,wN |φ j)

}}
, (6)

and

α(S − 1, k) =
∑
j�k

πk j p(wS |φ j). (7)

In order to effectively compute α(m, k), we give an ex-
plicit implementation of the algorithm.

Step 1: a. Initialize γ(k)← p(wS |φk)
b. Compute α(S − 1, k)←

∑
j�k

πk jγ( j)

c. Initialize ξ(S − 1, k) ← 1
2 p(wS−1|φk)α(S −

1, k)
Step 2: For n ∈ {S − 1, . . . , 1}

a. Update γ(k)← γ(k)p(wn|φk) S−n
S−n+1

b. For m ∈ {n + 1, . . . , S − 1}
Update ξ(m, j)← ξ(m, j)p(wn|φ j) m−n

m−n+1
c. If n > 1, compute α(n − 1, k) ←∑

j�k

{
pk j

[∑
m=n,...,S−1

ξ(m, j) + γ( j)
]}

d. If n > 1, initialize ξ(n−1, j)← h j(n−1, n−
1)p(wn−1|φ j)α(n − 1, j)

Step 3: Compute p(w1, . . . ,wS ) =
∑

k

{
π0,k

[∑
m=1,...,S−1

ξ(m, k) +

γ(k)
]}

Having run the forward algorithm, we can draw the
fist segment and its hidden state. Note that, for every pos-
sible pair (m, k), the joint probability of (T1 = m, a1 =

k,w1, · · · ,wS ) corresponds to a term in the summation com-
puting p(w1, · · · ,wS ). With (T1 = m, a2 = k) drawn from
the last step, we can recursively draw the next segment by
referring to α(m, k). This process can be repeated, until the
last segment that contains the last word wS is determined,
completing the sampling of a sequence of hidden states. Up-
dating φk and πk is simple, and can be performed as follows

φk,l ∝ #{z = k,w = l} + η, l ∈ {1, · · · ,V}, (8)

πx,y ∝ αβy + nx,y, x, y ∈ {1, · · · , L}, (9)

and

π0,x ∝ αβx + mx. (10)

4. Applications and Empirical Results

Modeling content structures of domain-specific texts by
RUP-HDP-HSMM leads to different applications. In this
section, we show three distinct tasks—including text re-
trieval, classification, and text mining tasks—all depending
on the content structures discovered in domain-specific texts
with RUP-HDP-HSMM. In the text retrieval and classifi-
cation tasks, we map the texts into the local feature space,
with RUP-HDP-HSMM applied as a new feature extraction
technique. In the text mining task, we propose a method
of automatically finding the meaningful local contexts from
the positive instances, which explain why they are classi-
fied as positive instances. This method only relies on the
statistical information underlying the current data set, and
therefore can be generally applied to other real-world data
sets. As illustrated in our experiments, for text retrieval and
classification tasks, RUP-HDP-HSMM, benefiting from the
accurate modeling of content structures, provides more ac-
curate text representations than other existing methods, like
LDA and HDP-HSMM. Besides, the proposed text mining
method also yields insightful results on our data set.

4.1 Text Retrieval Task

Representing texts in the local feature space based on their
content structures is a direct application of RUP-HDP-
HSMM. The goal of task retrieval experiments is to compare
the performance of different methods representing texts in
different feature spaces.

We first derive the representation of texts in the local
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feature space based on their content structures found with
RUP-HDP-HSMM, and then provide a measure of comput-
ing the “distance” between any two texts.

LDA† models texts using latent topics, and the explicit
representation of a text is its topic distribution θ in the la-
tent topic space. In order to estimate θ, for each text, the γ∗
parameters in the variational distribution are inferred with
a variational method [8]. The normalized γ∗ can be viewed
as an estimate to the topic distribution θ in LDA. Similarly,
for HMM/HSMM-based algorithms—including RUP-HDP-
HSMM and HDP-HSMM—can also represent texts in terms
of underlying local features, which are composed of sequen-
tial word tokens. We count the number of words assigned
different local features in all local contexts in each text, and
record the result with a vector v, with the k-th element being
the total number of words generated by the k-th local fea-
ture. Then we update v by adding a small smoothing factor
to it. The normalized v thus gives a representation of the
text, defined over the space of local feature distributions. In
specific, for the k-th local feature, we define

vk = α0βk + #{words assigned the k-th topic}, (11)

where α0βk serves as the smoothing factor. Normalizing v,
we obtain a local feature distribution, which is also denoted
by θ. The same use of notation θ as that in LDA should not
cause confusion here.

We measure the “distance” between any two texts,
which is the difference between their topic distributions, de-
noted by θ1 and θ2, with respect to the symmetric Kullback-
Leibler divergence (KL divergence). In particular, the dis-
tance, denoted by D(θ1||θ2), is computed as follows

D(θ1||θ2) = 0.5DKL(θ1||θ2) + 0.5DKL(θ2||θ1), (12)

where KKL(θ1||θ2) denotes the Kullback-Leibler divergence
of θ2 from θ1, and

DKL(θ1||θ2) =
∑

k

θ1k log
θ1k

θ2k
. (13)

The text retrieval tasks are performed using D(θ1||θ2), after
mapping texts to the topic space in LDA and the local fea-
ture space in RUP-HDP-HSMM and HDP-HSMM.

4.1.1 Experiment Settings

The data set we use in this experiment contains 500 edito-
rials collected from famous Japanese newspapers††, among
which 200 instances, forming a subset C1, discuss the im-
pact of closing the nuclear plants in Japan and/or make com-
ments on whether the nuclear power plants in Japan should
be restarted. The others, however, may contain nuclear-
related content, but do not relate to restart of the nuclear

†LDA software can be downloaded from http://www.cs.
princeton.edu/˜blei/lda-c/
††The data set can be found following the instruction at

https://github.com/yuui-ro/JapaneseEditorialDataset/blob/master/
dataset-1

power plants. This subset is denoted by C2. All editorials in-
volved result in a corpus of 500 texts containing 320,951 to-
kens in total, and a vocabulary having 11,079 unique terms.
The sample mean of the numbers of words is 641.9, and the
standard deviation is 198.7.

For the text retrieval task, given a text d in C1 as a
query, we want to collect other texts that are also in C1. If
the texts are properly modeled with some method, given d
in C1, the remaining texts in C1 should be closer to d than
those in C2. We use the mean average precision (MAP) and
mean reciprocal rank (MRR) as evaluation metrics [19] for
comparisons of text retrieval performance based on different
methods. The MAP value is the arithmetic mean of average
precision values for each text in C1. The MRR is the arith-
metic mean of the reciprocal ranks of results for each query
d in C1; the reciprocal rank of d is the multiplicative inverse
of the rank of the first relevant text in the ranked retrieval re-
sult, where however d itself is excluded. The MRR only fo-
cuses on the first relevant text, and thus especially useful for
evaluation of responses where there is only one correct an-
swer. In contrast, MAP, taking account of all relevant texts
in the ranked retrieval result, has been shown to have good
discrimination and stability.

Existing methods, including HDP-HSMM models with
Poisson and negative Binomial duration distributions, “bag-
of-words” model (BOW) and LDA are used for compari-
son in our experiment. In RUP-HDP-HSMM, we set η to
0.1, and put gamma priors for the concentration parame-
ters γ and α0; in particular, γ ∼ Gamma(1, 1) and α0 ∼
Gamma(1, 0.1), where Gamma(ga, gb) denotes a Gamma
distribution with the mean equal to ga/gb. The same set-
tings are also used in HDP-HSMM with Poisson and neg-
ative Binomial duration distributions, denoted by HDP-
HSMM (Poisson) and HDP-HSMM (NBin), respectively.
For Poisson duration distributions in HDP-HSMM (Pois-
sion), we put a Gamma prior Gamma(1, 0.1). In HDP-
HSMM (NBin), the negative Binomial duration distribu-
tions, denoted by NBin(r, p), have a Beta prior Beta(1, 1)
over p, and r is fixed to 10. The truncation level L in these
HDP-HSMM-based algorithms is set to 200. Because LDA
requires the number of topics K to be a fixed model param-
eter, we obtain different models, by letting K take the value
from {20, 40, 60, 80, 100}.

4.1.2 Experiment Results

The experiment results of {Gd, d ∈ C1} based on different
methods are summarized in Table 1. We view the number
of topics in LDA as the number of features. The number of
features in a HDP-HSMM-based algorithm is the number of
local features, after the Gibbs sampling mixes.

As we see from Table 1, all methods can achieve rather
high MRR values, while there are clear differences among
different methods in terms of their MAP values. RUP-HDP-
HSMM achieves the highest MAP value, hence the best re-
trieval performance of finding all relevant texts. In particu-
lar, we can see that HDP-HSMM-based methods can yield
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Table 1 Performance of collecting relevant instances with different methods

Method Number of Features Mean average precision Mean reciprocal rank
RUP-HDP-HSMM 32 0.85 0.95

HDP-HSMM (Poisson) [4] 53 0.75 0.95
HDP-HSMM (NBin) [4] 58 0.75 0.94

BOW [17] 11,079 0.68 0.97

LDA [18]

20 0.71 0.94
40 0.61 0.90
60 0.56 0.91
80 0.64 0.88
100 0.49 0.90

Fig. 5 Plot of number of segments in texts yielded by different methods,
with regression on means at different numbers of words

higher MAP values than LDA and BOW. This is not a sur-
prising result, considering that both LDA and BOW ignore
the local contexts in the learning texts that are closely re-
lated to the topic of nuclear power plants in Japan. From
the text-level perspective, the difference between texts may
be small, because there are also nuclear-related texts in
C2, sharing some feature words of texts in C1. In con-
trast, HDP-HSMM-based methods focus on local patterns
in texts, which can exist because of the same domain of
the texts. Consequently, it is easier for HDP-HSMM-based
methods to retrieve the other texts in C1 for a query.

Moreover, we can observe that RUP-HDP-HSMM
gives less number of local features than HDP-HSMM (Pois-
sion) and HDP-HSMM (NBin). On the other hand, HDP-
HSMM (Poission) and HDP-HSMM (NBin) yield simi-
lar numbers of local features. A possible explanation is
that both HDP-HSMM (Poisson) and HDP-HSMM (NBin)
cannot prevent rapid switching, thus creating extra hidden
states. We plot the number of segments in texts found by
different methods in Fig. 5. We also perform a quadratic
regression on the means of the numbers of segments, as
the number of words changes. Figure 5 shows that, on
average, HDP-HSMM (Poisson) and HDP-HSMM (NBin)
lead a text to contain much more segments than RUP-HDP-
HSMM. And the number of segments produced by HDP-
HSMM (Poisson) and HDP-HSMM (NBin) increases very
fast, indicating that the resulting hidden states switch very
fast between one another. By contrast, RUP-HDP-HSMM

can successfully prevent the rapid switching, because RUP-
HDP-HSMM uses much less segments to model local con-
texts in a text, while retaining the ability to find useful local
features to represent the content structures in texts.

4.2 Text Classification Task

In this section, we consider text classification using SVM,
where all texts are classified to two exclusive classes. The
input for training SVM classifiers can be vectors based on
“bag-of-words” model, or vectors of smoothed counts of
words in the feature space obtained with RUP-HDP-HSMM
and HDP-HSMM as defined in Eq. (11).

With different feature representations, we train differ-
ent SVMs and compare their classification performances in
terms of F1 scores. We aim to show that local features dis-
covered with RUP-HDP-HSMM can provide useful features
for the text classification task.

4.2.1 Experiment Settings

The data set we use here is a subset of the data used in the
text retrieval experiment, consisting of 100 editorials†, all
related to nuclear power plants in Japan. This data set results
in 4,354 terms and 61,220 word tokens in total.

We conduct four classification experiments, each in-
volving a binary classification task. In particular, we ex-
tracted four different opinions that are often referred to in
the data set. Thus, for each opinion, according to its pres-
ence in a text, the text is classified as a positive or negative
training instance; all class labels are assigned manually by
three college students under majority rule. Each opinion has
17, 29, 27 and 22 positive training instances, respectively.
The four classification experiments are performed indepen-
dently.

As discussed earlier, HDP-HSMM-based methods and
LDA can represent a text with real-valued vectors v and γ∗
respectively in the latent spaces.

For each classification experiment, indexed by the in-
volved opinion number, we randomly split the data set into
training data and test data, each containing both positive and
negative instances. This process is repeatedly performed, in

†The data set can be found following the instruction at
https://github.com/yuui-ro/JapaneseEditorialDataset/blob/master/
dataset-2
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Fig. 6 Box plots of F1 scores in four binary classification tasks based on different feature selection
methods. On each box, the central mark is the median, and the edges of the box are the 25th and 75th
percentiles. The plus marks denotes the data points considered as the outliers, if they are larger than
Q3+1.5*(Q3-Q1) or smaller than Q1-1.5*(Q3-Q1), where Q1 and Q3 are the 25th and 75th percentiles,
respectively.

order to give an estimate of the performance of resulting
SVM classifiers. The LIBSVM software† is used for train-
ing a classifier using the training data. The linear kernel is
utilized, and the cost parameter C and weight parameter wi
are tuned, representing how much we want to avoid misclas-
sifying the training data, and the weight for a positive class,
respectively. In particular, the C parameter is selected from
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 102, 103, 104}, and wi
can take a positive value in {1, 2, · · · , 10}. The performance
of classification is evaluated using the average F1 score,
computed by performing five-fold cross validation on our
data set. Five subsamples used in the five-fold cross valida-
tion are obtained by randomly partitioning the original data
set; however, it is guaranteed that there are both positive and
negative instances in each subsample. The tuning parame-
ters are chosen by performing five-fold cross validation only
on the training data set, and then applied to prediction on the
testing data set.

The configuration of the parameters involved in RUP-
HDP-HSMM and HDP-HSMM remains the same as in the
text retrieval experiment. The topic number of LDA is set to
20.

4.2.2 Experiment Results

We perform five-fold cross validation 100 times, each time
the partitions of training and testing data sets are randomly
selected. The average F1 score is computed after each cross
validation, as an indicator of classification performance. All
results based on different feature extraction methods are
summarized in Fig. 6, from which we can see that except

†https://www.csie.ntu.edu.tw/˜cjlin/libsvm/

Experiment 3, the SVM classifiers yielded by RUP-HDP-
HSMM give the highest medians, and show relatively stable
performance. This result tells us that the extracted local fea-
tures in texts can serve as another form of features that can
be useful for text classification, in addition to the “bag-of-
words” representation.

Besides, BOW shows relatively good performances
here too, indicating that, for each experiment, there may ex-
ist some very important feature words. If the SVM is trained
by making good use of the presence information of these
feature words, the resulting classifier can also be competi-
tive. By contrast, LDA cannot lead to powerful classifiers
here, because both the local features and feature words are
not properly captured.

Furthermore, it is interesting to see that although HDP-
HSMM (Poisson) and HDP-HSMM (NBin) perform better
than LDA and BOW in the text retrieval task, they perform
worse than BOW here. As discussed earlier, rapid switching
between hidden states still occurs with HDP-HSMM (Pois-
son) and HDP-HSMM (NBin), and can prevent them from
discovering true local patterns underlying the texts. There-
fore, the local features that are closely related to an opinion
may be missed by HDP-HSMM (Poisson) and HDP-HSMM
(NBin), though, to some extent, they are capable of group-
ing similar texts together by using the temporal information
underlying the texts.

4.3 Text Mining Task

In our text classification experiments, each binary classifica-
tion corresponds to the prediction of a particular opinion’s
presence. We can use a label to represent an opinion, only
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Table 2 Weight vectors of local features obtained from SVM.

Label No.
Ordered local feature with weight [ Feature No. (Weight) ]

1 2 3 4 5
1 8 (0.0195) 32 (0.0089) 2 (0.0050) 18 (0.0045) 14 (0.0031)
2 8 (0.0170) 2 (0.0094) 18 (0.0081) 16 (0.0064) 11 (0.0022)
3 2 (0.0295) 6 (0.0157) 14 (0.0082) 19 (0.0058) 27 (0.0044)
4 6 (0.0158) 28 (0.0089) 7 (0.0073) 21 (0.0071) 3 (0.0064)

Fig. 7 Representative terms in some typical local features. The terms of a local feature are sorted
according to Eq. (14) in descending order. We show both the original Japanese terms and their transla-
tions. An asterisk (*) represents a function word in Japanese, and is not explicitly shown here, due to
difficult interpretation to English.

assigned to the positive instances. Besides prediction, we
may also wish to discover those text fragments that are in
close relation to a label. The discovered fragments not only
describe this label, but also account for why a text is clas-
sified as a positive instance. In this section, we present a
text mining method of automatically finding such text frag-
ments, which are modeled using local contexts with RUP-
HDP-HSMM.

4.3.1 Measuring Local Contexts

Two kinds of metric are utilized in our method, one for eval-
uating the importance of a local feature to a label and one
for measuring to what extent a particular term distinguishes
a local feature from the others.

The first kind of metric evaluates the relation between
a particular label and local features. The weight vector de-
rived from a linear SVM or the logistic regression can serve
the purpose here. The former is used here, and we denote
the resulting vector by u = (u1, · · · , uK), where K is the
number of local features. The input of the linear SVM is the
local feature vectors v, as obtained in the text classification

task, with each element being a smoothed version of num-
ber of words assigned a particular local feature. A positive
uk means that the k-th local feature positively contributes to
the presence of the label, and vice versa. The absolute value
of uk stands for the degree of this contribution.

The second kind of metric models the relation between
terms and local features. Note that we cannot directly use
φk, because it cannot reflect the importance of terms when
we compare the k-th local feature against the others. Rather,
we compute the mutual information MI(Aw, Bt) of two Bi-
nomial random variables Aw and Bt, associated with term w
and local feature t, respectively. MI(Aw, Bt) measures the
dependence between local feature t and term w, thus rep-
resenting how important term w is for local feature t to be
distinguished from other local features. For any local con-
text discovered with RUP-HDP-HSMM, we let Aw = 1 if
term w is present in this local context, and Aw = 0 other-
wise. If this local context is assigned local feature t, we let
Bt = 1, and otherwise Bt = 0.

According to the definition of mutual information and
Aw and Bt, we have
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Fig. 8 An illustration of finding the rank of the first relevant local context in positive instances of Text
10 and 21 with respect to Label 1. We use line segments with different colors to represent local contexts
assigned different local features in a text. Here the ranks of local contexts in Text 10 and 21 are obtained
by computing their scores with respect to Label 1. Local contexts attached check marks are considered
to explain the label. The rank of the first relevant local context is marked with an asterisk.

Table 3 Summary of the ranks of the first relevant local contexts in positive instances

Label No. Mean Median 15th percentile 85th percentile
1 1.76 1 1 2
2 5.84 5 2 10
3 3.08 2 1 6
4 3.26 1 1 8

Table 4 Examples of the first relevant local contexts for each label

MI(Aw, Bt) =
∑

x∈{0,1}

∑
y∈{0,1}

p(Aw = x, Bt = y) (14)

× log
p(Aw = x, Bt = y)

p(Aw = x)p(Bt = y)
.

After obtaining the content structures of texts with RUP-
HDP-HSMM, all the terms involved in Eq. (14) can be es-
timated. For example, p(Aw = 0, Bt = 1) can be approx-
imated by the proportion of the local contexts that are as-
signed local feature t and does not contain term w. Note that
p(Aw = x) = p(Aw = x, Bt = 0) + p(Aw = x, Bt = 1) and
p(By = y) = p(Aw = 0, Bt = y) + p(Aw = 1, Bt = y).

Combining the two kinds of metric, for the j-th local
context that is assigned local feature t and consist of words
{wT j , · · · ,wT j+1−1}, we compute its score in terms of its con-
tribution to the label, as follows

score(t) = ut ×
∑

n=Tt ,··· ,Tt+1−1

MI(Awn , Bt). (15)

4.3.2 Experiment Results

We use the same data set as in the text classification task, and
wish to find the important local contexts from the positive
instances in each binary classification.

Using the local feature vectors as the input, we train a
linear SVM classifier, obtaining the weight vector of local
features. We show the top five local features according to
their weights in each classification task in Table 2. The cost
parameter C and weight parameter wi are again determined
by five-fold CV with all instances randomly split into five
subsamples. The ranges of C and wi are the same as in the
text classification task.

The representative terms of seven local features are
shown in Fig. 7. Due to space limitations, we cannot present
all local features. The ones in Fig. 7 are selected, because
they achieve relatively large weights in the weight vectors,
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with rather straightforward interpretations.
It is worth noting that showing the top terms w that

have the largest conditional probabilities φk,w is far from as
insightful as Figure 7, mainly because of the high-frequency
words that commonly appear in all local contexts. Such
high-frequency words include function words and some
domain-specific feature words, and would lead to high con-
ditional probabilities in all φk. Consequently, it would be
difficult for us to interpret these local features, if we only
look at a few terms having the highest conditional probabil-
ities in φk.

For each positive instance, all its local contexts are
sorted by their scores with respect to a label in descend-
ing order, which are computed according to Eq. (15). If our
method works well, the relevant local contexts would have
high ranks in the ranked list. To evaluate the performance of
the proposed method, we examine the rank of the first rel-
evant local context in each positive instance (an illustration
is given in Fig. 8). The results are summarized in Table 3.
The 15th percentiles in all cases are either 1 or 2, indicating
that the relevant local contexts we desire can be well iden-
tified in some positive instances. Besides, both the means
and medians for Label 1, 3 and 4 are small, meaning that on
average we can target a relative local context in a text from
the top 3 local contexts in the ranked list.

In Table 4, we show an example of relevant local con-
texts actually discovered for each label, along with the la-
bel description. Combining Table 2 and Table 4, we can
see that Label 1 and Label 2, despite being separate labels,
address the impact of shutting down nuclear power plants
from different aspects, thus having a strong positive corre-
lation. This explains why our method performs much better
for Label 1 than for Label 2.

5. Conclusion

In this paper, we proposed the RUP-HDP-HSMM, which
is a nonparametric Bayesian model built upon the HDP-
HSMM, for modeling the content structure of domain-
specific texts. RUP-HDP-HSMM incorporates RUP to
tackle the rapid switching.

In our text retrieval experiments, we showed that RUP-
HDP-HSMM could properly model the content structures
of domain-specific texts, in the light of the experiment re-
sults on our data set. In particular, RUP-HDP-HSMM suc-
cessfully avoided the rapid switching between hidden states,
while typical HDP-HSMMs did not. Besides, RUP-HDP-
HSMM greatly outperformed the others in terms of rank-
ing performance, while using less local features than HDP-
HSMM.

We also demonstrated that modeling content structures
of texts could provide useful features for text classification
tasks. In our experiments, the content structures discovered
with RUP-HDP-HSMM could lead SVM to achieve higher
F1 scores than other methods.

Furthermore, depending on RUP-HDP-HSMM, we
presented a method of extracting the relevant local contexts,

accounting for why a text is classified as a positive instance.
We deem this method efficient at finding the relevant local
contexts, only relying on the statistical information under-
lying the current data set. We also consider it a promising
tool for discourse analysis, automatic summarization, etc.,
in NLP. A specific application of our method remains as fu-
ture work.
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