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PAPER

Pivot Generation Algorithm with a Complete Binary Tree for
Efficient Exact Similarity Search

Yuki YAMAGISHI†a), Nonmember, Kazuo AOYAMA††, Kazumi SAITO†, and Tetsuo IKEDA†, Members

SUMMARY This paper presents a pivot-set generation algorithm for
accelerating exact similarity search in a large-scale data set. To deal with
the large-scale data set, it is important to efficiently construct a search in-
dex offline as well as to perform fast exact similarity search online. Our
proposed algorithm efficiently generates competent pivots with two novel
techniques: hierarchical data partitioning and fast pivot optimization tech-
niques. To make effective use of a small number of pivots, the former re-
cursively partitions a data set into two subsets with the same size depending
on the rank order from each of two assigned pivots, resulting in a complete
binary tree. The latter calculates a defined objective function for pivot opti-
mization with a low computational cost by skillfully operating data objects
mapped into a pivot space. Since the generated pivots provide the tight
lower bounds on distances between a query object and the data objects, an
exact similarity search algorithm effectively avoids unnecessary distance
calculations. We demonstrate that the search algorithm using the pivots
generated by the proposed algorithm reduces distance calculations with an
extremely high rate regarding a range query problem for real large-scale
image data sets.
key words: similarity search, pivot generation, complete binary tree

1. Introduction

Similarity search algorithms for large-scale data sets have
been developed on the growing demand [10], [22], [24]. Re-
cently, for high-dimensional data sets, approximation al-
gorithms represented by locality-sensitive hashing (LSH)
family have been studied, which save the computational
cost for search at the expense of obtaining exact solu-
tions [2], [8], [14]. In contrast, exact similarity search al-
gorithms, which find all objects exactly meeting a given
query, have received interest for a long time in various ap-
plication domains, for example, a simple one is to search
a data set with a relatively low intrinsic dimensionality [22].
Furthermore, their acceleration is necessary for the accuracy
evaluation of heuristic algorithms and the approximation al-
gorithms since an exact search result is used as the ground
truth.

We consider to accelerate an exact similarity search al-
gorithm for large-scale and high-dimensional data sets by
reducing a computational cost. In particular, we focus on the
exact algorithm for a range query since it is the most basic
type of queries. A general approach for the acceleration is to
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omit unnecessary distance calculations of data objects and a
query object (query for short) in a search stage. To judge
whether a distance calculation between a data object and a
query is necessary or not beforehand, the lower bound on
the distance is utilized, which is derived based on the trian-
gle inequality in a metric space. The distance lower bound
of an object and a query is calculated by using a triangle of
the object, the query, and a distinguished object or fixed ref-
erence point called a pivot [6], [9], [18], [23]. Most of the
accelerated algorithms employ a search index constructed
by using pivots [6], [9], [23].

In those algorithms, a pivot selection is the most impor-
tant procedure for a significant acceleration. To select bet-
ter pivots, several objective functions for pivot optimization
have been reported [1], [7], [17]. Of these, the incremen-
tal selection in [7] sequentially adopts an object as a pivot
one by one, which maximizes the sum of the lower bounds
on distances between objects. This objective function is de-
rived straightforwardly if it is assumed that a query appears
in a given space with the identical distribution to that of the
data objects.

This objective function has been also employed by al-
gorithms for Euclidean spaces as well as for the general met-
ric spaces because of its validity [15], [16]. In the Euclidean
space, the pivots generated by the algorithm in [15] outper-
formed those selected by the incremental selection in terms
of the reduction of the number of the distance calculations.
However, the pivot generation algorithm requires the high
computational complexity of O(N2), where N denotes the
number of objects in a given data set. This high complexity
makes it difficult to apply the pivot generation algorithm to
a large-scale data set.

To alleviate the above-mentioned drawback and signif-
icantly accelerate a similarity search algorithm for a large-
scale data set, we propose a novel pivot-set generation al-
gorithm. The proposed algorithm generates a set of pivots
with the computational complexity of O(N log N) offline.
Moreover, a search algorithm can effectively avoid unnec-
essary distance calculations online by using the tighter dis-
tance lower bounds based on the generated pivot set. The
above-mentioned performance is due to newly introduced
two techniques: hierarchical data partitioning and fast pivot
optimization. The former recursively partitions a data set
(or subset) into two subsets with the same size depending
on the rank order from each pivot, resulting in a complete
binary tree where each node has a pair of pivots. The latter
is characterized by fast calculation of the objective function
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Table 1 Notation

Symbol Description and Definitions

N Number of objects, N= |X|
r Range for range search
H Dimensionality of feature vector of object
L Maximum level of complete binary tree index
T Number of PGM iterations for pivot generation
ε Parameter for stopping PGM iterations
i Index for tree level
j Index for node in CBT
v j Node in CBT

S Set of objects in a metric spaceM, {X,Z}⊂S
X Set of given objects, X= {x1, x2, · · · , xN }
Z Set of query objects for search,Z= {z, · · · }
P Set of pivots, P= {p1, p2, · · · , p|P|}
X j Set of objects included in node v j

A(x)
Set of objects to which distances from a pivot
are smaller than a distance to object x

B(x)
Set of objects to which summations of distances
from two pivots are smaller than a distance to x

C(x)
Set of objects to which differences of distances
from two pivots are smaller than a distance to x

d(xs, xt)
Function that returns a distance between
objects xs and xt

D(xs, xt;P)
Function that returns the lower bound on a distance
between object xs and xt by pivot set P

F(P;X)
Function that returns the sum of lower-bound
distances of objects in X by pivot set P

ρ(x)
Function that returns a rank order of x, which is
equal to |A(x)| + 1

J(X, z, r;P)
Function that returns a set of discarded objects
in X for query z and range r by pivot set P

Cal(r)
Function that returns an average computational cost
on search for range r

based on a skillful operation of objects mapped into a pivot
space [10], [17]. We demonstrate that the proposed algo-
rithm efficiently generates an effective pivot set through our
experimental results on large-scale real image data sets.

The remainder of this paper is organized as follows.
Section 2 briefly reviews related work. Section 3 describes
pivot-based similarity search as preliminaries. Section 4 ex-
plains our proposed algorithm in detail. Section 5 shows the
experimental settings and reports our results. The final sec-
tion offers our conclusions. We summarize the notation in
Table 1 for easy reference.

2. Related Work

This section reviews two related topics: pivot selection and
generation algorithms and pivot-based data partition algo-
rithms for index construction.

2.1 Pivot Selection and Generation Algorithms

An advantage of our proposed algorithm is a fast pivot opti-
mization technique. The existing pivot selection and genera-
tion algorithms are here described as regards their objective
functions and computational costs.

The objective functions have been designed depending
on their usage and hypotheses [1], [9]. A hypothesis is that
better pivots are far away from each other [6], [18]. A sim-
ple algorithm based on the hypothesis sequentially selects
a pivot p̂ from a set of data objects X = {x1, x2, · · · , xN}
one by one with the same procedure as ε-net construction
in [12], [13], as expressed by

p̂ = arg max
xi∈X\P

{min
p∈P
{d(xi, p)}} , (1)

P = P ∪ {p̂} ,
where P denotes the set of the selected pivots and d(xi, p)
a distance between xi and p. Another sequential algorithm
selects a pivot p̂ in the similar manner to that in Eq. (1) as
follows [18].

p̂ = arg max
xi∈X\P

{∑p∈P d(xi, p) } , (2)

In contrast, there is a selection algorithm based on the
hypothesis that a given query object appears with the iden-
tical distribution to that of the data objects. The algorithm
incrementally selects such a pivot p̂ that maximizes the sum
of the lower bounds on distances between a pair of data ob-
jects, one of which is regarded as the query object [7], as
shown in Eqs. (3)–(5). Maximizing F(P′;X \ P′) means to
make the average lower bound tighter. As in Eq. (5), the
distance lower bound is derived by the triangle inequality
applied to the triangle with the pivot and two objects.

p̂ = arg max
p∈X\P

{
F(P′;X \ P′)} , (3)

P′ = P ∪ {p},
F(P′;X \ P′) = ∑xi,x j∈X\P′ D(xi, x j;P′) , (4)

D(xi, x j;P′) = max
p′∈P′

(
| d(x j, p

′) − d(xi, p
′) |
)
, (5)

where P = ∅ at the initial state and j > i in Eq. (4). By
the incremental selection of p̂, P is updated like P← P ∪
{p̂}. This algorithm is referred to as PSM (Pivot Selection
by Maximizing the objective function) because it selects a
pivot set P from a given object set X, i.e., P⊂X. Note that
it requires the computational complexity of O(N3) even for
selecting only one pivot {p̂} such that

p̂ = arg max
p∈X

{ F({p};X) } .

Since the objective function in Eq. (4) is valid for some
applications, it has been utilized in a Euclidean space. Then
pivots are not selected from data objects in X but are gener-
ated as points in a Euclidean space by maximizing the ob-
jective function F(P;X), which is expressed as

F(P;X) =
∑

xi,x j∈X D(xi, x j;P)

=
∑N−1

i=1
∑N

j=i+1 D(xi, x j;P) , (6)

D(xi, x j;P) = max
p∈P

( | d(x j, p) − d(xi, p) | ) . (7)

Along this line of the research direction, iterative algorithms
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for the L2 and for the L1 Euclidean space have been pro-
posed in [15] and [16], respectively. These algorithms are
collectively referred to as PGM (Pivot Generation by Maxi-
mizing the objective function). The PGM algorithm first ini-
tializes a set of pivots as arbitrary points, and then iteratively
updates these pivot so as to maximize the objective function
F(P;X). However, the algorithm still requires a high com-
putational cost for each iteration. This requirement makes
it difficult to apply the algorithm to a large-scale data set.
Thus a lower computational cost for the pivot generation is
desired for the large-scale data set.

2.2 Pivot-Based Data Partitioning Algorithms

In order to exploit a small number of pivots efficiently, our
proposed algorithm partitions a given data set into subsets.
The data partitioning and clustering algorithms based on
pivots are briefly reviewed in terms of search index con-
struction.

In the most cases, data objects are partitioned by a dis-
tance measure from pivots. A simple algorithm for con-
structing the metric tree recursively employs two distinct
schemes: generalized hyperplane partitioning and ball par-
titioning [23]. The former partitions the data set into two
subsets depending on a distance of the data object to each
of two pivots. The latter divides the objects into two subsets
depending on whether each object exists inside or outside
the ball whose center is a single pivot and radius is the me-
dian of distances from the pivot to all the objects. Other than
the dual-partitioning leading to the binary tree, most of the
algorithms partition the data set into multiple subsets based
on distances from multiple pivots and construct a k-ary tree
by recursive partitioning [6], [11], [20], where the k value is
not always a constant.

Few algorithms partition the data set into subsets based
on the size (the number of objects) of the partitioned subset.
Of these, the algorithm for list of clusters (LC) constructs an
unbalanced binary tree using a variable radius from a single
pivot (cluster center), which is controlled so that the number
of data objects inside the ball becomes a pre-defined fixed
number [9].

3. Preliminaries: Pivot-Based Similarity Search

We employ similarity search performance as a practical in-
dicator of a quality of pivot set P. Here, we briefly describe
an exact similarity search using a pivot set, in particular, a
range query that is used for the evaluation in Sect. 5.3. Let
M be a metric space consisting of an object set S and dis-
tance d(xi, x j) for any pair of objects xi, x j ∈ S. Given a
set of objects X= {x1, x2, · · · , xN} ⊂S, a query object z ∈S,
and a range distance r, a range query is defined as a task of
finding a set of all the objects xi satisfying d(xi, z) ≤ r. As
described in Sect. 1, in order to reduce a computational cost
for calculating distances between the query and objects in
the task, we exploit a pivot-based algorithm. More specifi-
cally, we focus on the algorithm that employs the following

lower bound on a distance between an object xi and a query
z using a set of pivots P= {p1, p2, · · · , p|P|}:

D(xi, z;P) = max
p∈P
| d(xi, p) − d(z, p) | ≤ d(xi, z). (8)

Note that this lower bound is easily derived from the basic
properties of a metric space, i.e., non-negativity, identity,
symmetry, and the triangle inequality. Based on Eq. (8), a
set of the discarded objects J(X, z, r;P) ⊂ X is defined by

J(X, z, r;P) = {x ∈ X | D(x, z;P) > r} . (9)

Obviously, we do not need to calculate the distance between
the query and any object in the set J(X, z, r; P). More dis-
tance calculations are saved, lower a computational cost be-
comes. That is, a better pivot set P in terms of the quality
makes |J(X, z, r; P)| larger.

4. Proposed Algorithm

Our proposed algorithm consists of two main parts: a pivot
generation algorithm that is an accelerated PGM for two piv-
ots, and a data partitioning algorithm that partitions a set (or
subset) of objects into two subsets with almost the same size
by using the obtained two pivots, resulting in a complete bi-
nary tree (CBT for short) for a search index. Hereinafter,
we refer to our proposed algorithm as PGM-CBT. We begin
with an outline of the proposed algorithm PGM-CBT and
then detail the two main algorithms in Sects. 4.1 and 4.2.

Algorithm 1 shows our proposed algorithm that con-
structs a CBT by growing branches from a root to leaf nodes
level by level, which is identified by parameter i. A node in
the CBT contains object subset X j and two pivots {p j0, p j1}.
M1: At line 3, create a tree consisting of only a root node v1

whose member X1 is set up by X1←X, and initialize
a tree level parameter i by i← 1 and a set of pivots by
P←∅.

M2: At lines 4–12, for each leaf node v j, 2(i−1)≤ j<2i, con-
taining X j at level i of the current tree, perform the fol-
lowing two algorithms, and the procedure is repeated
while i<L.

M2-1: At lines 6 and 7, generate a pair of pivots {pj0, p j1}
using X j by the PGM algorithm with a new technique

Algorithm 1 Proposed algorithm (PGM-CBT)
1: Input: X, L
2: Output: P
3: Initialize with X1 ← X, P ← ∅, i← 1.
4: while i < L do
5: for all j such that 2 (i−1) ≤ j < 2 i do
6: Execute pivot generation algorithm and obtain {p j0, p j1}.
7: P ← P ∪ {p j0, p j1}
8: Execute data partitioning algorithm and obtain {X j0, X j1}.
9: Create child nodes with X2 j ← X j0, X(2 j+1) ← X j1.

10: end for
11: i← i + 1
12: end while
13: return P
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to efficient calculate the objective function shown in
Sect. 4.1. Then add these pivots as P←P ∪ {p j0, p j1}.

M2-2: At lines 8 and 9, partition X j into X j0 and X j1, as
shown in Sect. 4.2. Then produce the two child nodes
v2 j and v(2 j+1) at the next level, which contain X2 j and
X(2 j+1), respectively.

M3: If i=L, output P and terminate at line 13.

4.1 Pivot Generation Algorithm

We present a novel pivot generation algorithm that produces
a pair of pivots {p j0, p j1} using a set of objects X j. We first
overview a generic procedure of PGM as follows.

G1: Initialize P by two objects randomly selected from X,
and iterate the following three steps until convergence.

G1-1: Calculate distance d(x, p) for each pair of p and x.
G1-2: Compute the objective function F(P;X).
G1-3: Update each pivot p∈P so as to maximize F(P;X).
G2: Output P and terminate.

In our experiments, we employed a convergence criterion
defined by

F(P′;X)/F(P;X) < (1+ε),

where P′ means an updated set of the pivots from P, and we
used ε=10−8. We omit the details of Step G1-3 due to space
limitations, which is the same as that in [15], [16].

We show the computational complexity of the pivot
generation algorithm. In the case of an H-dimensional
vector space with L1 or L2 metric, the complexity at both
Steps G1-1 and G1-3 becomes O(NH) as analyzed in
[15], [16] although an actual computational cost depends on
a metric space, where N stands for the number of given ob-
jects. The complexity at Step G1-2 becomes O(N2) in gen-
eral. As shown below, by using our proposed technique in
the case of two pivots, we can reduce the complexity from
O(N2) to O(N log N). Namely, we can obtain the computa-
tional complexity of the pivot generation algorithm as fol-
lows:

O( T N(H + log N) ),

where T means the number of iterations until the PGM al-
gorithm converges. Thus, the pivot generation algorithm has
reasonably good scalable properties that the computational
complexity to N is quasi-linear, and linear to H. In our ex-
periments, T was less than 100 in most trials as shown later.

We explain our proposed technique of calculating the
objective function efficiently. First, we describe the case
of one pivot p for X j. For simplicity, we assume that two
different objects has a different distance from the pivot al-
though this restriction is resolved later. Figure 1 shows
an example for intuitively understanding the proposed tech-
nique when X= {x1, x2, x3, x4}. The objective function value
is the sum of the six entries in the distance lower bound
matrix in Fig. 1 (a). We map the objects xs in the original
space into the object vectors us in the 1-dimensional pivot

Fig. 1 Example of distance lower bound matrices when object set X =
{x1, x2, x3, x4} (N = 4) and pivot p are used. (a) Distance lower bound
matrix: The value at the s-th row and the t-th column is |d(xt , p)−d(xs, p)|.
(b) 1-dimensional pivot space where us corresponds to xs in the original
space and its position is d(xs, p). Each object us is given a rank order ρ(us)
in descending order of d(xs, p). (c) Distance lower bound matrix based on
the rank order in the pivot space. ρ(us)−1 is the frequency with which
−d(xs, p) appears in the entries.

space where each object’s position is a distance from the
pivot p, i.e., d(xs, p) shown in Fig. 1 (b). Suppose d(x2, p)<
d(x4, p)<d(x1, p)<d(x3, p). We attach a rank order ρ(us) to
each object us in descending order of d(xs, p), and then re-
gard ρ(xs) as ρ(us). For instance, suppose that the rank order
of u1 is 2, and when the absolute operations are eliminated
in the entries in Fig. 1 (a), −d(x1, p) and +d(x1, p) appears
once and twice. Using the rank orders of all objects, we
obtain the distance lower bound matrix in Fig. 1 (c). Since
−d(xs, p) and +d(xs, p) appear ρ(xs)−1 times and |X|−ρ(xs)
times, respectively, the objective function value is expressed
by
∑4

s=1(|X| − 2ρ(xs) + 1) d(xs, p)

= d(x1, p)−3 d(x2, p)+3 d(x3, p)−d(x4, p) .

To deal with a general case, we define A(xs)⊂X j and
A(xs) for each object xs as

A(xs) = {xt | d(xs, p) < d(xt, p)} and

A(xs) = X j \ (A(xs) ∪ {xs}) .
We can eliminate the absolute operation as follows:

|d(xt, p)−d(xs, p)|=
{

d(xt, p)−d(xs, p) xt ∈ A(xs),
−d(xt, p)+d(xs, p) xt ∈ A(xs)
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This equation relates to the rank order of us and ut in the
1-dimensional pivot space in the foregoing example. In the
calculation of the objective function, the frequencies with
which −d(xs, p) and d(xs, p) appear are |A(xs)| times and
|X j|− 1−|A(xs)| times, respectively. Based on the fact, the
objective function F({p};X j) is expressed by

F({p};X j) =
∑

xs∈X j

(|X j|−1−2|A(xs)|) d(xs, p) . (10)

Formally, for a given xt ∈ X j, the numbers of objects
such that xt ∈A(xs) and xt ∈A(xs) can be obtained as

|{xs | xt ∈A(xs)}|= |{xs | d(xs, p) < d(xt, p)}|= |A(xt)|
and

|{xs | xt ∈A(xs)}|= |{xs | d(xt, p) < d(xs, p)}|= |A(xt)|.
Using these relationships, we can calculate the objective
function as follows:

F({p};X j) =
1
2

∑
xs∈X j

∑
xt∈X j\{xs}|d(xt ,p)−d(xs,p)|

=
1
2

∑
xs∈X j

∑
xt∈A(xs)

( d(xt, p) − d(xs, p) )

+
1
2

∑
xs∈X j

∑
xt∈A(xs)

( d(xs, p) − d(xt, p) )

=
1
2

∑
xt∈X j

|A(xt)|d(xt, p) − 1
2

∑
xs∈X j

|A(xs)|d(xs, p)

+
1
2

∑
xs∈X j

|A(xs)|d(xs, p) − 1
2

∑
xt∈X j

|A(xt)|d(xt, p)

=
∑

xs∈X j

|A(xs)|d(xs, p) −
∑

xs∈X j

|A(xs)|d(xs, p)

=
∑

xs∈X j

(
|X j|−1−2 |A(xs)|

)
d(xs, p) (11)

=
∑

xs∈X j

(
|X j|−2 ρ(xs)+1

)
d(xs, p) , (12)

where |A(xs)|= ρ(xs)−1. Consider a situation that two dif-
ferent objects has the same distance from p. We resolve ties
of the same distance arbitrarily since the values for the same
distances are mutually canceled by arbitrary order.

We extend our technique obtained in the case of one
pivot to the case of two pivots {p j0, p j1}. We begin with an
example in Fig. 2, where X= {x1, x2, x3, x4} and {p0, p1} are
given. Unlike the one-pivot case, the distance lower bound
matrix has double-layered structure as in Fig. 2 (a). We need
two operations of (1) selection of a larger value in the corre-
sponding entries in the {p0} layer (front) and the {p1} layer
(back) in Fig. 2 (a) and (2) elimination of the absolute op-
eration of the larger value. To perform the operations at
one time, we map the objects xs into the object vectors us

in the 2-dimensional pivot space where the object’s posi-
tion is ( d(xs, p0), d(xs, p1) ) shown in Fig. 2 (b). Consider

Fig. 2 Example of distance lower bound matrices when object set X =
{x1, x2, x3, x4} and two pivots of p0 and p1 are used. (a) Distance lower
bound matrix with the double-layer structure: the front and the back layer
are based on distances from p0 and p1, respectively. (b) 2-dimensional
pivot space where us = ( d(xs, p0), d(xs, p1 ). (c) Distance lower bound
matrix based on the object positions in the pivot space.

the first rows in Fig. 2 (a), that is, regard u1 as the origin in
Fig. 2 (b). Furthermore, we introduce two vectors e+ = (1, 1)
and e−= (1,−1) in the pivot space, and two lines through u1

and parallel to each of e+ and e−. The two lines divide the
pivot space into the four regions denoted by I, II, III, and IV
in Fig. 2 (b). From a geometric point of view, the absolute
operation is eliminated by using −d(x1, p0) and +d(x1, p0)
for a pair of ut and u1 when ut is in region I and IV, respec-
tively. Similarly, −d(x1, p1) and +d(x1, p1) for a pair of ut

and u1 when ut is in region II and III, respectively. In a naı̈ve
approach, we can make the distance lower bound matrix in
Fig. 2 (c) by applying this procedure to all the objects, and
calculate an objective function value by counting the fre-
quencies of each distance in the entries.

Instead, we calculate inner-products of us and each of
e+ and e−, and give to us two distinct rank orders of ρ(us; e+)
and ρ(us; e−) in descending order of us · e+ and us · e−, re-
spectively. For instance, ρ(u1, e+) = 3 and ρ(u1, e−) = 2.
ρ(u1, e+)−1 means the number of objects in region I and II
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while ρ(u1, e−)−1 means that in region I and III. Note that
we can obtain the object sets in those regions as well as the
number of the objects because we give the rank order to each
object. By set operations, we identify the number of the ob-
jects contained in each region and calculate the objective
function value.

Next, we explain the general case with reference to the
example. Similar to the case of the 1-dimensional pivot
space based onA(xs), we define B(xs) and C(xs) as follows:

B(xs) = {xt | us · e+ < ut · e+} , (13)

C(xs) = {xt | us · e− < ut · e−} , (14)

where xs and xt denote the same objects as us and ut. Note
that the conditions of xt contained in B(xs) and C(xs) are
also represented in the same order as follows.

d(xs, p j0)+d(xs, p j1) < d(xt, p j0)+d(xt, p j1)

d(xs, p j0)−d(xs, p j1) < d(xt, p j0)−d(xt, p j1)

Furthermore, |B(xs)| and |C(xs)| are represented by using the
rank orders ρ(us, e+) and ρ(us, e−) in descending order of the
inner-products of us · e+ and us · e− as follows.

|B(xs)| = ρ(us, e+) − 1 = ρ+(xs) − 1 (15)

|C(xs)| = ρ(us, e−) − 1 = ρ−(xs) − 1 , (16)

where ρ+(xs) and ρ−(xs) denote ρ(us, e+) and ρ(us, e−), re-
spectively. ρ+(xs) and ρ−(xs) are introduced so as to save
us from considering the pivot space. Actually, ρ+(xs) and
ρ−(xs) are obtained by sorting xs ∈X j in descending order of
d(xs, p j0)+d(xs, p j1) and d(xs, p j0)−d(xs, p j1), respectively.
Using B(xs) and C(xs), we can eliminate the absolute oper-
ation as follows:

max
p∈{p j0,p j1}

| d(xt, p) − d(xs, p) | =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+d(xt, p j0)−d(xs, p j0) xt ∈ B(xs) ∩ C(xs) (I) ,
+d(xt, p j1)−d(xs, p j1) xt ∈ B(xs) ∩ C(xs) (II) ,
−d(xt, p j1)+d(xs, p j1) xt ∈ B(xs) ∩ C(xs) (III) ,
−d(xt, p j0)+d(xs, p j0) xt ∈ B(xs) ∪ C(xs) (IV) .

In the calculation of F({p j0, p j1};X j), d(xs, p j0) appears as
subtractions |B(xs) ∩ C(xs)| times and as additions |X j|−1−
|B(xs)∪C(xs)| times while d(xs, p j1) appears as subtractions
|B(xs) ∩ C(xs)| times and as additions |B(xs) ∩ C(xs)| times.
From this fact, the objective function F(pj0, p j1;X j) is ex-
pressed as follows.

F(p j0, p j1;X j) =
1
2

∑
xs∈X j

{α0 · d(xs, p j0)+α1 · d(xs, p j1)} (17)

α0 =
(
|X j|−1−|B(xs) ∪ C(xs)|

)
− |B(xs) ∩ C(xs)|

α1 =
∣∣∣∣B(xs) ∩ C(xs)

∣∣∣∣ − |B(xs) ∩ C(xs)|
To simplify α0 and α1, we use the following relationship.

|B(xs) ∪ C(xs)|+|B(xs) ∩ C(xs)|

Algorithm 2 Pivot generation
1: Input: X j

2: Output: { p j0, p j1 }
3: Initialize { p j0, p j1 } with two objects randomly chosen from X j

4: Calculate d(xs, p j0) and d(xs, p j1) for all xs ∈X j

5: Sort xs in descending order of d(xs, p j0)+d(xs, p j1)
and give the rank order ρ+(xs) to xs

6: Sort xs in descending order of d(xs, p j0)−d(xs, p j1)
and give the rank order ρ−(xs) to xs

7: Calculate objective function F({p j0, p j1},X j)
using ρ+(xs) and ρ−(xs) in Eq. (20)

8: Update pivots {p j0, p j1} so as to maximize the objective function
in the same manner in [15], [16]

9: return { p j0, p j1 }

= |B(xs)|+|C(xs)| = ρ+(xs)+ρ−(xs) − 2 (18)∣∣∣∣B(xs) ∩ C(xs)
∣∣∣∣−∣∣∣B(xs) ∩ C(xs)

∣∣∣
= |B(xs)|−|C(xs)| = ρ+(xs)−ρ−(xs) (19)

Based on Eqs. (18) and (19), the objective function in
Eq. (17) is rewritten as

F(p j0, p j1;X j) =
1
2

∑
xs∈X j

{α0 · d(xs, p j0)+α1 · d(xs, p j1)} (20)

α0 = |X j| + 1 − ρ+(xs) − ρ−(xs)

α1 = ρ+(xs) − ρ−(xs) .

Thus, we can calculate the objective function in Eq. (6) or
Eq. (20) with the computational complexity of O(N log N)
by sorting the objects us in the 2-dimensional pivot space
with respect to the inner-products of (us ·e+) and (us ·e−). We
summarize our pivot generation algorithm in Algorithm 2.

4.2 Data Partitioning Algorithm

We show our data partitioning algorithm in Algorithm 3.
The algorithm produces a pair of subsets X2 j and X(2 j+1)

by alternately assigning objects in X j in ascending order of
distance from p j0 and p j1 at lines 5–11 after the initializa-
tion at line 3. At line 5, it is judged whether the order of the
object assignment is even or odd. If the assignment order
is even, the object x̂s in a tentative object set Y j closest to
p j0 is added to X2 j as shown at lines 6 and 7. Otherwise,
the object in Y j closest to p j1 is added to X(2 j+1) at lines 9
and 10. The object x̂s is removed fromY j as Y j \ {x̂s}. This
assignment makes the numbers of objects in X2 j and X(2 j+1)

almost equal. The data partitioning algorithm constructs a
CBT by repeating the foregoing procedure until Y j=∅, i.e.,
while k< |X j| at line 4.

In terms of the computational complexity, sorting the
objects according to each of d(xs, p j0) and d(xs, p j1) at each
i level is dominant. Then the computational complexity is
O(N log N) at each i level.

Now, we discuss the computational complexity at
Step M2 of PGM-CBT, which generates pivots at Step M2-
1 and partitions a set of objects at Step M2-2 for each
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Algorithm 3 Data partitioning
1: Input: X j, {p j0, p j1}, d(xs, p j0) and d(xs, p j1) for xs ∈X j

2: Output: X2 j, X(2 j+1)

3: Initialize with X2 j ← ∅, X(2 j+1) ← ∅, Y j ← X j, k ← 0.
4: while k < |X j | do
5: if 0 ≡ k (mod 2) then
6: x̂s ← arg min

xs∈Y j

{d(xs, p j0)}
7: X2 j ← X2 j ∪ {x̂s}
8: else
9: x̂s ← arg min

xs∈Y j

{d(xs, p j1)}
10: X(2 j+1) ← X(2 j+1) ∪ {x̂s}
11: end if
12: Y j ← Y j \ {x̂s}
13: k ← k+1
14: end while
15: return X2 j, X(2 j+1)

leaf node. Note that at the level i of the CBT, the num-
ber of nodes is 2i−1, and the number of assigned objects at
each node is |X j| = �|X| / 2i−1
 or |X j| = �|X| / 2i−1�. Since
2i−1|X j| ∼ |X| = N, the total computational complexity at
Steps G1-1 and G1-3 is O(T NH), and the complexity at
Step G1-2 is bounded by O(T N log N) shown in Sect. 4.1.
In contrast, the computational complexity of the data parti-
tioning algorithm is O(N log N) at each level of a CBT. By
using these, we can obtain the computational complexity of
the PGM-CBT algorithm as follows:

O( L T N (H + log N) ) . (21)

Thus, the PGM-CBT algorithm has the reasonably good
scalable properties that the computational complexity to N
is quasi-linear while those to L and H are linear.

4.3 Discussion on Computational Complexity

We discuss the computational complexity of our proposed
algorithm in comparison to those of the existing similarity
search algorithms based on pivots, in the case that each ob-
ject is expressed in an H-dimensional vector space. Since
every p ∈ X \ P is evaluated, the total complexity for
computing the right-hand-side of Eq. (5) becomes O(HN3).
Then the number of pivots, which is denoted as M = |P|, is
assumed to be much smaller than the number of objects, i.e.,
M � N. Thus, since this selection is repeated M times, the
computational complexity of this straightforward algorithm
is O(MHN3). On the other hand, the complexity for com-
puting the Eq. (6) becomes O(MHN2). Thus, the computa-
tional complexity of the existing algorithms in [15], [16] is
O(MT HN2) because these algorithms do not perform any
data partitioning, where T denotes the number of iterations
for obtaining the generalized pivots.

In contrast, the computational complexity of our pro-
posed algorithm is O( LT N(H + log N) ), where the level L
of the CBT is expressed by

L = log2(M + 2) − 1.

This indicates that our proposed algorithm has a good scal-
able property with respect to both the numbers of objects
and pivots, i.e., N and M. Here, this acceleration is brought
by using the two techniques: one for hierarchically parti-
tioning a data set into two subsets with almost equal sizes,
and the other for efficiently calculating the objective func-
tion in the case of only two pivots. Finally, we should em-
phasize that it is quite difficult for existing pivot based al-
gorithms to conduct experiments using large-scale data sets
like one containing a million of objects.

5. Experiments

We show the experimental data sets followed by our results
on both speed (or a computational cost) of the pivot gen-
eration and effectiveness of the generated pivots, which is
evaluated with similarity search performance. In our ex-
periments, all algorithms for pivot generation (or selection)
and similarity search were executed on a computer system
equipped with two Xeon E5-2697v2 2.7GHz CPUs and a
256GB main memory with a single thread within the mem-
ory capacity.

5.1 Data Sets

As a given data set for our experiments, the CoPhIR
(Content-based Photo Image Retrieval) test-collection [4],
[5] was employed. The CoPhIR contains the following five
MPEG-7 global descriptors extracted from each of more
than 100 million images: scalable color (SC for short), color
structure (CS), color layout (CL), edge histogram (EH), and
homogeneous texture (HT). Each of the descriptors is rep-
resented as a vector, which corresponds to a point in a Eu-
clidean space, and a distinct distance measure for each de-
scriptor is defined by the MPEG-7 group [19]. The numbers
of the elements of descriptors, each of which represents the
dimensionality; SC, CS, CL, EH, and HT are 64, 64, 12, 80,
and 62, respectively.

We, in particular, utilized the four descriptors of SC,
CS, EH and, HT descriptors. In terms of EH, instead of the
original 80-dimensional vector, we used a 150-dimensional
vector that includes elements related to global and semi-
global edge histograms as described in [21]. For each de-
scriptor, we prepared the five data sets with the different
sizes (the number of the data vectors), which were randomly
chosen from the given data set, 1×104 (referred to as 10K-
size), 5×104 (50K-size), 1×105 (100K-size), 5×105 (500K-
size), and 1×106 (1M-size). As the test set for the similarity
search performance evaluation, we chose 1×103 query ob-
jects randomly in the same manner as the data sets so that
the chosen query objects were not included in the data sets.

5.2 Speed of Pivot Generation

We compared our proposed algorithm PGM-CBT with two
variants that were designed to highlight the effects of the
two main parts of PGM-CBT, that is, the pivot generation
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and the data partitioning for constructing the complete bi-
nary tree (CBT) based on the rank order. One of the two
variants is an algorithm of which part corresponding to our
pivot generation is the pivot selection referred to as PSM
(Pivot Selection by Maximizing the objective function) in
Sect. 3, where a pivot is a valid data object. The remain-
ing parts of this variant, which contain the data partitioning,
are the same as our CBT. The other variant is an algorithm
of which part of the data partitioning divides a set of ob-
jects into two subsets based on a distance from two pivots
instead of the rank order. Namely, from a given pair of piv-
ots {p j0, p j1}, a set of objects X j is partitioned into a pair of
subsets X2 j and X(2 j+1) as

X2 j = {xs ∈X j | d(xs, p j0) ≤ d(xs, p j1)},
X(2 j+1) = X j \ X2 j .

This partitioning algorithm makes two subsets with
markedly different sizes if there is a large difference in the
object densities around the pivots. Here, since it is not so
effective to partition nodes containing small numbers of ob-
jects for the purpose of increasing the number of the dis-
carded objects |J(X, z, r;P)|, this algorithm first selects the
node containing the largest number of objects from leaf
nodes, and then successively produces an unbalanced tree by
partitioning the selected node. Thus, this selection and par-
tition strategy is likely to produce an unbalanced tree with a
higher level. We refer to the former and the latter as PSM-
CBT and PGM-DBT (DBT: Distance-based Binary Tree),
respectively.

We evaluated the performance of the algorithms by the
elapsed time, varying the number of pivots and the size of
the data sets. In each condition of the number of pivots and
the data set sizes, the five sets of pivots were generated by
each of PGM-CBT and PGM-DBT with distinct initial piv-
ots (data objects) under the convergence criterion for opti-
mization in Sect. 4.1. Note that the number of pivots |P|
directly relates to the level L of the CBT in PGM-CBT as
|P| =∑L

i=1 2i−1 × 2 = 2L+1 − 2. We used the 10 CBT levels
of 1, 2, · · · , 10. In contrast, we made the five sets of pivots
for PSM-CBT by repeating the following procedure by five
times. At each node of the CBT, we randomly chose 100
pairs of objects

{p[i]
j0, p

[i]
j1} (i = 1, 2, · · · , 100)

from the objects in the node X j as pivot candidates. Note
that in our preliminary experiments, the search perfor-
mances of the results obtained by using more than 100 pairs
of objects were almost comparable to those using 100 pairs,
as also reported in previous work [7]. We next selected as
the pivots the object pair {p̂ j0, p̂ j1} expressed by

{p̂ j0, p̂ j1} = arg max
{p[i]

j0 ,p
[i]
j1}

F({p[i]
j0, p

[i]
j1};X j) .

The average elapsed time was calculated through the five
trials of the pivot-set generation.

Fig. 3 Elapsed time required by the proposed PGM-CBT and the vari-
ants PSM-CBT and PGM-DBT. (a) With the number of pivots (depicted on
the logarithmic scale) in the 1M-size SC data set, and (b) With size of the
SC data sets when the 2046 pivots for the 10-level CBT were generated.

Figures 3 (a) and (b) show the average elapsed time re-
quired by the proposed PGM-CBT and the variants PSM-
CBT and PGM-DBT. Although we show only the SC
results, we observed the similar tendencies as those in
Figs. 3 (a) and (b), in the other settings such as the other
descriptors and the smaller data sets. Figure 3 (a) shows that
PGM-CBT achieved the best performance among the algo-
rithms when they made the identical number of pivots in the
1M-size SC data set. In particular, when the 2046 pivots
corresponding to the 10 level of the CBT were generated,
PGM-CBT operated almost 1.3 times faster than PST-CBT.
By contrast, PGM-DBT spent more elapsed time since it re-
quired a lot of distance calculations between the pivots and
many data objects contained at the nodes in the constructed
unbalanced binary tree. Figure 3 (b) shows the scalability of
the algorithms with data set size under the condition that the
2046 pivots were generated or selected, which correspond
to the number of pivots used in the 10-level CBT. The aver-
age elapsed time of PGM-CBT is almost linear with respect
to the data set size of the range from 10K-size to 1M-size.
Finally, as mentioned earlier, the numbers of iterations until
convergence required by the pivot generation algorithm de-
scribed in Sect. 4.1 were much less than 100. For instance,
in the cases of generating the first pairs of pivots for the 1M-
size data sets, the average numbers of iterations over 5 trials
were 12.0, 18.2, 14.6, and 17.6 seconds for CS, EH, HT, and
SC in this order.

Thus the proposed PGM-CBT generated the identical
number of the pivots faster than the others, and it was ap-
plicable to a large-scale data set due to its better scalability
regarding the data size.

5.3 Effectiveness of Generated Pivots

Our proposed PGM-CBT and its variants of PSM-CBT and
PGM-DBT generate or select pivots that maximize the ob-
jective function in Eq. (6), that is, maximize the sum of the
lower bounds on distances of all pairs of objects in a given
data set. We evaluated the practical effectiveness of the ob-
tained pivots with similarity search performance. For com-
parison, we prepared other two variants designed focusing
on the usage of pivots related to the data structure like our
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CBT. One keeps our pivot generation algorithm applied to
an object set in a current node, but divides a set into two
subsets uniformly at random without using the relationship
between an object and pivots, such that the difference of the
size of the divided subsets is at most one. This variant uses
the pivots only for a search stage. We refer the variant to as
PGM-RCBT (RCBT: Random CBT). The other variant was
introduced as a baseline algorithm without any data struc-
ture like trees. It employs a specified number of pivots cho-
sen from objects in a given data set X uniformly at random.
We refer this variant to as RPS (Random Pivot Selection al-
gorithm). The number of the pivots was set at (2L+1−2) as
many as that of PGM-CBT where L=1, 2, · · · , 10.

We evaluated the similarity search performance by the
average number of required distance calculations Cal(r),
which is expressed by

Cal(r) = |X| − 1
|Z|
∑
z∈Z
| J(X, z, r;P) | + |P| , (22)

where Z denotes a set of the query objects, r the range dis-
tance given for the range query problem. Note that the sec-
ond and third terms in Eq. (22) mean the number of the un-
necessary distance calculations between the query and the
objects and the number of the distance calculations between
the query and the pivots, respectively. We performed the ex-
act similarity search in a pivot space as shown in [10], [17].
Owing to this scheme, we need no data structure for the eval-
uation. An object in the original space is mapped into a pivot
space, i.e., a |P|-dimensional Euclidean space as a vector
each of whose elements is a distance from a pivot. In the
pivot space, the discarded objects exist outside the hyper-
cube of which center is the query and side length is 2r, that
is, D(x, z;P)> r in the original space. The range distance r
was set at the average distance to the 10-th closest object to
each of the 100 query objects z, i.e., |Z| = 100. We deter-
mined the range distance r by our preliminary experiments,
such as 950, 460, 260, and 190 for CS, HT, EH, and SC,
respectively. In our experiments with the different r we also
observed the similar characteristics to those in Fig. 4.

Figures 4 (a)–(d) show that the proposed PGM-CBT
achieved the best performance for all the descriptors with
different parameter settings. Note that the figures are illus-
trated in the logarithmic scale. For any data size, the number
of the distance calculations of PGM-CBT had the minimum
at a certain number of |P| around a range between 27 and
210, where recall the level L of the CBT is expressed by
L = log2(|P| + 2) − 1. Figure 4 (d) demonstrates this fact.
This is due to the balance of the effects of the second and
the third term in Eq. (22).

We shed light on our proposed PGM-CBT by compar-
ison with the others. PGM-DBT provided the comparable
performance, in particular, for SC descriptors unlike those
for the other descriptors. This relates to the level of the
leaf nodes. In case that L = 10 and N = 106, the average
levels of PGM-DBT for CS, HT, EH, and SC were 101.96,
226.26, 468.00, and 40.30 while the level of PGM-CBT was

Fig. 4 Number of distance calculations with the number of pivots on the
logarithmic-logarithmic scale for the following descriptors: (a) Scalable
color (SC), (b) Color structure (CS), (c) Edge histogram (EH), and (d) Ho-
mogeneous texture (HT). The results on the 1M-size data sets are shown
for SC and CS while those on the 100K-size data sets for EH and HT.

exactly 10. These results indicate that the pivot generation
and the data partitioning algorithm that lead to a more bal-
anced binary tree substantially contributes to improve the
search performance. Compared with the baseline algorithm
RPS, PSM-CBT showed the better performance in the small
|P| region for all the descriptors, but with the increase in |P|,
PSM-CBT lost the competitive edge. The performance dif-
ference of PGM-CBT and PSM-CBT to the basis of RPS
suggests that the pivot generation rather than the selection
plays the important role to achieve the better search perfor-
mance. PGM-RCBT showed the quite poor performance
especially in the large |P| region. Thus combining the pivot
generation with the CBT is essential to high-performance
exact similarity search.

6. Conclusion

We proposed the pivot-set generation algorithm called as
PGM-CBT to improve exact similarity search performance
for large-scale data sets. Compared with the other algo-
rithms including variants of PGM-CBT and the baseline al-
gorithm, PGM-CBT outperformed them in terms of both the
speed of pivot generation and the effectiveness of generated
pivots evaluated with similarity search performance in our
experiments with the large-scale real image data sets. PGM-
CBT efficiently generated a set of pivots with newly intro-
duced techniques of the data partitioning with a complete bi-
nary tree (CBT) and the fast pivot generation algorithm that
maximizes the specified objective function (PGM). The gen-
erated pivot set contributed to the acceleration of the exact
similarity search by providing the tight lower bounds on dis-
tances between a query object and the data objects. Owing
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to the lower bounds, the exact similarity search algorithm
effectively avoided unnecessary distance calculations.
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