
2526
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

PAPER

Efficient Similarity Search with a Pivot-Based Complete Binary
Tree

Yuki YAMAGISHI†a), Nonmember, Kazuo AOYAMA††, Kazumi SAITO†, and Tetsuo IKEDA†, Members

SUMMARY This paper presents an efficient similarity search method
utilizing as an index a complete binary tree (CBT) based on optimized piv-
ots for a large-scale and high-dimensional data set. A similarity search
method, in general, requires high-speed performance on both index con-
struction off-line and similarity search itself online. To fulfill the require-
ment, we introduce novel techniques into an index construction and a sim-
ilarity search algorithm in the proposed method for a range query. The
index construction algorithm recursively employs the following two main
functions, resulting in a CBT index. One is a pivot generation function that
obtains one effective pivot at each node by efficiently maximizing a defined
objective function. The other is a node bisection function that partitions
a set of objects at a node into two almost equal-sized subsets based on
the optimized pivot. The similarity search algorithm employs a three-stage
process that narrows down candidate objects within a given range by prun-
ing unnecessary branches and filtering objects in each stage. Experimental
results on one million real image data set with high dimensionality demon-
strate that the proposed method finds an exact solution for a range query at
around one-quarter to half of the computational cost of one of the state-of-
the-art methods, by using a CBT index constructed off-line at a reasonable
computational cost.
key words: algorithm, similarity search, index, tree, pivot

1. Introduction

Efficient similarity search has attracted a lot of attentions
as a fundamental tool in various scientific fields [1]. De-
veloping similarity search methods has become a more im-
portant challenge along with the increasing volume of data
which we deal with [2], [3]. From a perspective of resul-
tant search accuracy, similarity search methods are classi-
fied into three main categories of exact, approximate, and
heuristic search. Lately, to solve similarity search problems
for large-scale data sets, approximate search methods that
guarantee some resultant accuracy have been studied with
considerable effort, which contain those based on a tree-type
index [4] and locality-sensitive hashing (LSH) family [5]–
[7]. In contrast, exact methods have received interest for a
long time in the application domains where a data set has
relatively low intrinsic dimensionality [3]. Their accelera-
tion is also required for the accuracy evaluation of the ap-
proximate and the heuristic methods since an exact search
result is necessary as the ground truth.

Manuscript received March 22, 2017.
Manuscript revised June 6, 2017.
Manuscript publicized July 4, 2017.
†The authors are with University of Shizuoka, Shizuoka-shi,

422–8526 Japan.
††The author is with NTT Communication Science Laborato-

ries, Kyoto-fu, 619–0237 Japan.
a) E-mail: yamagissy@gmail.com

DOI: 10.1587/transinf.2017EDP7100

We consider the acceleration of the exact similarity
search methods for a range query as a subject, which is the
most basic type of queries. A popular acceleration tech-
nique for improving a naı̈ve exact search algorithm such as
a linear-scan (brute-force) algorithm is to exploit an index
built off-line from a given data set. A search method with
the index saves distance calculations between a given query
object and data objects based on the triangle inequality in a
metric space. Most of these employ distinguished objects or
fixed reference points called pivots. The pivots are used in
various types of indexes such as a simple pivot-object dis-
tance table [8] or tree data structures [9]–[13]. A tree-based
method, which has been widely used, utilizes the pivots as
centers for data clustering or split points for data partition-
ing, and as base points in the triangle inequality for filtering
out data objects.

We focus on a search method with a tree-type index
employing pivots. In a tree-index construction phase, a
pivot selection and a partition method are important for a
better data structure. Pivots for a general metric space are
determined from data objects by simply choosing them at
random [9], [13], selecting them according to a rule [10]–
[12], [14], [15], and maximizing a defined objective func-
tion [11], [16]. Of these, the incremental selection in
[11], [16] sequentially adopts an object as a pivot one by
one. The others select a set of pivots at once in the initial
stage and form Voronoi diagrams (or Dirichlet domains). In
a search phase, those methods basically proceed in a depth-
first way, pruning branches and filtering objects out of a
given range measured from a query object with various tech-
niques [2].

Suppose that a subject space is not a general metric
space but a Euclidean space. That is, an object is represented
by a feature vector. We often address a search problem in
this situation, for instance, where a given data set consists
of real images and documents. Then a better pivot can be
generated at any point in a Euclidean space by optimization.
In order to maximize the effects of such generated pivots,
we challenge to rebuild a similarity search method.

In this paper, we present an efficient exact similarity
search method for a large-scale and high-dimensional data
set in a Euclidean space. The proposed method consists
of an index construction and a similarity search algorithm.
The index construction algorithm recursively employs two
main functions of a pivot generation and a node bisection
function at a node. The algorithm makes a complete bi-
nary tree (CBT) grow level by level until the level reaches

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

YAMAGISHI et al.: EFFICIENT SIMILARITY SEARCH WITH A PIVOT-BASED COMPLETE BINARY TREE
2527

Table 1 Notation

Symbol Description and Definitions

N Number of data objects, N= |X|
r Range for range query
H Dimensionality of feature vector of object
L Maximum level of complete binary tree index

L̃(r;X)
CBT level estimated for early termination
in search with r

U Number of objects in unpruned nodes
Yi Number of unbounded objects at level i
i∗ Level at which Yi is minimum

Z Set of objects; {q}, X ⊂ Z
X Set of given data objects, xh ∈X, h=1, 2, · · · ,N
Q Set of Query objects for search, q ∈ Q
P Set of pivots, p j ∈ P
T Complete binary tree with level L
v j Node of CBT at level i, 2(i−1) ≤ j < 2i

X j Set of objects included in v j, N j= |X j |

B j
Range of distance from p j to region within r from q,[

max{0, d(q, p j)−r}, d(q, p j)+r
]

R2 j (or R(2 j+1))
Range of distances of objects in v2 j (or v(2 j+1))
measured from its parent pivot p j

Ṽ j Set of unpruned child nodes at node v j

Vi Set of unpruned nodes at level i
Si Set of unbounded objects at level i
S Set of unbounded objects at level i∗

W Set of unfiltered objects, where objects’ exact
distances to q are finally calculated

X(q; r) Set of objects within r from q: Search result

d(xh, p j)
Function that returns a distance between
object xh and pivot p j

D(xh, q;P)
Function that returns a lower-bound distance
between object xh and query q using pivots P

F(P;X)
Function that returns sum of lower-bound
distances of objects in X by P

PGM (X j)
Function that returns optimized pivot p j

for X j by maximizing F({p j};X j)

NBS (v j)
Function that returns a pair of subsets
of X j, that is, X2 j and X(2 j+1)

δ j(h)
Function that returns the h-th smallest
object-pivot distance in v j

CF j(δ)
Function that returns the number of objects in v j

with the distance from pivot p j not larger than δ

C(q, r;X, L)
Function that returns the search cost for query q
and range r under given X and L

AC(L)
Function that returns the average search cost
for level L

a predefined maximum level. The pivot generation func-
tion obtains an effective pivot by efficiently maximizing an
objective function with a novel technique, where the objec-
tive function is similar to that in [16] and has been already
used in a Euclidean space as described in [17], [18]. The
novel technique achieves the less computational complexity
of O(N log N) for N, where N denotes the number of data
objects. The node bisection function partitions objects in
a node into two subsets with almost the same size, by us-
ing a median point based on a distance from the optimized
pivot. The search algorithm exploits a three-stage process

that narrows down candidate objects within a range mea-
sured from a query object by pruning unnecessary branches
and filtering objects in the stages. Besides, we newly in-
troduce an early termination scheme that determines an ap-
propriate search level in the CBT index built off-line before
the search. These algorithms with novel techniques allow
the proposed method to efficiently perform exact similarity
search.

We demonstrate in experimental results on a data set
of one million real images with high dimensionality in the
CoPhIR test-collection [19] that the proposed method per-
forms exact similarity search for a range query at around
one-quarter to half of the computational costs of a state-of-
the-art method called M-Index [13], by using a CBT index
constructed in a reasonable computational cost.

The remainder of this paper is organized as follows.
Section 2 briefly reviews related work. Section 3 pro-
vides background knowledge for understanding our pro-
posed method. Section 4 explains the proposed method in
detail. Section 5 shows the experimental settings and reports
our results. The final section offers our conclusions. We also
summarize the notation in Table 1 for easy reference.

2. Related Work

This section reviews two related topics: pivot generation
and data partitioning algorithms for index construction, and
search methods with a pivot-based tree index.

2.1 Pivot Generation and Data Partitioning Algorithms

An advantage of the index construction algorithm in our pro-
posed method is a fast pivot optimization technique. The
existing pivot selection and generation algorithms are stated
as regards their objective functions and computational costs.

The objective functions have been designed depending
on their usage and hypotheses [11], [20]. A hypothesis is
that better pivots are far away from each other [8], [10]. A
simple algorithm based on the hypothesis sequentially se-
lects pivot p̂ from a set of data objectsX one by one with the
same way as ε-net construction in [15], [21], as expressed by

p̂ = arg max
xh∈X\P

{min
p∈P
{d(xh, p)}} and P = P ∪ {p̂} . (1)

where P denotes a set of the selected pivots and d(xh, p) a
distance between xh and p. Another sequential algorithm
selects pivot p̂ in the similar manner to that in Eq. (1) as
follows [8].

p̂ = arg max
xh∈X\P

{∑p∈P d(xh, p) } . (2)

The following algorithm is based on another hypothe-
sis of a query object appears with the identical distribution
to that of the data objects. The algorithm incrementally se-
lects pivot p̂ that maximizes the sum of the lower bounds
on distances between data objects [16] as shown in Eqs. (3)

2528
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

and (4). The distance lower bound is derived by the trian-
gle inequality applied to the triangle with the pivot and two
objects.

p̂ = arg max
p∈X\P

{∑x,y∈X\(P∪{p}) D(x, y;P ∪ {p}) } , (3)

D(x, y;P ∪ {p}) = max
p′∈P∪{p}

(| d(x, p′) − d(y, p′) |) , (4)

where P = ∅ at the initial state, and after p̂ is obtained by
Eq. (3), P is updated as P←P ∪ {p̂}.

Since this objective function is valid for some appli-
cations, it has been utilized in a Euclidean space [17], [18],
where a pivot is not selected from the data objects but gener-
ated as a point in the Euclidean space. Algorithms with ob-
jective function F(P;X) in Eq. (5) similar to that in Eq. (3)
generate a set of pivots P with some iterative methods for
a Euclidean distance (L2 norm) [17] and for a Manhattan
distance (L1 norm) [18]. These algorithms are collectively
referred to as PGM (Pivot Generation by Maximizing the
objective function).

F(P;X) =
∑N−1

i=1
∑N

j=i+1 D(xi, x j;P) , (5)

D(xi, x j;P) = max
p∈P

(
| d(xi, p) − d(x j, p) |

)
. (6)

However, the foregoing algorithm requires a high com-
putational cost of O(N2) for each iteration. This requirement
makes it difficult to apply the algorithm to a large-scale data
set. Thus to deal with a large-scale data set, we have to
improve a pivot generation algorithm with respect to a com-
putational cost.

Next, we briefly overview data partitioning algorithms
for constructing a tree index. We, in particular, pick up
four [9], [10], [13], [14] from many such algorithms and
compare them in terms of a pivot-selection stage, a parti-
tioning criterion, and the number of partitions.

A metric tree with ball partitioning (decomposition) [9]
randomly chooses a pivot from objects at each node, and
partitions a set of the other objects into two subsets with
the criterion of whether an object is inside a median object
based on a distance measured from the pivot or not. The
metric tree recursively performs this procedure. A simple
vantage point tree (vp-tree) [14] uses the same way as the
metric tree except a pivot selection algorithm. Both the al-
gorithms commonly build a complete binary tree by the re-
cursive bisection at a median object.

By contrast, a GNAT (geometric near-neighbor access
tree) [10] differs from the foregoing algorithms in a parti-
tioning criterion and the number of partitions (or branches).
This exploits |P| pivots and assigns each object to the closest
pivot, i.e., builds a hierarchical Dirichlet domain. Like the
GNAT, M-Index [13] assigns each object to a pivot closest to
it, but differs in its pivot-selection stage, i.e., chooses a set
of pivots at the initial stage at once and recursively assigns
an object to one of its unassigned pivots. These algorithms
may build an unbalanced tree with the different number of
branches. Our index construction algorithm adopts the same
strategy as the metric tree and the vp-tree.

2.2 Search Methods with a Pivot-Based Tree Index

Similarity search methods with a tree index constructed by
using pivots reduce a search cost with various techniques [2]
that avoid calculating costly exact distances between a given
query object and data objects. Most methods exploit the
triangle inequality that is applied to the triangle of pivot p,
query object q, and data object x.

The techniques for a range query are categorized into
two main types. One is to prune branches connected to child
nodes in which all the objects are out of range r from query
object q, i.e., to delete the child nodes and their descendants
at once from candidate objects for exact distance calcula-
tions to the query. In a simple case of d(p, xmin) < r where
xmin denotes an object closest to pivot p in a node, a node
deleted by using p satisfies d(p, xmax) < d(p, q)− r where
xmax denotes an object farthest from p. The other technique
is to filter out an object individually, whose lower bound on
a distance to q is larger than range r. Given a set of pivots
P, the filtering object x satisfies D(q, x;P) > r.

Each of the four search methods described in Sect. 2.1
traverses its tree index with a depth-first manner from the
root to a leaf node. In the traverse, the methods determine
whether to visit child nodes from the current node or not to
do, based on the above-mentioned node pruning condition.
M-Index [13] performs to filter out an object individually
according to the foregoing condition in addition to pruning
unnecessary branches. Our search algorithm also employs
the two main techniques for high search efficiency.

3. Preliminaries: Similarity Search

Let us consider an object space consisting of a set of ob-
jects denoted by Z and distance d(xi, x j) that is defined for
any pair of objects xi, x j ∈ Z. Let X and q denote a set of
given data objects and a query object, respectively. Then
X = {x1, x2, · · · , xh, · · · , xN} ⊂ Z, and q ∈ Z. A range
query that we deal with is defined as a task of finding a
set X(q; r) of all the objects xh satisfying d(xh, q) ≤ r, i.e.,
X(q; r) = {xh ∈ X | d(q, xh) ≤ r} when X, q, and a range
distance r measured from q are given.

Figure 1 shows a diagram of a complete binary tree
(CBT). We represent a depth (or height) of the CBT as a
level, and set the root level and the leaf level (maximum
level) at 1 and L, respectively. Then a node at level i (1≤ i≤

Fig. 1 Diagram of complete binary tree index

YAMAGISHI et al.: EFFICIENT SIMILARITY SEARCH WITH A PIVOT-BASED COMPLETE BINARY TREE
2529

L) is expressed by v j, where 2(i−1) ≤ j < 2i. That is, there
are 2(i−1) nodes at level i. If node v j is a parent node, nodes
v2 j and v2 j+1 are a left and a right child node, respectively.
Each node may contain information related to a subset of
data objects X j, one pivot p j, and object-pivot distances (or
related information). Using these background, we explain
our proposed method in the following section.

4. Proposed Algorithm

The proposed method consists of an index construction and
a similarity search algorithm. Given a set of objects repre-
sented by feature vectors in a metric space and a predefined
maximum level of a complete binary tree (CBT), the index
algorithm builds the CBT as a search index off-line by gen-
erating pivots. When a query object and a range for search
are given, i.e., a range query online, the similarity search
algorithm efficiently finds a set of objects within the range
from the query object. Below, we describe the details of
these algorithms.

4.1 Index Construction Algorithm

We first show the overview of our index construction algo-
rithm in Algorithm 1, which produces CBT T for given
object set X and maximum level parameter L. Our proposed
algorithm incrementally makes the CBT grow from the root
level to the leaf level. In an initial state, object set X1 in
the root v1 is set up by X containing the whole objects, and
pivot set P initialized by ∅. The following two steps are ex-
ecuted at each node v j at level i. In the first step, pivot p j is
generated by the pivot generation function PGM(X j) shown
at line 6, and is added into pivot set P. In the second step,
X j in node v j is partitioned into two subsets with almost the
same size, X2 j and X(2 j+1), by the node bisection function
NBS(v j) shown at line 9. After the bisection of v j at level i,
these steps are applied to nodes at the next level i+1 while
i ≤ L. We detail the PGM function and the NBS function in
Sects. 4.1.1 and 4.1.2, respectively.

Algorithm 1 Index construction algorithm
1: Input: X, L
2: Output: T
3: X1 ← X, P ← ∅, i← 1 � Initialization
4: while i ≤ L do
5: for all j such that 2 (i−1) ≤ j < 2 i do
6: p j ← PGM(X j), P ← P ∪ {p j}
7: v j ← (X j, p j, {d(xh, p j) | xh ∈X j})
8: if i < L then
9: {X2 j,X(2 j+1)} ← NBS(v j)

10: else
11: NBS(v j)
12: end if
13: end for
14: i← i + 1
15: end while
16: return T

4.1.1 Pivot Generation

We show our pivot generation function PGM(X j) in Algo-
rithm 2, which produces pivot p j using a set of objects X j

in node v j. The PGM function chooses object xh ∈ X j as
the initial pivot p j uniformly at random. Until convergence,
the steps at lines 5–9 are iterated. In the step at line 7, we
use a technique that efficiently computes objective function
F({p j};X j) for one pivot p j, which is the same function as
that in Eq. (5), by using the sorted distances at line 6. The
computational cost of the objective function is generally
O(N 2

j), where Nj = |X j|. The new technique, however, re-
duces the cost to that for sorting Nj, i.e., O(Nj log Nj). Now,
we assume h ∈ {1, · · · ,Nj} without loss of generality. Sup-
pose that d(x j(1), p j) ≤ d(x j(2), p j) ≤ · · · ≤ d(x j(h), p j) ≤ · · · ≤
d(x j(N j), p j), where { j(1), · · · , j(Nj)} = {1, · · · ,Nj}. Then,
without using any absolute operation, we can obtain the ob-
jective function value as follows:

F({p j};X j) =
N j−1∑

h=1

N j∑

h′=h+1

D(xh′ , xh; {p j})

=

N j−1∑

h=1

N j∑

h′=h+1

∣∣∣d(xh′ , p j)−d(xh, p j)
∣∣∣

=

N j−1∑

h=1

N j∑

h′=h+1

(
d(x j(h′), p j)−d(x j(h), p j)

)

=

N j∑

h=1

(2h − 1 − Nj) · d(x j(h), p j) . (7)

From Eq. (7), given the sorted distances, the computational
complexity of calculating the objective function itself is lin-
ear to Nj. In the steps at lines 8–9, the formula for obtaining
p′j depends on a given metric space [17], [18]. In the case of
the L1 distance employed in our experiments, we can calcu-
late the distance of d(x j(h), p j) in Eq. (7) as the sum of dis-
tances with respect to dimensions,

∑H
η=1 |x j(h),η−p j,η|, where

xh,η and p j,η denote the η-th elements of the H-dimensional
feature vectors of xh and p j. The objective function is
rewritten as

F({p j};X j) =
H∑

η=1

N j∑

h=1

(2h − 1 − Nj) |x j(h),η−p j,η| . (8)

We can maximize F({p j};X j) in Eq. (8) by maximizing a

piecewise linear function fη(p j,η)=
∑N j

h=1(2h−1−Nj) |x j(h),η−
p j,η| with respect to p j,η. The piecewise linear function
fη(p j,η) with at most Nj change points can be maximized by
a direct search method with the computational cost of O(Nj)
as shown in [18]. By performing the direct search on each
dimension, we can find p j that maximizes F({p j};X j), i.e.,
p′j. Thus, we update p j to p′j with the computational cost of
O(Nj · H).

Next, we show the computational complexity of the
pivot generation algorithm in PGM function. Consider that

2530
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

Algorithm 2 Pivot generation function: PGM(X j)
1: Input: X j

2: Output: p j

3: p j ← xh � Randomly chosen xh ∈ X j

4: while not converge do
5: Calculate distance d(xh, p j) for each xh ∈ X j

6: {d(x j(h), p j)}←Sort {d(xh, p j)} (ascending order)
7: Compute objective function F({p j};X j)
8: Update p j to p′j so as to maximize F({p j};X j)
9: p j ← p′j

10: end while
11: return p j

a given metric space is an H-dimensional vector space with
the L1 distance. The complexity at line 5 in Algorithm 2 is
O(Nj · H), and that at line 6 is O(Nj log Nj). As described
before, the complexity from line 7 to line 8 is O(Nj · H) for
each iteration. The computational complexity of lines 5–9
for one iteration is O(Nj · (H + log Nj)). In our experiments,
the number of the iterations was quite small compared with
Nj and H, in fact, that was less than 100 in most trials. For a
convergence criterion in our experiments, we employed that
F({p′j};X j)/F({p j};X j)< (1 + ε), where p′j denotes the up-
dated pivot, and we used ε=10−8. For this reason, we elim-
inate it from the complexity although the number of itera-
tions until the pivot generation algorithm converges may be
included in the complexity. Therefore, we obtain the com-
putational complexity of the pivot generation algorithm for
p j in v j as follows:

O
(
Nj · (H + log Nj)

)
.

4.1.2 Node Bisection

The NBS function in Algorithm 3 performs the bisection
based on a median point in terms of the sorted distances of
objects x j(h) ∈X j from pivot p j in v j, where h of the median
point is �Nj/2�. Consequently, the NBS function generates
two subsets with almost the same size, X2 j and X(2 j+1), con-
tained in two child nodes, v2 j and v(2 j+1), respectively. This
scheme is similar to the ball partitioning [9] and the vantage
point tree (vp-tree) [14].

In this function, we prepare for the similarity search
online, as shown at lines with symbol [∗] in Algorithm 3.
To this end, for arbitrary value δ, we introduce a cumulative
frequency function CF j(δ) that returns the number of objects
whose distances from pivot p j are less than or equal to some
value δ, i.e.,

CF j(δ) = | {x j(h) ∈ X j | d(x j(h), p j) ≤ δ} | . (9)

Note that the CF function is a monotonically increasing
function whose value is only the integer in [0,Nj] for any
δ, i.e., by setting δ j(h) = d(x j(h), p j), we obtain CF j(δ)=0 if
δ < δ j(1) and CF j(δ)=Nj if δ > δ j(Nj).

In our experiments, we treated a metric space where
an object and a pivot represented by integer vectors and a

Algorithm 3 Node bisection function: NBS(v j)
1: Input: v j= (X j, p j, {d(x j(h), p j) | x j(h) ∈X j})
2: Output: {X2 j,X(2 j+1),R2 j,R(2 j+1)} or void
3: [∗] Create look-up table of CF j(δ) � δ∈ [δ j(1), δ j(N j)]
4: if j < 2(L−1) then
5: X2 j ← {x j(1), x j(2), · · · , x j(�N j/2�)}
6: X(2 j+1) ← {x j(�N j/2�+1), · · · , x j(N j)}
7: [∗]R2 j ← [δ j(1), δ j(�N j/2�)]
8: [∗]R(2 j+1) ← [δ j(�N j/2� + 1), δ j(N j)]
9: return {X2 j,X(2 j+1),R2 j,R(2 j+1)}

10: end if

distance is measured by L1 norm, and then all the object-
pivot distances are originally integer. In this case, δ j(h) for
the CF function is basically an integer. Then we imple-
ment the CF function as a look-up table from the domain
of [δ j(1), δ j(Nj)] to the range of 1, 2, · · · ,Nj. We can also
apply this scheme to a general metric space without loss of
generality, by using a hash function that transforms all the
object-pivot distances to integers so that their orders are not
reversed. For instance, a simple transformation is imple-
mented by multiplying the distances by a large integer and
truncating them at the decimal point. Hereinafter, we as-
sume that the distances are transformed to integers.

The look-up table of the CF function allows us to im-
mediately identify objects in node v j within a given range of
distances. Suppose that general range R= [δ1, δ2], i.e., the
domain of CF function, is given. Then we can extract a set
of objects in node v j within R as

X j(R)=
{
x j((CFj(δ1−1))+1), · · · , x j(CFj(δ2))

}
, (10)

and the number of the objects as

| X j(R) | = CF j(δ2) − CF j(δ1−1) . (11)

For our purpose of node pruning, we define the following
distance ranges at nodes v2 j and v(2 j+1) measured from the
pivot p j in their parent node v j.

R2 j = [δ j(1), δ j(�Nj/2�)], (12)

R(2 j+1) = [δ j(�Nj/2� + 1), δ j(Nj)]. (13)

The computational complexity of the NBS algorithm at
node v j coincides with that for generating the look-up table
of the CF function at line 3 in Algorithm 3. Suppose that
this procedure is implemented as follows.

1. Initialize CF function values of all integers δ.
CF j(δ)←0 for δ j(1) − 1 ≤ δ ≤ δ j(Nj).

2. Initialize CF function values of integers δ j(h) corre-
sponding to d(x j(h), p j).
CF j(δ j(h))←CF j(δ j(h))+1 for 1≤ h ≤Nj.

3. Set CF function values of all the integers δ one by one
in ascending order of δ as follows.
CF j(δ)←CF j(δ)+CF j(δ − 1)
from δ=δ j(1) to δ=δ j(Nj).

Then the complexity at node v j is O(Nj+Mj), where Mj =

δ j(Nj) − δ j(1) and that at level i is approximated by O(N+

YAMAGISHI et al.: EFFICIENT SIMILARITY SEARCH WITH A PIVOT-BASED COMPLETE BINARY TREE
2531

Algorithm 4 Similarity search algorithm
1: Input: T , X, q, r, L � L← L̃(r;X)
2: Output: X(q; r) ⊂ X
3: V1(q; r)← {v1},Vi(q; r)← ∅ for 1 < i ≤ L
4: Yi = 0 for 1 ≤ i ≤ L
5: i← 1
6: while i ≤ L do � First process
7: for all v j ∈ Vi do
8: Calculate d(q, p j) and B j = [b(j,1), b(j,2)]
9: Update Yi ← Yi+(CF j(b(j,2)) − CF j(b(j,1)))

10: if i < L then
11: Ṽ j ← {v2 j+a | B j ∩ R(2 j+a) � ∅, a ∈ {0, 1}}
12: UpdateV(i+1) ←V(i+1) ∪ Ṽ j

13: end if
14: end for
15: i← i + 1
16: end while
17: i∗ = arg min1≤i≤L Yi � Second process
18: S = ⋃v j∈Vi∗ X j(B j)
19: W← {xh ∈S | D (xh, q;P(xh)) ≤ r} � Third process
20: return X(q; r)← {xh ∈ W | d(xh, q) ≤ r}

M), where M = δ1(N) − δ1(1). In our settings M � N, the
complexity is represented by O(N). In fact, M was much
smaller than N in our experiments.

We discuss the total computational complexity of our
index construction algorithm. The main parts are the PGM
function and the NBS function. The PGM function requires
O(Nj · (H+log Nj)) for nodes v j, (2 (i−1) ≤ j < 2 i) at level i,
(1≤ i ≤L). Let us focus on the dominant factor such as Nj·H
and Nj log Nj. Level i contains 2 (i−1) nodes and each node
has X j with around N/2 (i−1) size. Then

∑L
i=1
∑2 i−1

j=2 (i−1) (Nj ·
H)=L·N·H. Similarly,

∑L
i=1
∑2 i−1

j=2 (i−1) (Nj log Nj)∼L ·N log N.
In contrast, the NBS function at each level requires O(N)
under a natural situation. Then the computational complex-
ity of the NBS algorithm is O(L · N). Therefore, we obtain
the total computational complexity of the index construction
algorithm as follows:

O(L · N · (H + log N)) . (14)

Thus, our index construction algorithm has the reasonably
good scalable properties that the computational complexity
to N is quasi-linear while those to L and H are linear.

4.2 Similarity Search Algorithm

We propose the similarity search algorithm in Algorithm 4,
which efficiently finds a subset of given objects, X(q; r)⊂X,
within the range r measured from query object q, using the
CBT T constructed from X. To increase the computational
efficiency, we newly introduce to the algorithm both a three-
stage process and an early termination scheme. The three-
stage process consists of branch pruning, level selection, and
object filtering, and narrows down candidate objects within
the range.

We first define symbols and terms for given query q
and range r. Let B j = [b(j,1), b(j,2)] denote the distance range
within r from q, which is measured as a distance from p j in
v j, that is,

B j = [max{ 0, d(q, p j)−r }, d(q, pj)+r] (15)

b(j,1) = max{ 0, d(q, p j)−r } (16)

b(j,2) = d(q, p j)+r . (17)

Let Ṽ j denote a set of unpruned nodes, which is a subset
of child nodes v2 j and v2 j+1 in parent nodes v j, and each of
which satisfies

Ṽ j = {v2 j+a | B j ∩ R(2 j+a) � ∅, a ∈ {0, 1}}. (18)

LetV(i+1) denote a set of the unpruned nodes at level (i+1),
which is expressed as,

V(i+1) =
⋃

2(i−1)≤ j<2i

Ṽ j. (19)

Then, at the maximum level L, we can obtain the number of
the objects U in the set of unpruned nodesVL as

U =
∑

v j∈VL

|X j| . (20)

Next, we define an unbounded object as an object in un-
pruned node v j, which satisfies the unbounded condition,
i.e., xh ∈X j(B j). Then, we can obtain the set of unbounded
objects at level i, denoted as Si, as follows:

Si =
⋃

v j∈Vi

X j(B j) , (21)

where X j(B j) is defined in the same way as Eq. (10). Recall
that the number of objects in Si, denoted by Yi = |Si|, can be
directly calculated from the look-up table of the CF function
as follows.

Yi =
∑

v j∈Vi

|X j(B j)| =
∑

v j∈Vi

(CF j(b(j,2))−CF j(b(j,1))) (22)

Let S denote a set of unbounded objects with the minimum
number of elements among {S1, · · · ,SL}, i.e.,

S ← Si∗ , where i∗ = arg min
1≤i≤L

Yi. (23)

Finally, we define an unfiltered object xh as an unbounded
object whose lower bound on distance to q is not larger than
r. Then a set of unfiltered objectsW is expressed by

W = {xh ∈ S | D(xh, q;P(xh)) ≤ r}, (24)

where the distance lower bound of unfiltered object xh

is calculated by using pivot set P(xh) = {p j | xh ∈
X j through all the levels of 1 ≤ i ≤ L }, and D(xh, q;P(xh))
in Eq. (24) is defined in Eq. (6). Each pivot in P(xh) corre-
sponds to that in a node including xh at each level from the
root to the leaf level, and then |P(xh)|= L. Note that the set
of unbounded objects is expressed by

S =
⋃

v j∈Vi∗

{xh ∈ X j | D(xh, q; {p j}) ≤ r}. (25)

Namely, we can gurantee that if an object is included in a

2532
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

search result, i.e., within r from q, it is an unbounded ob-
ject. Here, we can regard Eq. (24) as an improved formula
of Eq. (25) by changing from {p j} to P(xh).

Based on the foregoing definitions, we explain the pro-
posed algorithm, shedding light on the three-stage process
followed by the early termination scheme. This scheme de-
termines a termination level of CBT T depending on r be-
fore search off-line and sets the level L̃(r;X) shown in Al-
gorithm 4. For simplicity, we first use the maximum level
L and last replace it with L̃(r;X) as shown at line 1.

For the initialization, the unpruned node setVi and the
number of unbounded objects Yi at all the levels are set as
shown at lines 3 and 4.

1. The first process in the three-stage process prunes
branches in T , i.e., to omit nodes connected the
branches and their descendants. This process is per-
formed from the root level i=1 to the leaf level i=L one
by one as shown at lines 6–16. For each unpruned node
v j at level i, B j = [b(j,1), b(j,2)] in Eq. (15) is obtained
by calculating d(q, p j). Then Yi is updated by addition
of (CF j(b(j,2)) − CF j(b(j,1))) as in Eq. (22). After that,
the algorithm prunes branches connected to nodes at
the next level i+1 based on the condition in Eq. (18),
and extracts the remaining nodes as the unpruned nodes
V(i+1) as in Eq. (19).

2. The second process selects level i∗ at which the num-
ber of the unbounded objects Yi is minimum as shown
at line 17, and then generates the minimum set of the
unbounded objects by distance range constraints at the
level i∗ as S at line 18.

3. The third process filters each of the unbounded objects
generated by the second process individually at line 19.
The distance of each unbounded object xh ∈S to pivot
p j has already been calculated at each level. Then the
lower bound on a distance of xh to q based on P(xh) is
obtained as D(xh, q;P(xh)). The algorithm filters ob-
ject xh that satisfies D(xh, q;P(xh)) > r, and keeps the
others as the unfiltered objects inW at line 19. Finally,
the algorithm identifies a set of objects within r from q,
X(q; r), by calculating an exact distance between q and
the unfiltered object inW.

Next, let us evaluate the computational complexity of
the similarity search algorithm. In the first process, the com-
plexity depends on the calculations of a distance between q
and pivot pj at unpruned node v j at level i, which is shown at
line 8. The rest processes of the update processes of Yi and
V(i+1) at lines 9 and 12 are efficiently performed by the CF
function in Eq. (22). At each level, the copmutational com-
plexity is O(H · |Vi|) corresponding to that of the distance
calculations, where H denotes the dimensionality of a given
vector space. Through all the levels, it is O(H · |V|), where
V=⋃1≤i≤LVi.

The second process determines the level i∗ of the min-
imum Yi with O(L). Then it generates S by applying the
CF function to each unpruned node v j at level i∗. Given
a distance from pivot p j at v j, the look-up table of the CF

function directly returns the index value j(h) of the corre-
sponding object x j(h), i.e., the rank order. For this reason,
the S generation is performed with O(|S|).

The third process calculates the absolute value of each
difference of d(xh, p j) and d(q, p j) that have been stored,
and compares the resultant D(xh, q;P(xh)) with r at line 19.
Then the complexity is O(L · |S|), where L= |P(xh)| for any
xh ∈S. The last process at line 20 returns the final search so-
lution by calculating exact distances of all unfiltered objects
xh ∈ W to q with O(H · |W|). Therefore, the total com-
putational complexity of the similarity search algorithm is
expressed by

O (H ·|V| + L·|S| + H ·|W|)) , (26)

where the first, the second, and the third term come from the
first, the third, and the last process, respectively.

We explain the early termination of the search algo-
rithm. In general, by increasing the level L of the CBT in-
dex, it is expected to reduce the number of unfiltered objects
|W|. In contrast, the number of unpruned nodes |V|, i.e., the
number of pivots in the unpruned nodes, is likely to increase.
Then, depending on a given range r, we want to balance the
trade-off by determining an appropriate search termination
level over the CBT so as to minimize the expected search
cost. To this end, based on Eq. (26), we define the following
total cost function for query q and range r, under a given set
of objects X and level L:

C(q, r;X, L) = |V| + L
H
· |S| + |W| . (27)

Note that C(q, r;X, L) can be intuitively interpreted as a
computational cost in terms of the required number of dis-
tance calculations for query q and range r.

For a given set of objects X and range r, we propose to
estimate the average of the cost defined in Eq. (27), based
on a leave-one-out cross validation technique. Namely,
for the CBT index with the different maximum level L ∈
{1, · · · , Lmax}, we can determine the appropriate search ter-
mination level L̃(r;X) for the range r so that C(xh, r;X \
{xh}, L) is minimum, i.e.,

L̃(r;X) = arg min
1≤L≤Lmax

1
|X|
∑

xh∈X
C(xh, r;X \ {xh}, L). (28)

As shown later in our experiments, the appropriate termi-
nation levels of CBT indexes worked well, which were com-
puted within a few hours for a large-scale data set consisting
of 1×10 6 objects.

5. Experiments

We show the experimental data sets followed by our results
on the performance as regards both the index construction
and similarity search algorithms. In our experiments, all al-
gorithms for index construction and similarity search were
executed on a computer system equipped with two Xeon
X5690 3.47GHz CPUs and a 198GB main memory with a
single thread within the memory capacity.

YAMAGISHI et al.: EFFICIENT SIMILARITY SEARCH WITH A PIVOT-BASED COMPLETE BINARY TREE
2533

5.1 Data sets

We employed the CoPhIR (Content-based Photo Image Re-
trieval) test-collection [19], [22]. The CoPhIR contains the
following five MPEG-7 global descriptors extracted from
each of more than 100 million images: scalable color (SC
for short), color structure (CS), color layout (CL), edge his-
togram (EH), and homogeneous texture (HT). Each of the
descriptors is represented as a feature vector, i.e., a point
in a Euclidean space and a distinct distance measure for
each descriptor is defined by the MPEG-7 group [23], [24].
The numbers of the elements (dimensionality) of descrip-
tors, SC, CS, CL, EH, and HT, are originally 64, 64, 12, 80,
and 62, respectively. Thus the dimensionality of each metric
space by the descriptor except CL is high.

Of these, we, in particular, utilized the four descrip-
tors of SC, CS, EH and, HT whose distances are measured
by the weighted L1 distance [23], [24]. In terms of EH, in-
stead of the prepared 80-dimensional vector, we exploited
a 150-dimensional vector that includes elements related to
global and semi-global edge histograms as described in [25].
In addition to the four descriptors, we utilized a new de-
scriptor created by concatenating weighted feature vectors
of these descriptors (mixed descriptor, MX for short), just as
the descriptor by aggregating distances between the feature
vectors is utilized in [22]. Our descriptor’s dimensionality
reaches 340, which is the sum of the number of elements
of the concatenated feature vector. Note that if the distance
is defined as the L1 distance of feature vectors in each de-
scriptor, then the sum of the distances of a pair of the cor-
responding feature vectors in each descriptor is equal to a
distance of a pair of feature vectors that are newly made by
concatinating the corresponding feature vectors. For each
descriptor, we prepared data set X randomly chosen from
the original data set. The number of the feature vectors (or
objects) in the data setXwas 1×106. As the test set Q for the
similarity search performance evaluation, we chose 1×103

query objects randomly in the same manner as the data sets
so that the chosen query objects were not included in the
data sets.

5.2 Index Construction Performance

We evaluated the index construction performance of our
proposed method in Algorithm 1 by varying the maximum
level L from L = 1 to 18, in terms of elapsed times and the
number of iterations for generating pivots, each of which
corresponds to lines 4–10 in Algorithm 2. More precisely,
we obtained the number of PGM iterations at level L by cal-
culating the average number of PGM iterations for nodes
v j (2i−1 ≤ j < 2i) at level i and adding these average values
from i=1 to L. We evaluated the performances through the
ten trials of the pivot generation by changing initial pivots at
line 3 in Algorithm 2.

Figures 2 (a) and (b) show the elapsed time and the cu-
mulative average number of PGM iterations required by the

Fig. 2 Index construction performance for different descriptors of SC
and MX measured by (a) elapsed time and (b) cumulative average num-
ber of PGM iterations.

proposed method, respectively, where we plotted the results
of the ten trials by the markers, and their averages as the
lines. Although we show only the SC and MX results, we
observed the similar tendencies as those in Figs. 2 (a) and
(b), in the other settings such as the other descriptors and the
smaller data sets used in our preliminary experiments. Fig-
ure 2 (a) shows that even when the maximum level was set
to L = 18, the average index construction times for SC and
MX were less than 5 and 30 minutes, respectively. Note that
the ratio of these construction times for SC and MX reason-
ably coincides with that of their dimensionalities of 64 and
340. Moreover, we can see that the construction times are
almost sublinear with respect to the level parameter L and
relatively stable regardless of the initial pivot settings. From
Fig. 2 (b), we can see that the average number of PGM it-
erations at each node were around 10 to 20. For instance,
Fig. 2 (b) shows that the cumulative average numbers of it-
erations at level 10 are 137.8 and 197.2 for SC and MX,
respectively. Then the corresponding average numbers for
a node at each level are 13.78 and 19.72. The numbers for
MX were larger than those for SC. This is attributed to the
larger dimensionality of MX. As with the elapsed time, the
average number of PGM iterations were almost sublinear
with respect to the level parameter L. These experimental
results indicate that the proposed index construction algo-
rithm is applicable to a large-scale data set due to the level
scalability.

5.3 Similarity Search Performance

We first show the settings for the performance evaluation,
and next analyze the proposed method from a viewpoint of
search performance, finally compare it with M-Index [13].
Note that M-Index is one of the most advanced similarity
search method using pivots, which shows the comparable
performance with state-of-the-arts similarity search meth-
ods described in Sect. 2.

5.3.1 Settings

For range query, we set the range distance r at the aver-
age distance to the 100-th nearest objects from each of the
1×103 query objects q ∈ Q. The average distances of r for
the descriptors, CS, HT, EH, SC, and MX, were 1000, 500,

2534
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

Fig. 3 Search performance depending on pivots that were generated by
PGM in the proposed method and selected by RPS for (a) SC and (b) MX
descriptor.

300, 200, and 13000 in our preliminary experiments, respec-
tively. We applied the search methods evaluated for range
query of r to the data set X and the test query set Q de-
scribed in Sect. 5.1. We measured their search performances
by the average of the cost function defined in the same way
as Eq. (27), with respect to level L, i.e.,

AC(L) =
1
|Q|
∑

q∈Q
C(q, L;X, r). (29)

For a fair comparison, we did not employ elapsed time as
the evaluation measure so that we assessed the impact of
only algorithms without any coding techniques. However,
for a reference, we report that the average execution times
of similarity search for one query were 0.050, 0.146, 0.040,
0.037, and 0.221 seconds for CS, EH, HT, SC and MX in
this order.

5.3.2 Analysis

We analyzed the proposed method itself in terms of the
search cost. We, in particular, focused on the effect of the
index generated by using pivots on the search cost. Recall
that the PGM function in the index construction algorithm
generates a pivot by maximizing the objective function in
Eq. (7). Instead of the PGM function, we employed for the
compared index construction algorithm a random pivot se-
lection function (RPS for short) that chooses a pivot at ran-
dom from a data set X j.

Figures 3 (a) and (b) show similarity search perfor-
mances of the PGM and the RPS algorithm for SC and MX
descriptors. The average costs obtained through the ten tri-
als with varied initial pivots for the PGM and the selected
pivots for the RPS are depicted with marked points and their
average values of the algorithms with lines along the maxi-
mum level of the CBT index from L=3 to 18. The average
cost of each algorithm for both descriptors reached the min-
imum at a level. For instance, the minimum values of the
proposed method and RPS were 0.045 at level 14 and 0.089
at level 16 in Fig. 3 (a), and 0.19 at level 13 and 0.37 at level
16 in Fig. 3 (b), respectively. The proposed method with the
PGM function stably achieved almost half the search cost
of the method with the RPS. Besides, we also observed the
similar tendencies as those in Figs. 3 (a) and (b), in the other

Fig. 4 Search performance comparison of the proposed method with M-
Index for (a) SC and (b) MX descriptor.

settings such as the other descriptors, the smaller data sets,
and the range settings. Thus, the proposed method worked
well in search, compared with the method with the RPS.

5.3.3 Comparison

We compared the proposed method with M-Index [13] re-
garding the average cost in Eq. (29) and its components ap-
pearing in Eq. (27). As for M-Index, we employed the fixed
3-level M-Index structure without eliminating small clus-
ters because such small clusters can contribute to improv-
ing the pruning performance although they sometimes in-
crease actual response times. We randomly chose the pivots
for M-Index from the objects in the data set X as suggested
in [13] and changed the numbers of selected pivots from
3 to 18. In similarity search, M-Index utilizes four strate-
gies of double-pivot distance constraint, range-pivot dis-
tance constraint, object-pivot distance constraint, and pivot
filtering in this order. Note that both the double-pivot and
range-pivot distance constraints correspond to the first pro-
cess (branch pruning or nodes-omitting) in the proposed al-
gorithm because some sets (or clusters) of objects are collec-
tively pruned only by performing query-pivot distance cal-
culation, which can be evaluated as the number U of the
objects in unpruned nodes in Eq. (20). The object-pivot dis-
tance constraint and the pivot filtering correspond to the sec-
ond process collecting objects within the range and the third
process individually filtering objects in Algorithm 4, which
can be evaluated as the number |S| of unbounded objects
defined in Eq. (25), and as the number |W| of unfiltered ob-
jects defined in Eq. (24), respectively. Thus, we calculated
the three numbers of objects, U, |S| and |W|, obtained by
applying M-Index, similarly to the proposed method. Since
the cost function value is calculated in Eq. (29) by using the
foregoing three values, U, |S| and |W|, we adopted this cost
function for a favorable comparison measure. Besides, the
measure is not affected by some implementation issues.

Figures 4 (a) and (b) demonstrate that the proposed
method outperformed M-Index in terms of the average costs
for SC and MX descriptors, respectively. Note that the
horizontal axis represents the maximum level for the pro-
posed method and the number of pivots for M-Index. This
is because the number of pivots that the proposed method
uses to filter object xh is equal to the maximum level, i.e.,

YAMAGISHI et al.: EFFICIENT SIMILARITY SEARCH WITH A PIVOT-BASED COMPLETE BINARY TREE
2535

Fig. 5 Average numbers of remaining objects within the range r for MX
descriptor just after each process or strategy in (a) proposed method and
(b) M-Index. The points marked with triangles and the corresponding line
of |V| denote the number of the applied pivots that is different from others.

|P(xh)| = L. The proposed method at all the levels kept the
smaller average costs than M-Index at all the numbers of
pivots for both the descriptors. Furthermore, the proposed
method achieved almost a quarter of and half the minimum
value of M-Index for SC and MX descriptors, respectively.
We can see that the proposed method performed the search
with the stable average costs independent of the initial set-
tings while M-Index did with the large variations of the costs
depending on the chosen pivots. Compared with M-Index,
the proposed method provided the stable and lower compu-
tational costs. Moreover, we should report that the levels
determined by the early termination scheme were 14, 11,
12, 12, and 13 for CS, EH, HT, SC and MX in this order.
This indicates that the early termination scheme works rea-
sonably well.

Figures 5 (a) and (b) compare the average numbers of
remaining objects by the proposed method and M-Index for
the MX descriptor, in terms of U, |S| and |W|, together
with the average number of query-pivot distance calcula-
tions, i.e., the number of unpruned nodes |V|. Note that the
average numbers of |V|, |S|, and |W| except U in Fig. 5 (a)
are related to those of Proposed in Fig. 4 (b) according to
Eq. (27). From these figures, we can see that all of the aver-
age numbers of remaining objects by the proposed method
were much smaller than those by M-Index. In contrast, the
required number of query-pivot distance calculations |V| of
our method became larger than that of M-Index especially
larger L although this cost was a fraction of the total cost
shown in Fig. 4 (b). This observation indicates that the cost
of our method reaches the minimum at not so high level.
In order to terminate the search algorithm at an appropriate
level, we can utilize the early termination scheme stated in
Sect. 4.2.

Thus, the experimental results suggest that the pro-
posed method achieves high search performance for a large-
scale data set, due to the index construction algorithm based
on the PGM function, and the similarity search algorithm
with the three-stage process and the early termination con-
dition.

6. Conclusion

We proposed a fast exact similarity search method with a

complete binary tree (CBT) for large-scale data sets. The
proposed method consists of two main algorithms. One is
an index construction algorithm that recursively builds the
CBT by using a pivot optimized with our skillful technique
at each node. The other is a similarity search algorithm
with our three-stage process that efficiently prunes unnec-
essary branches and filters objects, and an early termina-
tion scheme determining an appropriate level of the CBT
for search, resulting in the reduction of a computational cost
for search.

The experimental results on one million real images
with high dimensionality demonstrated that the proposed
method significantly reduced the computational cost to
around 28–45% of M-Index, one of the state-of-the-art
methods. Our method also constructed the CBT index in
reasonable elapsed time and a computational cost. Thus
we have shown that the proposed method is suitable for
large-scale and high-dimensional data sets. Furthermore,
our method can be easily expanded so that it is applicable
to a shared-memory parallel computing system for higher
efficiency.

Acknowledgments

This work was partly supported by JSPS Grant-in-Aid for
Scientific Research (C) (No. 26330138).

References

[1] E. Chávez, G. Navarro, R. Baeza-Yates, and J.L. Marroquı́n,
“Searching in metric spaces,” ACM Computing Surveys, vol.33,
no.3, pp.273–321, Sept. 2001.

[2] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity search:
The metric space approach, Springer, New York, NY, 2006.

[3] H. Samet, Foundations of multidimensional and metric data struc-
tures, Morgan Kaufmann Publishers, San Francisco, CA, 2006.

[4] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching
fixed dimensions,” Journal of the ACM, vol.45, no.6, pp.891–923,
Nov. 1998.

[5] P. Indyk, Handbook of Discrete and Computational Geometry (sec-
ond edition), chapter 39: Nearest neighbors in high-dimensional
spaces, Chapman and Hall/CRC, 2004.

[6] M.S. Charikar, “Similarity estimation techniques from rounding al-
gorithms,” Proc. Annual ACM Symp. Theory of Computing, New
York, NY, pp.380–388, ACM, 2002.

[7] A. Andoni, M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni,
Nearest-neighbor methods in learning and vision: theory and prac-
tice, chapter 3: Locality-sensitive hashing using stable distributions,
The MIT Press, Cambridge, Massachusetts, 2006.

[8] M.L. Micó, J. Oncina, and E. Vidal, “A new version of the
nearest-neighbour approximating and eliminating search algorithm
(aesa) with linear preprocessing time and memory requirements,”
Pattern Recognition Letters, vol.15, no.1, pp.9–17, Jan. 1994.

[9] J.K. Uhlmann, “Satisfying general proximity/similarity queries
with metric trees,” Information Processing Letters, vol.40, no.4,
pp.175–179, Nov. 1991.

[10] S. Brin, “Near neighbor search in large metric spaces,” Proc. Int.
Conf. Very Large Data Bases, pp.574–584, Morgan Kaufmann,
Sept. 1995.

[11] E. Chávez and G. Navarro, “A compact space decomposition for
effective metric indexing,” Pattern Recognition Letters, vol.26, no.9,

http://dx.doi.org/10.1145/502807.502808
http://dx.doi.org/10.1145/293347.293348
http://dx.doi.org/10.1145/509907.509965
http://dx.doi.org/10.1016/0167-8655(94)90095-7
http://dx.doi.org/10.1016/0020-0190(91)90074-r
http://dx.doi.org/10.1016/j.patrec.2004.11.014

2536
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

pp.1363–1376, July 2005.
[12] H.V. Jagadish, B.C. Ooi, K.L. Tan, C. Yu, and R. Zhang, “iDistance:

An adaptive b+-tree based indexing method for nearest neighbor
search,” ACM Trans. Database Systems, vol.30, no.2, pp.364–397,
June 2005.

[13] D. Novak and M. Batko, “Metric index: An efficient and scalable
solution for similarity search,” Proc. Int. Conf. Similarity Search and
Applications, pp.65–73, IEEE, 2009.

[14] P.N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” Proc. Annual ACM-SIAM Sympo.
Discrete Algorithms, pp.311–321, ACM, Jan. 1993.

[15] K.L. Clarkson, “Building triangulations using ε-nets,” Proc. Annual
ACM Sympo. Theory of Computing, pp.326–335, ACM, 2006.

[16] B. Bustos, G. Navarro, and E. Chávez, “Pivot selection techniques
for proximity searching in metric spaces,” Pattern Recognition Let-
ters, vol.24, no.14, pp.2357–2366, Oct. 2003.

[17] M. Kimura, K. Saito, and N. Ueda, “Pivot learning for efficient sim-
ilarity search,” Proc. Int. Conf. Knowledge-Based and Intelligent
Information & Enginnering Systems, pp.227–234, Springer-Verlag,
2007.

[18] E. Kobayashi, T. Fushimi, K. Saito, and T. Ikeda, “Similarity
search by generating pivots based on Manhattan distance,” Proc. Pa-
cific Rim Int. Conf. Artificial Intelligence, vol.8862, pp.435–446,
Springer International Publishing, 2014.

[19] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese, R. Perego, T. Piccioli,
and F. Rabitti, “CoPhIR: a test collection for content-based image
retrieval,” CoRR, vol.abs/0905.4627v2, 2009.

[20] G. Amato, A. Esuli, and F. Falchi, “A comparison of pivot selection
techniques for permutation-based indexing,” Information Systems,
vol.52, pp.176–188, Aug.–Sept. 2015.

[21] T.F. Gonzalez, “Clustering to minimize the maximum intercluster
distance,” Theoretical Computer Science, vol.38, pp.293–306, 1985.

[22] M. Batko, P. Kohoutkova, and D. Novak, “CoPhIR image collec-
tion under the microscope,” Proc. Int. Conf. Similarity Search and
Applications, pp.47–54, IEEE, 2009.

[23] MPEG-7, “Multimedia content description interface – Part 3: Vi-
sual,” ISO/IEC 15938-3:2002, 2002.

[24] B.S. Manjunath, P. Salembier, and T. Sikora, Introduction to MPEG-
7: Multimedia content description interface, John wiley & Sons Ltd,
England, 2003.

[25] D.K. Park, Y.S. Jeon, and C.S. Won, “Efficient use of local edge
histogram descriptor,” Proc. ACM Workshops on Multimedia, New
York, NY, pp.51–54, ACM, 2000.

Yuki Yamagishi received the Ph.D. degree
in arts and sciences from University of Shizu-
oka in 2017. In 2017, he joined the University
of Shizuoka. He is currently a postdoctoral re-
searcher at the School of Management and In-
formation. His current research interests are ma-
chine learning and data mining.

Kazuo Aoyama received the B.E. degree
in applied physics from Waseda University in
1986 and the M.E. degree from Tokyo Institute
of Technology in 1988. In 1988, he joined NTT
Corporation. His research interests include de-
vice modeling, LSI design methodology, com-
puter architecture, data structure and algorithms,
and machine learning.

Kazumi Saito received the B.S. degree
in mathematics from Keio University in 1985
and the Ph.D. degree in engineering from Uni-
versity of Tokyo in 1998. In 1985, he joined
the NTT Electrical Communication Laborato-
ries. In 2007, he joined the University of Shizu-
oka. He is currently a professor at the School of
Management and Information. His current re-
search interests are machine learning and statis-
tical analysis of complex networks.

Tetsuo Ikeda received the Master of Com-
puter Science from University of Tokyo in 1981,
and the Doctor of Engineering from Univer-
sity of Tokyo in 2001. In 1981, he joined
the NTT Electrical Communication Laborato-
ries. In 2002, he joined the Iwate Prefectural
University. In 2007, he joined the University
of Shizuoka. He is currently a professor at the
School of Management and Information. His
current research interests are data engineering,
information retrieval, and GIS.

http://dx.doi.org/10.1016/j.patrec.2004.11.014
http://dx.doi.org/10.1145/1071610.1071612
http://dx.doi.org/10.1109/sisap.2009.26
http://dx.doi.org/10.1145/1132516.1132564
http://dx.doi.org/10.1016/s0167-8655(03)00065-5
http://dx.doi.org/10.1007/978-3-540-74829-8_28
http://dx.doi.org/10.1007/978-3-319-13560-1_35
http://dx.doi.org/10.1016/j.is.2015.01.010
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1109/sisap.2009.25
http://dx.doi.org/10.1145/357744.357758

