
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018
405

PAPER

Using Hierarchical Scenarios to Predict the Reliability of
Component-Based Software

Chunyan HOU†a), Jinsong WANG†, Nonmembers, and Chen CHEN††, Member

SUMMARY System scenarios that derived from system design specifi-
cation play an important role in the reliability engineering of component-
based software systems. Several scenario-based approaches have been pro-
posed to predict the reliability of a system at the design time, most of them
adopt flat construction of scenarios, which doesn’t conform to software de-
sign specifications and is subject to introduce state space explosion problem
in the large systems. This paper identifies various challenges related to sce-
nario modeling at the early design stages based on software architecture
specification. A novel scenario-based reliability modeling and prediction
approach is introduced. The approach adopts hierarchical scenario specifi-
cation to model software reliability to avoid state space explosion and re-
duce computational complexity. Finally, the evaluation experiment shows
the potential of the approach.
key words: scenario, software reliability, software architecture, compo-
nents

1. Introduction

Software reliability is defined as the probability of failure-
free operation of a software system for a specified period
of time in a specified environment. Software reliability
is one of the most important criteria to measure software
quality, and determines whether or not a software system
could run in a stable and reliable way. The traditional
software development methodology, often represented by
Waterfall, ensures high software reliability only through
software testing during late development stages. Nowa-
days, the use of component-based iterative software de-
velopment methodologies is increasing to satisfy the need
to respond to fast moving market demand and for gain-
ing market share [1]. In contrast to traditional methodol-
ogy, component-based development methodologies evaluate
software reliability based on software architecture already
during early development stages [2]. This helps software ar-
chitects to determine the software components mostly af-
fecting system reliability, to study the sensitivity of the sys-
tem reliability to component reliabilities, and to support de-
cisions between different design alternatives.

Unfortunately, component-based development method-
ologies do not explicitly provide effective practices for man-
aging and measuring quality and reliability [3]. First of all,
the components in a component-based software system are

Manuscript received April 12, 2017.
Manuscript revised September 20, 2017.
Manuscript publicized November 7, 2017.
†The authors are with Tianjin University of Technology,

Tianjin, China.
††The author is with Nankai University, Tianjin, China.
a) E-mail: chunyanhou@163.com

DOI: 10.1587/transinf.2017EDP7127

usually developed by different third parties so that there are
more reliability problems that could be caused from interac-
tion between them. On the other hand, component providers
usually keep the information about software development
and testing secrete. Therefore, it is inconvenient for com-
ponent users to model software failure behavior for their re-
liability estimation. This deficiency may prevent software
development organizations in safety-critical domains from
transforming from traditional development to highly itera-
tive component-based development. Moreover, it is a hard
task to perform architecture-based software reliability anal-
ysis. Software reliability depends not only on the compo-
nent implementation, but also on operational profile, execu-
tion environment, system configuration and so on. Thereby
software reliability is a non-isolated attribute, and it makes
sense only in some specific context referred to as scenarios.

Scenarios are a popular means for capturing behav-
ioral requirements of software systems early in the lifecy-
cle. Nowadays, the use of scenarios to evaluate architecture
from different perspective has been widely acknowledged
by the industry and academia [4]. It can provide an insight
into system qualities like maintainability, reliability, perfor-
mance and so on [5]. Scenarios have been widely adopted as
a way to specify the target to be evaluated. System scenarios
derived from system design specification play an important
role in the reliability engineering of component-based soft-
ware systems. Architecture-based software reliability anal-
ysis can be regarded as a process to prove how well software
architecture supports a variety of critical scenarios.

There has been some previous work on using scenarios
to predict the reliability of component-based software. The
main problem with most of the existing approaches is the
number of states which known as state explosion problem,
exactly, in case of large systems and flat construction of sce-
narios [6]. In contrast to hierarchical ones based on abstrac-
tion and approximation, flat approaches consider all possi-
ble execution paths to construct system scenarios. Albeit
with better accuracy, they are un-applicable to large systems
due to state space explosion problems. In response to this
problem, we present a novel architecture-based approach to
predict software reliability in this paper, which models sce-
narios and evaluates scenario reliability hierarchically. Hi-
erarchical scenarios describe different kinds of profile that
various software participators concern according to software
design specifications. We construct an architecture model
to describe profile dependencies between hierarchical sce-
narios from the perspective of software architects. At last,

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

406
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

reliability analysis based on hierarchical scenarios is per-
formed to evaluate software reliability.

The rest of the paper is organized as follows. Section 2
surveys related work. Section 3 presents a software relia-
bility model based on hierarchical scenarios named SRM to
describe software architecture. Section 4 explains how to
evaluate software reliability based on SRM. Section 5 doc-
uments the case study before Sect. 6 concludes the paper.

2. Related Works

During the last decade, researchers proposed several ap-
proaches to predict reliability at the design-time utilizing the
architectural design of the software system and the reused
components data; these approaches address different prob-
lems and challenges. In this section, we provide a brief view
of scenario-based reliability analysis approaches which are
greatest interest to the scope of this work.

Since early 1990s, scenario-based approaches have
been widely adopted to evaluate software architecture model
at the design time [7]. Software reliability is one of the
most important non-functional properties that govern crucial
architectural design decisions [8]. Therefore, people pro-
posed special scenario-based reliability approaches to an-
alyze software architecture, especially for component-based
software.

In [9], a probabilistic model named component-
dependency graph (CDG) is constructed using scenarios of
component interactions. Based on CDG, a reliability anal-
ysis algorithm is developed to analyze the reliability of the
system as a function of reliabilities of its architectural con-
stituents. Reussner et al. [10] and Brosch et al. [11], [12]
introduced reliability prediction approach for component-
based software architectures that considers the relevant ar-
chitectural factors of software systems by explicitly mod-
eling the system usage profile and execution environment.
Rodrigues et al. [13] further considers the influence that the
concurrency of component-based software systems has on
system reliability. In [14]–[16], the authors applied dynamic
Bayesian networks to build a stochastic reliability model
that relies on standard models of software architecture and
does not require implementation-level artifacts. However,
the above mentioned approaches build global behavior mod-
els of the system based on flat construction of scenarios [17],
which in the large systems introduce state space explosion
problem.

In order to solve this problem, Hou et al. [18] proposed
extension to the work in [11] by separately modeling and
evaluating each scenario to avoid state space explosion and
reduce computational complexity. However, the approach
analyzed case scenarios directly, and didn’t consider the de-
pendencies between different kinds of scenarios. Cheung
et al. [19] and Ali, et al. [6] extended the work in [14] by
modeling and calculating system scenarios hierarchically.
The hierarchical method in [19] can provide solution in case
of large systems, especially when the synchronization na-
ture of the system implementation is taken into account.

Ali, et al. [6] proposed a modeling and calculation approach
that, pragmatically, models and divides scenarios by a sce-
nario specification languages and finite state machine. How-
ever, these two approaches don’t explicitly model software
operational profile by illustrating the profile dependencies
between different kinds of scenarios. Ao, et al. [20] built
software operational profile by profile propagation between
scenarios. However, the results are used to generate soft-
ware reliability test cases, and not applicable for reliability
analysis.

In summary, extension of a scenario specification to-
ward partial behavior modeling is integral part that should
be considered for predicting the reliability based on the ar-
chitecture [21]. The approaches based on hierarchical sce-
narios have been applied to software reliability testing. At
present, researchers are trying to use scenario-based ap-
proaches for software reliability estimation. Although some
preliminary results have been obtained, there are a few of
problems with existing approaches which significantly af-
fects their practical applicability. In order to solve these
problems, we propose a novel reliability analysis approach
based on hierarchical scenarios.

3. Reliability Model

In this section a software reliability model named SRM
is defined in every detail to describe the architecture of
component-based software. A SRM formalizes the fac-
tors related to software reliability for the purpose of reli-
ability prediction. A SRM is defined based on hierarchi-
cal scenario specification, which divides scenarios into four
classes. Each class of scenarios is described with corre-
sponding profile as shown in Fig. 1. The definition of a SRM
meets the following assumptions.

(1) Software architecture is static, and each interaction be-
tween components is a synchronous communication.

(2) An application scenario is realized by several case sce-
narios collaborating with one another. The transitions
between case scenarios are finite, and occur due to
users’ subjective decisions.

(3) Components’ testing profile is different from their op-
erational profile. Component developers perform test-
ing without the knowledge of how they will be used in
the future.

Fig. 1 The process for SRM to propagate profile.

HOU et al.: USING HIERARCHICAL SCENARIOS TO PREDICT THE RELIABILITY OF COMPONENT-BASED SOFTWARE
407

3.1 Reliability Model Based on Hierarchical Scenarios

According to software reliability theory, software reliabil-
ity significantly depends on operational profile [22]. There-
fore, it is essential for software reliability model to describe
operational profile accurately and objectively. Operational
profile can be eventually constructed by continually refining
software input space from top to down and determining in-
put probability. Software reliability model (SRM) defines
profile dependencies between different kinds of scenarios,
and builds operational profile by the way of profile propaga-
tion from top to down as shown in Fig. 1. It can be seen that
three steps are taken to obtain operational profile from user
profile with the profile of application and case scenarios as
intermediates. The process will be explained in detail in the
text that follows. SRM is defined as Definition 1.

Definition 1. (SRM) A SRM is a software reliability
model based on hierarchical scenario specification, and is
defined by the tuple <STG[n] stg, CIG[n] cig, CDM cdm,
Usage[] usage, double R>, where n is the number of case
scenarios; stg is a set of scenario transition graphs each
of which describes an application scenario; cig is a group
of component interaction graphs representing how several
components cooperate to realize basic system level func-
tions; cdm is a component deployment model with the infor-
mation about system configuration and deployment; usage
is a collection of user profile from different types of users;
and R is the reliability of a software system.

Definition 2. (Profile) Profile lists the input values and
probability distribution for a parameter, and is defined as the
tuple <string name, int type, <var value, double P>[] item>,
where name and type are the name and type of a parameter
respectively; and item is a set of input instances, where value
is a discrete input value, and P is the probability that the
value is input.

In the rest of this sub-section, four kinds of profile in
Fig. 1 will be introduced from top to down in accordance
with the direction to propagate profile. At first, user profile
is defined as Definition 3.

Definition 3. (Usage) A Usage models usage profile
for a type of users, and is defined by the tuple <UserType
type, double P, <string name, double P>[] app>, where type
denotes user type; P is the occurrence probability of a usage
scenario; and app is a set of application scenarios triggered
by a type of users, where name and P are the name and
occurrence probability respectively.

Secondly, application profile is depicted with case-
scenario transition graph (STG). A STG models an appli-
cation scenario consisting of several case scenarios. Soft-
ware designers typically employ UML Use Case Diagrams
(UCD) to list case scenarios. Figure 2 shows an example of
a UCD instance with seven case scenarios for Borrower, and
Fig. 3 shows an example of a STG instance. It can be seen
that a STG depicts how several cases cooperate with one an-
other to realize a system application function. A STG model
is a kind of directed graph with case scenarios as nodes and

Fig. 2 A UCD example.

Fig. 3 A STG example.

the transition between cases as edges. The definition of a
STG is given as Definition 4.

Definition 4. (STG) A STG is an application scenario
model, and is defined by the tuple <string name, double P,
Profile[] profile, Case[] case, double[,] trans>, where name
and P are the name and occurrence probability respectively;
profile is input profile to user interface; case is a collection
of included case scenarios; and trans denotes the transition
probabilities between case scenarios.

Thirdly, case profile is used to describe case scenar-
ios which realize basic system level functions. Case scenar-
ios are defined from the perspective of software designers,
whereas application scenarios are from software users. A
case scenario is realized with several components to interact
with one another. Case profile is defined as Definition 5.

Definition 5. (Case) A Case is a case scenario model,
and is defined by the tuple < string name, CIG cig, Pro-
file[] profile, double P >, where name is the name of a case
scenario; cig is a component interaction graph to depict how
the components interact; profile denotes input profile to case
interface; and P are the probability that a case scenario is
called.

Finally, operational profile is practical input profile to
components, which is dependent on user input and different
from testing profile. We construct Component Interaction
Graphs (CIGs) to describe operational profile, which are the
kernel part of SRM definition. In the next sub-section, CIGs

408
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Fig. 4 A sample of CIG.

Fig. 5 A sample for formal CIG.

will be introduced in detail.

3.2 Component Interaction Graphs

A component interaction graph (CIG) depicts the archi-
tecture of a case scenario, which enables the propagation
from case profile to operational profile. Software design-
ers typically use Message Sequence Charts (MSCs) to de-
scribe component interactions, but they are not suitable for
software reliability analysis. Compared with MSCs, CIGs
are special profile models which focus on describing pro-
file dependencies. In order to consider the difference be-
tween operational and testing profile, we adopt the con-
cept of sub-domain [23] to define operational profile as in-
put sub-domains and reliability or failure probability on sub-
domains. Figure 4 shows an example of a CIG instance.

The CIG as shown in Fig. 4 is descriptive for conve-
nience of software architects, which is formally extracted as
a multi-layer directed graph behind the scene as shown in
Fig. 5. It can be seen that there are two types of nodes—
one denotes call actions while the other denotes the actions
nesting calls. A CIG is defined as Definition 6.

Definition 6. (CIG) A CIG is a component inter-
action graph, and is defined by the tuple <string name,
Chain<Action> arch, double R, Service[] ser>, where name
is the name of the case scenario realized by a CIG; arch is a
sequence of interacting actions; R is the reliability; and ser
denotes a set of interfaces called in a case.

Definition 7. (Action) An action is a program inter-
nal action, and is defined by the tuple <ActionType type,
string[] exp, Profile[] profile, CIG[] child, Action *next, Ser-
vice *owner, <int num, double P>[] ap>, where type de-
notes the type of an action; exp is a set of arithmetic or

Boolean expressions to describe parameter dependencies;
profile is the input profile to a service after taking a action;
child denotes sub-actions nested by a action; next points to
the next action; owner points to the service an action be-
longs to; and ap denotes action profile, where num and P
are the occurrence times and probability respectively.

Definition 8. (Service) A Service denotes an inter-
face provided by a component. It is annotated by the tu-
ple <string name, SType type, string comp, Sdomain[] sd,
<string name, string type>[] param, Action *op, double R,
Profile[] profile >, where name is the name of a service; type
includes atomic and non-atomic service to indicate whether
a service calls other services; component is the name of the
component offering a service; Sd is a set of sub-domains
constituting input space; param are input parameters where
name and type is parameters’ name and type respectively;
op points to the first action; R is practical reliability; and
profile is operational profile.

Definition 9. (Sdomain) A Sdomain models one of the
sub-domains constituting the input space of a service. It
is annotated by the tuple < string name, list<var[m]> item,
double weight, HardType[] hardtype, double R>, where
name is an identifier for a specific sub-domain; item is
a list of all input value composition included in a sub-
domain, where m is the number of input parameters; weight
is the probability that users’ input falls into a sub-domain;
hardtype indicates what kinds of hardware are required by
software when running on a sub-domain; and R is testing
reliability.

3.3 Component Deployment Model

The environment where a software application runs and the
strategy how to deploy an application have a considerable
influence on software reliability. A component deployment
model (CDM) defined as Definition 10 is constructed to de-
scribe these reliability-related factors.

Definition 10. (CDM) A CDM is a component deploy-
ment model, and is defined by the tuple <Server[] server,
Component[] comp>, where server is a set of servers used
to deploy components; and comp is a collection of compo-
nents in a software application.

Definition 11. (Server) A Server is defined by the tu-
ple <string name, Hardware[] hw >, where name is used to
identify a server; and hw describes hardware configuration.

Definition 12. (Component) A Component is de-
fined as the tuple <string name, Service[] service, Server[]
server>, where name is component’s name; service is a
group of external interfaces provided by a component; and
server is one or more servers used to deploy a component.

Definition 13. (Hardware) Hardware models a kind of
hardware in a server. It is annotated by the tuple <HardType
type, int MTTF, int MTTR, double fp>, where type denotes
the type of hardware; MTTF is mean time to failure; MTTR
is mean time to repair; and fp is failure probability.

HOU et al.: USING HIERARCHICAL SCENARIOS TO PREDICT THE RELIABILITY OF COMPONENT-BASED SOFTWARE
409

4. Reliability Analysis

In this section, we will explain how to evaluate software
reliability based on SRM. At first, SRM profile attributes
should be calculated. Profile propagation is used to con-
struct operational profile from user profile. Based on the
results, scenario-based reliability analysis is performed to
analyze software reliability.

4.1 Profile Propagation

As shown in Fig. 1, software profile can be divided into user
profile, application profile, case profile and operational pro-
file. The lower profile is propagated from the upper profile.
User profile on top is provided by domain experts modeled
as Definition 3, which is used to calculate application pro-
file. The occurrence probability of an application scenario
is

stg.P = ∑

usage[i].app[j].name=stg.name

(usage[i].P)∗(usage[i].app[j].P)

(1)

An application scenario depicted with a STG is com-
posed of several case scenarios. The transitions between
case scenarios are totally dependent on users without respect
to objective factors. Therefore, the knowledge of domain
experts is applicable to decompose an application scenario
into several case scenarios according to UML UCD pro-
vided by software designers, and determine transition prob-
abilities. Application profile can be propagated across STG
to construct case profile. From a long-term point of view,
an application scenario is called repeatedly, which can be
regarded as an infinite cyclic process. Thereby, a transition
from termination case to start case with probability 1 can
be added to a STG, which is then modeled as an irreducible
discrete time Markov chain. With that, the occurrence prob-
abilities of cases are expressed as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

stg.case[1].P
...

stg.case[n].P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (stg.case[1].P · · · stg.case[n].P)·⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

stg.trans[1, 1] · · · stg.trans[1, n]
...

...
...

1 · · · stg.trans[n, n]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where
n∑

i=1

stg.case[i].P = 1

(2)

Case scenarios are depicted with CIGs, which are used
to propagate case profile to construct operational profile.
Operational profile describes practical input profile to com-
ponents and the way how components call others. In order
to ensure objectivity and adequacy of the profiles which di-
rectly determines the accuracy of reliability evaluation, we

have proposed an algorithm to automatically obtain oper-
ational profile from case profile in the previous work [19].
The algorithm traverses a CIG to propagate case profile to
all the components.

Component developers typically perform testing in
terms of software basic functional units, whose results are
failure probability or reliability on each sub-domain. In or-
der to consider the difference between operational and test-
ing profile, operational profile should be mapped to sub-
domains to obtain a group of weight—the probability that
a component is called on each sub-domain. Sub-domain
weight can be calculated with joint probability distribution
of all parameter inputs. Given that input parameters are in-
dependent, the probability that an input belongs to a sub-
domain is

P(service.profile[i] ∈ service.sd[j])

= P

⎛⎜⎜⎜⎜⎜⎝
m⋂

k=1

(service.param[k] = service.profile[i].item[k])

⎞⎟⎟⎟⎟⎟⎠

=

m∏

k=1

P(service.param[k] = service.profile[i].item[k])

(3)

where P() is a probability function.
A sub-domain weight is given by

service.sd[i].weight =∑
P(service.profile[j] ∈ service.sd[i]) (4)

4.2 Reliability Analysis

Based on the obtained SRM, we will carry out a scenario-
based software reliability analysis in this subsection. On
the contrary to the profile propagation from top to down,
reliability analysis takes a bottom-up process. Component
reliability is estimated at first, then the reliability of case
and application scenarios, and software reliability at last.

A case scenario corresponds to a system execution
path, which can be represented as a linear sequence of call
actions {call[1], · · · , call[n]}. Therefore, case reliability is

case.R =
∏

action[i]∈case

call[i].R (5)

Call reliability depends on the reliability of called com-
ponents and the way how to make the calls. Components’
practical reliability is different from their testing reliabil-
ity because of different profile. The mapping between two
kinds of profile has been realized, the results of which are
sub-domain weights as (4). Based on that, the mapping from
testing to practical reliability can also be achieved.

service.R =∑

i

(service.sd[i].R) ∗ (service.sd[i].weight) (6)

With regard to the way how to make calls, we take three

410
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Fig. 6 An algorithm to compute the reliability of a case scenario.

ways into account, namely, sequential, branch, and loop
calls with a nested semantics. Sequential calls are not nested
by other actions. Call reliability with sequential structure is
equal to practical reliability of called components.

call.R = call.child.R (7)

A branch structure nests a finite number of sub-actions
which may be or not be executed in a case scenario. Branch
profile is usually represented as branch transition probabili-
ties. Thus, call reliability with branch structure is

call.R =
∑

i

(call.ap[i].P) ∗ (call.child[i].R) (8)

A loop structure has only one nested action. The loop
contains a specification of loop iteration counts as a random
variable over s finite domain of iteration counts, each as-
signed a probability of its occurrence. For loop reliability,
we have

call.R =
∑

i

(call.ap[i].P) ∗ (call.child.R)call.ap[i].num (9)

Based on the above analysis, an algorithm is proposed
to compute the reliability of a case scenario, as shown in
Fig. 6.

It can be seen from Fig. 6 that it is a recursive proce-
dure to compute the reliability of a case scenario. Using
case reliability, the reliability of application scenarios can
be expressed as

stg.R =
∑

i

(stg.case[i].R) ∗ (stg.case[i].P) (10)

Finally, software reliability is given by

srm.R =
∑

i

(srm.stg[i].R) ∗ (srm.stg[i].P) (11)

In the rest of this subsection, we will discuss how well

software deployment influences software reliability in the
light of CDM, including hardware configuration and deploy-
ment scheme. Hardware resources are modeled with the
properties of MTTF and MTTR, whose reliability is

hw.R =
hw.MTTF

hw.MTTF + hw.MTTR
(12)

We construct physical state space as S= {case[1].s, · · · ,
case[n].s} in terms of case scenarios, where case[i].s ∈ S
represents the state that all hardware required by the ith case
scenario is normal. Since sub-domains are the basic func-
tional units to run a component, they are also adopted to in-
dicate required hardware. The probability that the hardware
required by a sub-domain is normal is

sd.s =
∏

server.hw[i].type=sd.hardtype[i]

(server.hw[i].R) (13)

For some key components, it may use more than one
server to deploy them in order to guarantee their normal ex-
ecution. In this case, hardware state probability on a sub-
domain is

sd.s =

1 −
∏

i

⎛⎜⎜⎜⎜⎜⎝1 −
∏

server[i].hw[j].type=sd.hardtype[j]

server[i].hw[j].R

⎞⎟⎟⎟⎟⎟⎠

(14)

The probability that the hardware required by a case
scenario is normal is

case.s =
∏

service[i].sd[j]∈case

service[i].sd[j].s (15)

Therefore, with hardware reliability considered case
reliability is refined as

case.R = case.S ∗
⎛⎜⎜⎜⎜⎜⎝
∏

action[i]∈case

action[i].R

⎞⎟⎟⎟⎟⎟⎠ (16)

5. Case Study Evaluation

In this section SRM-based software reliability analysis ap-
proach is applied to evaluate the reliability of a distributed
component-based software system [24]. Evaluation result is
compared with the results in [11] to demonstrate the predic-
tion capabilities of our approach.

5.1 SRM Construction

Figure 7 illustrates a high-level view on the Business Re-
porting System (BRS), which generates management re-
ports from business data collected in a database. The model
is based on an industrial system. For the purpose of BRS
reliability analysis, we need to construct a SRM for BRS at
first, including deployment model and profile model.

The BRS system consists of 23 software components

HOU et al.: USING HIERARCHICAL SCENARIOS TO PREDICT THE RELIABILITY OF COMPONENT-BASED SOFTWARE
411

Fig. 7 An overview of a business report system.

Fig. 8 Application profile of the business reporting system.

deployed on six servers. The web server propagates user re-
quests to a scheduler server, which hosts, among others, a
scheduler and a user management component. From there,
requests reach the main application server and are possibly
dispatched to 2 further application servers by two load bal-
ancer components. A database server hosts the database
and a corresponding data access component. The system
includes caches to reduce the need of database accesses.

BRS includes three types of users with three usage
scenarios: Sales managers use the system mainly for on-
line viewing of live data, accounting managers request the
production of graphical reports, and administrators perform
system maintenance activities. Each usage scenario includes
only one application scenario as shown in Fig. 8.

It can be seen from Fig. 8 that there are 7 basic case
scenarios: Login, Logout, Maintain, Online Report, Online
View, Graphical Report, and Graphical View. Next, CIGs
for case scenarios need to be constructed. Figure 9 shows
a CIG model for Online Report. Due to limited space, we
don’t list CIG models for other cases. The details of BRS
are described at the website [25].

Fig. 9 A case profile instance of the business reporting system.

5.2 Reliability Analysis

The upper-left part of Fig. 7 shows that the occurrence prob-
ability of three usage scenarios is 0.1, 0.7, and 0.2 respec-
tively. How an application system is used is often recorded
in the system log. The scenario probabilities can be easily
obtained by means of statistical analysis of the log. Since
each usage scenario includes only one application scenario,
their occurrence probability is equal to that of correspond-
ing usage scenario. According to application profile model
as shown in Fig. 8, Eq. (2) is used to calculate the occurrence
probability of case scenarios. The results are shown in the
first three rows of Table 1.

The algorithm in Fig. 6 is used to compute case reliabil-
ity without regard to hardware state. The results are shown
in the last but one row of Table 1 as failure probability for
ease of viewing. At the same time, Eq. (15) is used to cal-
culate case state probability, and results are show in the last
row of Table 1.

Based on the above analytical results about case sce-
narios, Eq. (13) is used to calculate the reliability of three

412
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Table 1 Occurrence probabilities of scenarios

Fig. 10 Component dependency graph of business reporting system.

Table 2 Reliability estimation of BRS system.

application scenarios as 0.99979, 0.99976, and 0.99911. Fi-
nally, software reliability can be obtained with Eq. (14) as
0.999634.

In order to prove the efficiency of our SRM-based
approach, we compare the analytical result with that of
PCM-based [12] and CDG-based [9] approach. All three of
them employ scenario-based reliability analysis. Compared
with the first two ones, CDG-based method is more coarse-
grained, which doesn’t consider the parameter propagation
between component interfaces and hardware reliability. The
CDG for BRS system is shown in Fig. 10.

The reliability evaluation results are shown in Table 2.
It can be seen that the result of SRM-based approach is
close to that of PCM-based one, and the deviation is less
than 0.002%. Since PCM method has been published and
proved, it can also suggest the efficiency of our approach.
In contrast, the result of CDG-based approach seems to be
over-optimistic. There are two reasons. At first, it doesn’t
consider hardware reliability. Secondly, it mixes all scenar-
ios together to describe component reliability which in fact
is different at different scenarios.

Then, we will further compare time complexity of our
approach with PCM-based approach in [12]. Let the number
of nodes in software architecture model be N and the num-
ber hardware resources required by a software system be M.
PCM-based approach considers all possible cases of hard-
ware availability. As each resource has two possible states,
the size of physical state space is 2M . PCM-based approach
adopts flat construction of scenarios, and the time complex-
ity is O(2M · N). SRM-based approach adopts hierarchical
scenario specification, and the size of physical state space is
equal to the number of case scenarios which is assumed to

Fig. 11 Sensitivity of software reliability to concurrency.

be L. SRM approach performs scenario reliability analysis
at each physical state, and the time complexity is O(M·N ·L).
Generally, the number of case scenarios meets L < N. Thus,
it can be seen that SRM-based approach improves the ef-
ficiency of software reliability analysis compared to expo-
nential time complexity of PCM-based approach for a large
component-based software application.

Component-based software applications are usually
distributed Web applications, which can be used simulta-
neously by multiple users. The number of concurrent users
is referred to as workload which considerably affects soft-
ware performance and reliability. In the future work, we
will study in detail how workload influences software reli-
ability. Figure 11 shows how BRS reliability varies with
different workload. It can be seen that software reliabil-
ity gradually decreases as workload increases. Workload
is one of the most important factors that should be consid-
ered when designing the architecture of component-based
software. Key components which significantly affect sys-
tem reliability should be deployed on multiple or high-
performance servers to guarantee high system reliability ac-
cording to practical workload.

6. Conclusion

In this paper, we have presented a framework to quantita-
tively assess software reliability using hierarchical scenario
specification, thus applicable to early phases of the software
life cycle. Our main contribution lies on a reliability anal-
ysis approach for component-based software that takes into
account the dependencies between different kinds of pro-
file that various participators concerns and the difference
between testing and operational profile. Based on the pro-
file dependencies, the approach uses profile propagation to
construct operational profile, and adopts the concept of sub-
domain to realize the mapping from testing to operational
profile. With all of that, reliability analysis based on hierar-
chical scenarios is performed to avoid state space explosion,
and at the same time hierarchical scenarios conform to soft-
ware design specifications. In summary, we can conclude

HOU et al.: USING HIERARCHICAL SCENARIOS TO PREDICT THE RELIABILITY OF COMPONENT-BASED SOFTWARE
413

that the proposed approach can improve the scalability and
objectivity of the current scenario-based reliability predic-
tion approaches.

Acknowledgments

This research was supported by the National Natural Sci-
ence Foundation of China under Grand No.61402333,
No. 61402242, and No. 61272450, and Tianjin Munici-
pal Science and Technology Commission under grand No.
15JCQNJC00400. The authors would also like to thank
Tianjin Key Lab of Intelligence Computing and Novel Soft-
ware Technology and Key Laboratory of Computer Vision
and System, Ministry of Education, for their support of the
work.

References

[1] K. Goševa-Popstojanova and K.S. Trivedi, “Architecture-based ap-
proach to reliability assessment of software systems,” Performance
Evaluation, vol.45, no.2, pp.179–204, 2001.

[2] S.S. Gokhale, “Architecture-based software reliability analysis:
Overview and limitations,” IEEE Trans. Dependable and Secure
Comput., vol.4, no.1, pp.32–40, 2007.

[3] V.S. Sharma and K.S. Trivedi, “Quantifying software performance,
reliability and security: An architecture-based approach,” Journal of
Systems and Software, vol.80, no.4, pp.493–509, 2007.

[4] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez,
D.E.M. Nassar, H. Ammar, and A. Mili, “Architectural-level risk
analysis using UML,” IEEE Trans. Softw. Eng., vol.29, no.10,
pp.946–960, 2003.

[5] S. Anwar, M. Ramzan, A. Rauf, and A.A. Shahid, “Software Main-
tenance Prediction Using Weighted Scenarios: An Architecture Per-
spective,” 2010 International Conference on Information Science
and Applications (ICISA), Seoul, South Korea, pp.1–9, 2010.

[6] A. Ali, D.N.A. Jawawi, and M.A. Isa, “Modeling and calcu-
lation of scenarios reliability in component-based software sys-
tems,” 8th Software Engineering Conference (MySEC), Malaysian,
pp.160–165, 2014.

[7] H. Mei, G. Huang, L. Zhang, and W. Zhang, “ABC: a method of
software architecture modeling in the whole lifecycle,” SCIENCE
CHINA Information Sciences, vol.44, no.5, pp.564–587, 2014.

[8] M. Palviainen, A. Evesti, and E. Ovaska, “The reliability estimation,
prediction and measuring of component-based software,” Journal of
Systems and Software, vol.84, no.6, pp.1054–1070, 2011.

[9] S. Yacoub, B. Cukic, and H.H. Ammar, “A scenario-based reliability
analysis approach for component-based software,” IEEE Trans. Rel.,
vol.53, no.4, pp.465–480, 2004.

[10] R.H. Reussner, H.W. Schmidt, and I.H. Poernomo, “Reliability pre-
diction for component-based software architectures,” Journal of Sys-
tems and Software, vol.66, no.3, pp.241–252, 2003.

[11] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner, “Archi-
tecture-based reliability prediction with the palladio component
model,” IEEE Trans. Softw. Eng., vol.38, no.6, pp.1319–1339, 2012.

[12] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner, “Parame-
terized reliability prediction for component-based software archi-
tectures,” In: Research into Practice–Reality and Gaps, Springer,
pp.36–51, 2010.

[13] G.I.N. Rodrigues, D. Rosenblum, and S. Uchitel, “Using scenar-
ios to predict the reliability of concurrent component-based soft-
ware systems,” Fundamental Approaches to Software Engineering,
pp.111–126, Springer, Edinburgh, 2005.

[14] R. Roshandel, N. Medvidovic, and L. Golubchik, “A Bayesian
model for predicting reliability of software systems at the

architectural level,” Software Architectures, Components, and Ap-
plications, pp.108–126, 2007.

[15] H. Singh, V. Cortellessa, B. Cukic, E. Gunel, and V. Bharadwaj, “A
bayesian approach to reliability prediction and assessment of com-
ponent based systems,” Proc. 12th International Symposium on Soft-
ware Reliability Engineering (ISSRE), Hong Kong, pp.12–21, 2001.

[16] Y. Liu, P. Lin, Y.-F. Li, and H.-Z. Huang, “Bayesian Reliability
and Performance Assessment for Multi-State Systems,” IEEE Trans.
Rel., pp.1–16, 2014.

[17] I. Krka, G. Edwards, L. Cheung, L. Golubchik, and N.
Medvidovic, “A comprehensive exploration of challenges in archi-
tecture-based reliability estimation,” Architecting Dependable Sys-
tems VI, vol.5835, pp.202–227, 2009.

[18] C.Y. Hou, C. Chen, J.S. Wang, and K. Shi, “A scenario-based re-
liability analysis approach for component-based software,” IEICE
Trans. Inf. & Syst., vol.E98-D, no.3, pp.617–626, 2015.

[19] L. Cheung, I. Krka, L. Golubchik, and N. Medvidovic, “Architec-
ture-level reliability prediction of concurrent systems,” Proc. 3rd
ACM/SPEC International Conference on Performance Engineering
(ICPE), Boston, pp.121–132, 2012.

[20] Q. Ao, J. Ai, M. Lu, and F. Zhong, “Scenario-based software oper-
ational profile,” 9th International Conference on Reliability, Main-
tainability and Safety (ICRMS), Guiyang, pp.700–704, 2011.

[21] A. Immonen and E. Niemelä, “Survey of reliability and availabil-
ity prediction methods from the viewpoint of software architecture,”
Software and Systems Modeling, vol.7, pp.49–65, 2008.

[22] A. Amin, L. Grunske, and A. Colman, “An approach to software re-
liability prediction based on time series modeling,” Journal of Sys-
tems and Software, vol.86, no.7, pp.1923–1932, 2013.

[23] D. Hamlet, “Tools and experiments supporting a testing-based the-
ory of component composition,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol.18, no.3, pp.12–52,
2009.

[24] X. Wu and M. Woodside, “Performance modeling from software
components,” Proc. Fourth Int’l Workshop Software and Perfor-
mance, vol.29, pp.290–301, 2004.

[25] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner, “Relia-
bility prediction for component-based software architectures,” On-
line Available: http://sdqweb.ipd.kit.edu/wiki/ReliabilityPrediction,
2011.

Chunyan Hou received the master’s de-
gree in computer science from Beihang Univer-
sity in 2006, and the PhD degree in computer
science from Harbin Institute of Technology in
2011. Currently, she is working as a lecturer
in school of computer and communication engi-
neering, Tianjin University of Technology. Her
main research interests include software reliabil-
ity evaluation and software testing.

http://dx.doi.org/10.1016/s0166-5316(01)00034-7
http://dx.doi.org/10.1109/tdsc.2007.4
http://dx.doi.org/10.1016/j.jss.2006.07.021
http://dx.doi.org/10.1109/icisa.2010.5480420
http://dx.doi.org/10.1109/mysec.2014.6986007
http://dx.doi.org/10.1016/j.jss.2011.01.048
http://dx.doi.org/10.1109/tr.2004.838034
http://dx.doi.org/10.1016/s0164-1212(02)00080-8
http://dx.doi.org/10.1109/tse.2011.94
http://dx.doi.org/10.1007/978-3-642-13821-8_5
http://dx.doi.org/10.1007/978-3-540-77619-2_7
http://dx.doi.org/10.1007/978-3-540-77619-2_7
http://dx.doi.org/10.1109/issre.2001.989454
http://dx.doi.org/10.1007/978-3-642-10248-6_9
http://dx.doi.org/10.1587/transinf.2014edp7241
http://dx.doi.org/10.1145/2188286.2188305
http://dx.doi.org/10.1109/icrms.2011.5979355
http://dx.doi.org/10.1016/j.jss.2013.03.045
http://dx.doi.org/10.1145/974044.974089

414
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Jinsong Wang received the PhD degree in
computer science and technology from Nankai
University in 2005. Currently, he is working
as a professor in school of computer and com-
munication engineering, Tianjin University of
Technology. His main research interests include
computer network and information security.

Chen Chen received the PhD degree in
computer science and technology from Harbin
Institute of Technology in 2011. Currently,
he is working as a lecturer in the College
of Computer and Control Engineering, Nankai
University. His main research interests in-
clude information retrieval and natural language
processing.

