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PAPER

Deep Relational Model: A Joint Probabilistic Model with a
Hierarchical Structure for Bidirectional Estimation of Image and
Labels

Toru NAKASHIKA†a), Member

SUMMARY Two different types of representations, such as an image
and its manually-assigned corresponding labels, generally have complex
and strong relationships to each other. In this paper, we represent such
deep relationships between two different types of visible variables using an
energy-based probabilistic model, called a deep relational model (DRM)
to improve the prediction accuracies. A DRM stacks several layers from
one visible layer on to another visible layer, sandwiching several hidden
layers between them. As with restricted Boltzmann machines (RBMs) and
deep Boltzmann machines (DBMs), all connections (weights) between two
adjacent layers are undirected. During maximum likelihood (ML) -based
training, the network attempts to capture the latent complex relationships
between two visible variables with its deep architecture. Unlike deep neural
networks (DNNs), 1) the DRM is a totally generative model and 2) allows
us to generate one visible variables given the other, and 2) the parameters
can be optimized in a probabilistic manner. The DRM can be also fine-
tuned using DNNs, like deep belief nets (DBNs) or DBMs pre-training.
This paper presents experiments conduced to evaluate the performance of
a DRM in image recognition and generation tasks using the MNIST data
set. In the image recognition experiments, we observed that the DRM out-
performed DNNs even without fine-tuning. In the image generation exper-
iments, we obtained much more realistic images generated from the DRM
more than those from the other generative models.
key words: image classification, image generation, deep learning, gener-
ative model, Boltzmann distribution

1. Introduction

Since Hinton et al. introduced an effective pre-training al-
gorithm for deep neural networks∗ (DNNs) using deep be-
lief networks (DBNs) in 2006 [1], the use of deep learn-
ing has rapidly spread in the field of machine learning, ar-
tificial intelligence, signal processing, etc. A DBN is a
graphical model that stacks restricted Boltzmann machines
(RBMs) [2], [3] layer-by-layer, each of which represents
the probability distribution of visible variables with hid-
den variables. The effectiveness of using DBNs (or RBMs)
has been proved especially in discriminative or determinis-
tic tasks, such as handwritten character recognition [1], 3-
D object recognition [4], machine transliteration [5], speech
recognition [6], and voice conversion [7]. The discrimina-
tive tasks are generally achieved by setting the initial values
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of weights of a DNN as the trained weights of a DBN, and
running back-propagation to fine-tune the DNN weights.
This can be done due to the ability of deep learning that
captures high-level abstractions at higher layers.

When it comes to the use of deep learning for
generation tasks, we can find various models, such as
a deep Boltzmann machines (DBM) [8], [9], a denois-
ing auto-encoder (DAE) [10], a shape Boltzmann machine
(ShapeBM) [11], and a sum-product network (SPN) [12].
These models were mainly introduced to capture high-order
abstractions for good representation of the observations,
rather than for discriminative goal. Once obtaining high-
level abstractions, we can, for instance, remove some noise
on the observations, or restore missing parts in the observa-
tions.

Most of the existing deep-learning approaches focus on
extracting high-order abstractions from one variable. In this
paper, we try to capture such high-order relationships be-
tween two different types of variables based on deep learn-
ing. For that, we introduced a probabilistic model called a
deep relational model (DRM) [13]. A DRM is similar to an
RBM and a DBM, each of which is a probabilistic model
based on an energy function. The model sandwiches sev-
eral hidden layers∗∗ between two visible layers and defines a
joint probability for the two visible variables. Every two ad-
jacent layers are connected with undirected weights, which
are estimated so as to maximize the likelihood of the two
visible variables. Interestingly, since the DRM is a totally
generative model, it allows us not only to apply it to recogni-
tion tasks, but to also generate samples of one variable from
the other variable. For example, considering that we have
two kinds of variables for a hand-written digit image and a
one-hot vector of the labels, we can estimate the label by in-
ferring mean-field posteriors given an image (classification
task). On the other hand, by inferring posteriors given a la-
bel, we could obtain a generated image corresponding to the
label (generation task). In this paper, we report additional
experimental results to further investigate the performance
of the DRM.

This paper is organized as follows. In Sect. 2, we state

∗The term “neural networks” usually refers to a feedforward
(directed) type of neural networks, and we also follow this here.
∗∗When we give one hidden layer for our model, it is equivalent

to an RBM with a concatenated vector of two visible variables.
This will be discussed later.
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Fig. 1 Graphical representation of (a) bidirectional associative memories, (b) a restricted Boltzmann
machine, (c) a deep belief network, (d) a deep Boltzmann machine, (e) a deep energy model, (f) a deep
neural network, and (g) a deep relational model. Two-way arrows and one-way arrows indicate undi-
rected weights and directed weights, respectively. Dotted arrows represent deterministic relationships.

the differences between the DRM and related models. In
Sect. 3, we review the formulation of energy-based models.
We show the definition of a DRM and its parameter estima-
tion algorithm in Sect. 4. In Sect. 5, we show our experi-
mental results and conclude our findings in Sect. 6.

2. Related Work

The purpose of this paper is to improve the prediction ac-
curacies (such as classification error rate) by means of the
cyclic bidirectional propagation between two different visi-
ble variables, x and y. When we predict y from x, measuring
the closeness of the input x and the reconstruction of x from
the predicted y would also help the further prediction of y.
Collaterally, we can also use the already-trained model for
the reverse prediction; i.e., the prediction of x from y, which
reduce the additional costs to train another model for the re-
verse prediction. In this section, we compare our proposed
model, a deep relational model (DRM), with other related
models: bidirectional associative memories (BAMs) [14],
a restricted Boltzmann machine (RBM), a deep belief net-
work (DBN) [1], a deep Boltzmann machine (DBM) [8], [9],
a deep energy model (DEM) [15], and a deep neural net-
work (DNN). These models are graphically represented in
Fig. 1. BAMs and an RBM consist of two layers with hav-
ing bidirectional connections between them. The difference
of these is that BAMs represent the relationships between
two different visible variables x and y, while an RBM repre-
sents one visible variable x and hidden variable h. As shown
in Fig. 1, each model other than BAMs and an RBM has a
deep architecture by stacking a visible layer x and multiple
hidden layers h1, h2, · · · layer-by-layer with having unidi-
rectional or bidirectional connections between adjacent two
layers. The deep architecture has the capability of represent-
ing more complex data, compared with an RBM that stacks
a single hidden layer. A DNN and the proposed model fur-
ther stack another visible variable y on the top. Therefore,
these two models try to capture latent relationships between
x and y, while the other models just discover latent features
or representation from x. In classification tasks, the RBMs

were used as classifiers by splitting the visible units into
classification units and observation units [16], [17]. These
approaches can be regarded as one hidden layer version of
the proposed model; in other words, the DRM method ex-
tends the classification by means of the RBMs.

An important factor in distinguishing each model is the
direction of the connections between two adjacent layers.
For example, a DBN has undirected connections at the top
two layers, which form an RBM, and directed connections
to the lower layers. A general DNN is a feedforward model;
every two adjacent layers have deterministic weights in the
direction from the source to the target variables. Mean-
while, the proposed DRM has totally bidirectional connec-
tions through all layers, just like a DBM does. This leads
to the propagation of information from the bottom up and
from the top down in the network, while a DNN only infers
from bottom to top. Assuming x and y indicate a vectorized
image and a one-hot vector of the labels, a DRM allows us
not only to estimate the label vector given an image, but also
to generate an image from given a label vector.

Another aspect is the way parameters are estimated.
Energy-based models, which include BAMs, RBMs, DBMs,
DEMs, and DRMs, are stochastic models in which the pa-
rameters are estimated so as to maximize the likelihood of
observations†. On the other hand, the parameters of a DNN
are optimized in a deterministic manner to minimize the
mean square error (MSE) or the cross entropy (CE) using
a back-propagation algorithm. Since a stochastic model,
such as a DRM, optimizes the parameters in a probabilistic
framework, we can further extend the parameter estimation
method to using maximum a posteriori (MAP), Bayesian in-
ference, and so on.

Typically, deep-learning methods, such as a DBN, a
DBM and a DEM, are used for the pre-training of a DNN.
As reported in [1], a pre-trained DNN dramatically outper-
formed a randomly-initialized DNN. Generally speaking, in
a deep network, error signals get weaker as they are back-
propagated to the lower layer, which causes difficulties in
estimating the parameters of the lower layer. Therefore,

†In practice, an approximation method is used.
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the pre-training approaches are considered to be effective in
compensating for the thin gradients of the parameters. How-
ever, these approaches learn high-order representation in an
unsupervised manner without knowing the existence of the
target features. Therefore, it could be said that the learned
weights are not necessarily appropriate for the initial val-
ues of a DNN that takes the target features into account.
Our model, in contrast, connects with a visible layer for the
target features and optimizes the parameters jointly, which
may lead to better results compared with the above methods,
even in a recognition task. Furthermore, our model is not
adversely affected by the problems associated with DBMs.
During the training of a DBM, it is difficult to estimate the
weight parameters at the higher layers due to the fading gra-
dients far from the visible layer [9]. On the contrary, our
model sandwiches hidden layers with two visible layers at
the opposite sides, and hence it propagates gradients more
clearly top-to-bottom and bottom-to-top.

As for a DEM, Ngiam et al. also proposed a dis-
criminative extension that considers target features in the
model [15]. The model is, however, still discriminative; it
does not have an ability to generate the source features from
the target features. Furthermore, what the weights at the
lower layers are trained without knowing about the target
features also applies to this model.

3. Energy-Based Models

Our model, a deep relational model (DRM), will be defined
as an energy-based model. In this section, we briefly review
energy-based models and remind of some kinds.

Energy-based models gives an energy to each config-
uration of the variables, such as an energy of a single unit
of the variables (unary potential), and an energy between
two units of the variables (pair-wise potential). These kinds
of probabilistic models define a probability density function
(PDF) using an arbitrary energy function E(x; θ), as follows:

p(x; θ) =
1

Z(θ)
e−E(x;θ), (1)

where Z is a normalization term so that the summation of the
probability over x equals to 1 (i.e., Z =

∑
x e−E(x;θ)), and θ is

model parameters to be estimated. Note that Z is a function
that depends on not x but θ.

The parameters of an energy-based model can be esti-
mated by performing stochastic gradient descent (SGD) on
the log-likelihood of the training data (N samples). Specifi-
cally, the objective function is as follows:

L(θ;D) =
1
N

∑

x∈D
log p(x; θ). (2)

Using the stochastic gradient, which is calculated as

∂L(θ;D)
∂θ

= − 1
N

∑

x∈D

∂E(x; θ)
∂θ

+
∑

x̃

p(x̃)
∂E(x̃; θ)
∂θ

, (3)

each paramter is iteratively updated as follows:

θ(new) = θ(old) − η∂L(θ(old);D)
∂θ(old)

, (4)

where η is a learning rate and empirically determined. How-
ever, it is usually difficult to compute the second term in
Eq. (3) due to enormous amount of calculation of all pos-
sible configurations. Therefore, a sampling method such
as Monte-Carlo, Gibbs sampling [18], or contrastive diver-
gence [1] is usually used to approximate the second term.
For more efficient learning, we can also employ the adap-
tive learning rate [19] or parallel tempering learning meth-
ods [20], [21].

3.1 Restricted Boltzmann Machine

A restricted Boltzmann machine (RBM) [2], [3] is one of the
energy-based models, which models a joint probability dis-
tribution of visible binary-variables x ∈ {0, 1}I and invisible
(hidden) binary-variables h ∈ {0, 1}J as shown in Fig. 1 (b).
In this model, it is assumed that there are undirected con-
nections between visible-hidden units but no connections
between visible-visible units nor hidden-hidden units. The
probability distribution is defined as:

p(x; θ) =
∑

h

p(x, h; θ) (5)

p(x, h; θ) =
1

Z(θ)
e−ERBM(x,h;θ), (6)

with the following energy function:

ERBM(x, h; θ) = −b�x − c�h − x�Wh, (7)

where W ∈ RI×J , b ∈ RI , and c ∈ RJ are model parameters
for the weights of connection between visible units and hid-
den units, a bias vector of the visible units, and a bias vector
of the hidden units, respectively.

Because neither visible nor hidden units are connected
to each other, the conditional probabilities p(x|h) and p(h|x)
form simple equations as follows:

p(xi|h) = B(xi;σ(bi +Wi:h)) (8)

p(h j|x) = B(σ(c j +W�
: jx)), (9)

where Wi: and W: j denote the ith row and the jth column
vectors of the matrix W, respectively. B(·; π) and σ(·) indi-
cate the Bernoulli distribution with the success probability π
and an element-wise sigmoid function that is σ(x) = 1

1+e−x ,
respectively.

3.2 Deep Boltzmann Machine

Another example of the energy-based model is a deep
Boltzmann machine (DBM) [8], [9]. A DBM stacks mul-
tiple hidden layers with having undirected connections
through all layers as shown in Fig. 1 (d). The deep archi-
tecture may help to capture more complicated, higher-order
internal representations. A generall form of the DBM that
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consists of visible variables x ∈ {0, 1}I and L hidden vari-
ables h(l) ∈ {0, 1}Jl (l = 1, · · · , L) defines the probability
distribution as follows:

p(x; θ) =
∑

∀h(l)

p(x,∀h(l); θ) (10)

p(x,∀h(l); θ) =
1

Z(θ)
e−EDBM(x,∀h(l);θ). (11)

The energy function is defined as:

EDBM(x,∀h(l); θ) = −b�x −
L∑

l=1

c(l)�h(l)

− x�W(1)h(1) −
L∑

l=2

h(l−1)�W(l)h(l),

(12)

where W(l) ∈ RJl−1×Jl and c(l) ∈ RJl are additional parameters
to the RBM parameters.

The conditional probabilities are given by:

p(xi|h(1)) = B(xi;σ(bi +W(1)
i: h(1))) (13)

p(h(l)
j |h(l−1), h(l+1))

= B(h(l)
j ;σ(c(l)

j +W(l)
: j

�
h(l−1) +W(l+1)

j: h(l+1)))
(14)

p(h(L)
j |h(L−1)) = B(h(L)

j ;σ(c(L)
j +W(L)

: j

�
h(L))). (15)

Note that the middle hidden layers take values from two lay-
ers as shown in Eq. (14).

4. Deep Relational Model

Considering a dataset of images and its the labels, the labels
should have been intentionally-, carefully-, and manually-
assigned. As a result, there must be a strong correlation
between an image and the assigned label. To capture latent,
complicated, high-order relationships between two observ-
able variables, such as an image and a one-hot vector of the
label, we introduce a deep stochastic network called a deep
relational model (DRM).

4.1 Definition and Generative Procedure

As shown in Fig. 1 (g), a DRM is a deep network that sand-
wiches multiple hidden layers with two visible layers. As
an energy-based model, a DRM defines a joint probability
distribution of one (first) visible variables x ∈ {0, 1}I and the
other (second) visible variables y ∈ {0, 1}K along with hid-
den variables h(l) ∈ {0, 1}Jl (l = 1, · · · , L), where L is the
number of hidden layers. Similarly to an RBM and a DRM,
each unit is only connected to the units at the adjacent lay-
ers, and is not connected to the units at the same layer. We
define the joint probability distribution using a DRM as fol-
lows:

p(x, y; θ) =
∑

∀h(l)

p(x, y,∀h(l); θ) (16)

p(x, y,∀h(l); θ) =
1

Z(θ)
e−EDRM(x,y,∀h(l);θ), (17)

where the energy function EDRM is defined as:

EDRM(x, y,∀h(l); θ)

= −b�x −
L∑

l=1

c(l)�h(l) − d�y − x�W(1)h(1)

−
L∑

l=2

h(l−1)�W(l)h(l) − h(L)�W(L+1)y.

(18)

In addition to the previously-defined parameters b, c(l), and
W(l), the bias parameters for the second visible variables
d ∈ RK are used. W(L+1) ∈ RJl×K is the connection weights
between the highest hidden layer and the second visible
layer.

Each conditional distributions given the units at the ad-
jacent layers can be computed as:

p(xi|h(1)) = B(xi;σ(bi +W(1)
i: h(1))) (19)

p(h(l)
j |h(l−1), h(l+1))

= B(h(l)
j ;σ(c(l)

j +W(l)
: j

�
h(l−1) +W(l+1)

j: h(l+1)))
(20)

p(yk |h(L)) = B(yk;σ(dk +W(L)
:k

�
h(L))). (21)

Note that the conditional probabilities of h(1) and h(L) can
be calculated from Eq. (20) by regarding as h(0) = x and
h(L+1) = y, respectively. Although the joint configuration
of x and y is defined in a DRM, the first variable x is not
directly connected to the second variable y, and y is not
required to infer x, as Eq. (19) indicates. Through hidden
layers, x and y propagate their information to each other
layer-by-layer. Therefore, the network models deep latent
correlations between x and y. That means the trained net-
work has the ability to estimate one variable given the other
variable. To estimate variable ŷ given x, for example, we use
an iterative mean-field update approach, as shown in Fig. 2.
In this procedure, we first compute the expectations (mean-
field approximation) for each hidden layer’s unit from bot-
tom to top, as in Eq. (20), regarding all the values of the units
at the upper layer as zero. Then, we calculate the expecta-
tions of hidden units using the previously-calculated values

Fig. 2 Generating ŷ from x by repeating mean-field updates.
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for h(l−1) and h(l) in Eq. (20). We iterate this procedure T
times with clamping the values of x (in our experiments, we
used T = 100). Finally, we obtain the expected values of y
by calculating E[y|x] ≈ E[y| ˆh(L)] = σ(d+W(L)� ˆh(L)), where

ˆh(L) is the lastly-updated ˆh(L) after the iteration.
We can also extend† the DRM so that it feeds real-

valued data for x and/or y using the Gaussian scheme
like Gaussian-Bernoulli RBM [22] or Gaussian-Bernoulli
DBM [23]. In this scheme, when we want to feed real-
valued x ∈ RI , we replace the x-related terms in Eq. (18)
−b�x− x�W(1)h(1) with x�Σxx/2− b�Σxx− x�ΣxW(1)h(1),
where Σx � diag(s2

x) indicates the diagonal matrix whose
diagonal elements are variances of x, s2

x ∈ RI . This changes
the conditional probability p(xi = 1|h(1)) in Eq. (19) as fol-
lows:

p(xi|h(1)) = N(xi; bi +W(1)
i: h(1), sx

2
i ) (22)

where N(·; μ, s2) indicates the Gaussian distribution with
the mean μ and the variance s2. For the real-valued y ∈
R

K , we can similarly modify the definition in Eq. (18) by
replacing −d�y − h(L)�W(L+1)y with y�Σyy/2 − d�Σyy −
h(L)�W(L+1)Σyy, where Σy � diag(σ2

y), σ2
y ∈ RK , which

yields the following conditional probability:

p(yk |h(L)) = N(yk; dk +W(L)
:k

�
h(L), σy

2
k). (23)

4.2 Parameter Optimization

For parameter estimation, the joint log-likelihood of x and
y, L(θ;D) = 1

N

∑
(x,y)∈D log p(x, y; θ), is used. Partially dif-

ferentiating the likelihood with respect to each parameter,
we obtain:

∂L(θ;D)
∂bi

= 〈xi〉d − 〈xi〉m (24)

∂L(θ;D)

∂c(l)
j

= 〈h(l)
j 〉d − 〈h(l)

j 〉m (25)

∂L(θ;D)
∂dk

= 〈yk〉d − 〈yk〉m (26)

∂L(θ;D)

∂W (l)
i j

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

〈xih
(1)
j 〉d − 〈xih

(1)
j 〉m (l = 1)

〈h(l−1)
i h(l)

j 〉d − 〈h(l−1)
i h(l)

j 〉m (l = 2, · · · , L)

〈h(L)
i y j〉d − 〈h(L)

i y j〉m (l = L + 1)

(27)

where 〈·〉d and 〈·〉m indicate the expectations of the empiri-
cal data and the inner model, respectively. As mentioned be-
fore, the second terms are computationally difficult. There-
fore, we approximate the second terms with the expectations
of the reconstructed data (x̄, ȳ) that are sampled from the
iteratively-updated inner model (Fig. 3). The iterative pro-
cedure is similar to the generation scheme shown in Fig. 2,

†Nevertheless, in this paper, we focus on the evaluation of
Bernoulli-Bernoulli DRM.

Fig. 3 Iterative inference using mean-field updates. White circles and
black circles indicate mean-field inference and randomly-generated sam-
ples with their probabilities, respectively.

but we use the empirical values of y during iteration. After
updating each expected value of hidden units T times, we
sample x̄ and ȳ using Eqs. (19) and (21).

In our preliminary experiments, we observed that all
the parameters of a DRM can be simultaneously estimated
using the above iteration procedure starting from randomly-
initialized values. However, to boost up parameter optimiza-
tion and avoid the local maxima problem, we can also em-
ploy a pre-training scheme illustrated in Fig. 4 in practice.
In this scheme, before training a DRM, we perform greedy
layer-wise training, which is equivalent to a DBN [1]. That
is, we first train the RBM with the visible units of one rep-
resentation (in Fig. 4, x), then train the following RBM by
setting the visible units with the expected values of the hid-
den units inferred from the previous RBM, and repeat this
procedure until obtaining the last hidden layer. In the train-
ing stage of the DRM, the parameters obtained in the pre-
training are set to the initial values of the training.

When we want to do image recognition tasks, we can
estimate the label y given an image x, as discussed in the
previous subsection (see Fig. 2). However, we can also em-
ploy a fine-tuning scheme. As shown in the right of Fig. 4,
after the training of the DRM, we fine-tune each parameter
using back-propagation, treating it as a discriminative DNN.

5. Experiments

5.1 Setup

To evaluate our method and examine its potential, we con-
ducted recognition and generation experiments using the
MNIST dataset. The dataset contains 60,000 training and
10,000 test images of handwritten digits (0–9) with a size
of 28 × 28 pixels, along with the manually-assigned label
data. To speed-up learning, we divided the training data into
mini-batches, each of which contained 50 data, and trained
the model with the fixed learning rate of 0.01 in 100 epochs.
For the network architecture, we followed the configuration
in [8], which led to preferable results; i.e., we used the four-
layer network architecture consisting of the first visible layer
of 784 units, the first hidden layer of 500 units, the second
hidden layer of 1,000 units, and the second visible layer of
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Fig. 4 Flow of training a DRM (in this example, three-hidden-layer DRM). Firstly, the weight param-
eters are pre-trained by performing the training of a DBN. Secondly, the parameters are optimized in a
whole network of a DRM. When we apply the model to discriminative tasks, the DRM parameters are
used as the initial values of a DNN, and then fine-tuned using back-propagation.

Fig. 5 Examples from the MNIST dataset.

10 units.

5.2 Convergence Curve with/without Pre-Training

Before going into details of the evaluation, we investigated
the effectiveness of the proposed pre-training method of
DRM discussed in Sect. 4.2. Figure 6 compares the conver-
gence curves when using the pre-training scheme (lines in
red) and when training the DRM without pre-training (lines
in blue). As shown in Fig. 6, the training of DRM was pretty
stable even without pre-training. However, the pre-training
scheme avoided local maxima and considerably improved
the both MSE curves in terms of convergence speed and ac-
curacy. As for the evaluation to the test set, we obtained
the error rates of 1.03% and 1.27% from the DRM with and
without pre-training, respectively. This shows the impor-
tance of introducing the pre-training.

5.3 Results and Discussion

5.3.1 Classification Task

First, we compared our model, DRM, with the conventional
DNN in image classification by changing the number of
training data as 1k, 10k, 30k, and 60k. We used the same net-
work architecture of [784-500-1000-10] for the DNN. The
reason to compare with the randomly-initialized DNN is be-
cause the most current applications based on deep learning

Fig. 6 Convergences curve of DRM with and without pre-training re-
garding the first visible units x (above) and the second visible units y (be-
low). The vertical and horizontal axes indicate the MSE and the number of
epochs during the training, respectively.

use the simple DNN without pre-training [24]. We also com-
pared the DRM with and without fine-tuning (these will be
identified as “DRM” and “fine-DRM,” respectively). Each
configuration was repeated five times and evaluated with the
average error rate and the 95% confidence intervals because
the methods use the SGD optimization that includes ran-
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Fig. 7 Error rate [%] from a DNN, a DRM, and its fine-tuned. The error
bars in red indicate the 95% confidence intervals through five trials.

Fig. 8 Error rate [%] for the MNIST dataset obtained by each method.
The error bars indicate the 95% confidence intervals through five trials.

dom permutation. The results are shown in Fig. 7, which
indicates that the fine-DRM significantly outperformed the
DNN regardless of the number of training data. It is worth
noting that we obtained better performance from the DRM
even without fine-tuning than the DNN when the training
size was small, and similar performance from the DNN
and the DRM when the training size was large, although
the DRM without fine-tuning is generative model while the
DNN is discriminative model. These results are similar to
those in [16], which describes that the smaller training sets
tend to favor generative learning. As shown in Fig. 7, the
differences in performance of each method becomes more
significant as the smaller amount of training data is used.

Secondly, we compared our method with the three
conventional methods: a DNN, a DBN, and a DBM with
the same condition of the DRM when all the training data
was given. Each method had the same network architec-
ture ([784-500-1000-10]) and evaluated as average error rate
through five trials. After training the DBN and the DBM, we
fine-tuned their parameters using back-propagation (noted
as “fine-DBN” and “fine-DBM”, respectively, in Fig. 8),
while a DNN trained the parameters starting from randomly-
initialized values. Figure 8 shows the comparison results.
Our model “DRM” used the mean-field-update scheme to
estimate y (Fig. 2), and “fine-DRM” used the fine-tuning
scheme and produced the label vectors in a feedforward

Fig. 9 Generated images given each one-hot label using DRM (a), DBM
(b), and RBM (c), and mean values over the training data calculated for
each label (d).

DNN (Fig. 4). As shown in Fig. 8, our model “fine-DRM”
significantly performed best of all. This is because a DRM
models a route from an image to the label during the train-
ing, while a DBN and DBM do not. As observed, the DRM
is a bidirectional generative model, and if the parameters are
specialized and tuned as a directional, discriminative model
(i.e., “fine-DRM”), the performance was improved.

5.3.2 Generation Task

As we generate the label given an image using a DRM, it
will be possible to generate the image given a label, because
a DRM models the joint distribution of the two. To examine
the potential of this possibility, we conducted image gener-
ation experiments. In these experiments, we generated im-
ages (estimated x) given the one-hot labels y through mean-
field updates in a similar manner to the generation scheme
(reverse up and down in the left side of Fig. 2). Essentially,
this procedure generates an image from y; however, the di-
mension of 10 for the vector y is too small to estimate the
upper features properly through the iterative updates. There-
fore, we gave the initial values of hidden units and x for each
class label as the means of the hidden units and the first visi-
ble units, respectively, calculated from the training data. Af-
ter that, we obtained the images for each one-hot vector of
the labels as shown in Fig. 9 (a). For comparison, we ob-
tained images using DBM and RBM. Both models feed a
concatenated vector of the image and label [x�y�]� as input,
and generated images in a similar procedure to the DRM.
That is, we set the mean values of hidden units and the in-
put [E[x]�y�]� as initial values for each class label, where
E[x] is expectation of x from the training data, and repeated
updates of the hidden values and x. The images obtained
from the DBM and RBM are shown in Figs. 9 (b) and (c),
respectively. For reference, images obtained from just cal-
culating the means of each pixel for each class is shown in
Fig. 9 (d). Obviously, the mean images are blurred and ob-
scure. The images from DBM and RBM are not so blurred
as the means; however, there are many pixel-wise errors to
imagine the true number-images. On the other hand, the
images from DRM are very clear and sharpened, and fairly
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resembles real handwritten digits. This is because the pro-
posed model can capture high-order correlations between
the image and labels by considering the cyclic path between
them. During the training of DRM, the estimated images
from the given labels are propagated to the label layer, the
estimated labels are also compared to the correct labels, and
vice versa.

6. Conclusion

In this paper, we investigated our joint probability model of
two kinds of visible variables, called a deep relational model
(DRM), that has a hierarchical architecture to capture the la-
tent, complicated, high-order relationships between the two,
especially aimed at the improvement of classification ac-
curacies. The DRM is viewed as one of the energy-based
models, and the parameters are trainable using maximum
likelihood estimation with mean-field approximation. In the
image recognition experiments, we showed that the DRM
with fine-tuning performed best of all the comparable deep
learning models. We also showed that the DRM even with-
out fine-tuning outperformed the discriminative DNN. In the
image generation experiments, we obtained considerably re-
alistic images from the DRM. It would be also possible to
extend the proposed model so as to feed real-valued data by
replacing the Bernoulli formulation regarding Eqs. (19) and
(21) with the Gaussian formulation. In the future, we would
like to investigate such potential when we apply it to other
tasks having different kinds of representations, such as the
image and speech signal, the text and speech, etc.
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