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DNN-Based Speech Synthesis Using Speaker Codes∗

Nobukatsu HOJO†a), Yusuke IJIMA†, and Hideyuki MIZUNO††, Members

SUMMARY Deep neural network (DNN)-based speech synthesis can
produce more natural synthesized speech than the conventional HMM-
based speech synthesis. However, it is not revealed whether the synthe-
sized speech quality can be improved by utilizing a multi-speaker speech
corpus. To address this problem, this paper proposes DNN-based speech
synthesis using speaker codes as a method to improve the performance of
the conventional speaker dependent DNN-based method. In order to model
speaker variation in the DNN, the augmented feature (speaker codes) is fed
to the hidden layer(s) of the conventional DNN. This paper investigates
the effectiveness of introducing speaker codes to DNN acoustic models
for speech synthesis for two tasks: multi-speaker modeling and speaker
adaptation. For the multi-speaker modeling task, the method we propose
trains connection weights of the whole DNN using a multi-speaker speech
corpus. When performing multi-speaker synthesis, the speaker code cor-
responding to the selected target speaker is fed to the DNN to generate
the speaker’s voice. When performing speaker adaptation, a set of con-
nection weights of the multi-speaker model is re-estimated to generate a
new target speaker’s voice. We investigated the relationship between the
prediction performance and architecture of the DNNs through objective
measurements. Objective evaluation experiments revealed that the pro-
posed model outperformed conventional methods (HMMs, speaker depen-
dent DNNs and multi-speaker DNNs based on a shared hidden layer struc-
ture). Subjective evaluation experimental results showed that the proposed
model again outperformed the conventional methods (HMMs, speaker de-
pendent DNNs), especially when using a small number of target speaker
utterances.
key words: speech synthesis, acoustic model, deep neural network, speaker
codes

1. Introduction

Recent studies have shown that deep neural network (DNN)-
based speech synthesis [2]–[4] can produce more natural
synthesized speech than the conventional hidden Markov
model (HMM)-based speech synthesis. However, DNN-
based speech synthesis requires a considerable amount of
speech data uttered by the target speaker to obtain suffi-
cient performance. The problem then becomes the high cost
required to generate speech from various speakers from a
DNN because we need a considerable amount of speech data
from all the speakers the system uses, and annotations of
phonetic and prosodic contextual information on them.
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In the field of HMM-based speech synthesis, many
techniques have succeeded in generating speech from a
smaller amount of target speaker data. A powerful method
is an average-voice-based speech synthesis technique with
model adaptation [5]. In this technique, average voice mod-
els are created from several speakers’ speech data and are
adapted to a small amount of speech data from a tar-
get speaker using model adaptation algorithms such as
CSMAPLR [6]. Another successful method is based on
cluster adaptive training (CAT) [7]. This model has multi-
ple compact decision trees that are interpolated to produce
a huge variety of possible contexts, and is trained using a
multi-speaker speech corpus to improve the speech quality.

Motivated by these previous studies in HMM-based
speech synthesis, we aimed in our work to improve the syn-
thetic speech quality from a DNN by using a multi-speaker
speech corpus. One possible approach to train a DNN using
a multi-speaker speech corpus is adopting the shared hid-
den layer structure [8]. The model structure is composed
of the same hidden layers shared among different speak-
ers and the output layers composed of speaker-dependent
nodes. It has been shown that this model structure can
improve synthesized speech quality for both multi-speaker
modeling and speaker adaptation tasks. Another approach to
train a DNN using a multi-speaker speech corpus is to feed
augmented speaker specific features to the network in order
to incorporate speaker-level information to the DNNs. In
the speech recognition, for example, this approach has been
shown to be an effective way to feed i-vectors [9] or speaker
codes [10], [11] as augmented features. As for DNN-based
speech synthesis, a recent study [12] conducted an experi-
mental analysis using i-vector based feature augmentation.
This work is based on the assumption that speaker code-
based features can also be effectively introduced to DNNs
for speech synthesis.

This paper proposes to use augmented features based
on speaker codes as a relatively simple method for multi-
speaker modeling and speaker adaptation for DNN-based
speech sythesis. Initially we proposed using speaker codes
for DNN-based speech synthesis [1], and it has been shown
that this approach can achieve better synthetic speech qual-
ity than can be obtained with conventional speaker depen-
dent DNNs and speaker adaptation using HMMs. Luong et
al. [13] also proposed using the features of speaker codes for
DNN-based speech synthesis. Their main focus is to control
the speech characteristics by modifying the augmented fea-
tures and it has been shown that such modification can be
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Fig. 1 The model architecture of the conventional speaker dependent
DNN.

performed effectively by manipulating the input code vec-
tors. However, it still has not been revealed which approach,
the augmented feature-based approach or the shared hidden
layer approach, is better able to model multi-speaker char-
acteristics for DNN-based speech synthesis. Adding to the
contribution of our previous study [1], we describe in this
paper how we conducted an objective evaluation experiment
to compare the performance of the proposed speaker code-
based approach with that of the conventional shared hidden
layer approach.

2. Conventional DNN-Based Speech Synthesis

2.1 Speaker Dependent DNN [2]

The baseline model is a DNN acoustic model similar to the
one described by Zen et al. [2]. The model is illustrated in
Fig. 1. The DNN is used as a function to map the linguistic
feature vectors to acoustic feature vectors. First, the input
text is converted to the linguistic feature vector. The input
features include binary answers to questions about linguis-
tic contexts and numeric values. Then the linguistic feature
vector is mapped to the output feature by forward propaga-
tion of DNN. The output features include spectral and ex-
citation parameters and their time derivatives. The baseline
model is trained using only the target speaker utterances in
the training corpus.

3. Multi-Speaker Modeling Using Speaker Codes

There are two possible model architectures to introduce
speaker codes into the DNN-based speech synthesis. One
is similar to the architecture proposed in the speech recog-
nition field [10], [11], which is illustrated in Fig. 2. We call
this architecture “embedded speaker code” in this paper.
The other is a simplified version of the embedded speaker
code model illustrated in Fig. 3. This model architecture
does not embed the speaker ID vector and directly feeds it
to hidden layers. We call this architecture “one-hot speaker
code” in this paper.

Fig. 2 The model architecture of the embedded speaker code-based
speech synthesis. The red bold lines indicate the re-estimated parameters
for speaker adaptation.

Fig. 3 The model architecture of the one-hot speaker code-based speech
synthesis. The red bold lines indicate the re-estimated parameters for
speaker adaptation.

3.1 Embedded Speaker Code-Based Speech Synthesis

As shown in Fig. 2, in this model architecture, a speaker ID
is embedded to a speaker code S through a set of connection
weights. Here the speaker code S represents the speaker
information. The speaker codes are fed to all hidden layers.
The speaker ID vector u = [v1, · · · , vK]T for speaker m is set
to the following fixed 1-of-K form:

vk =

⎧
⎪⎪⎨
⎪⎪⎩

1 (k = m)

0 (k � m)
(1)

where K is the number of speakers in the training data.
For the formulation below, the connection weight from

the speaker code S to the k-th hidden layer is represented
by Wk

S. The vector fed by speaker code S to the k-th hidden
layer is represented by yk.

For embedded speaker codes, we can get

yk = Wk
SS

= Wk
SWEu, (2)

where u is a one-hot vector that represents the speaker ID
in (1) and WE is the embedding connection weight from the
speaker ID vector u to speaker codes S. The size of each
vector or matrix is:

yk : Dk
h (3)

WS : Dk
h × DS (4)
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WE : DS × K (5)

u : K. (6)

By setting DS < Dk
h and DS < K, we can constrain

the matrix Wk
SWE to be low rank (=DS) and yk to be in DS-

dimensional linear subspace. This constraint is expected to
make the model robust even when the amount of training
data for a speaker is limited.

3.2 One-Hot Vector Speaker Code-Based Speech Synthe-
sis

In this model architecture, the speaker code S =

[S1,S2, · · · ,SK]T for speaker m is set to the same formu-
lation as the one-hot speaker ID vector u in Eq. (1).

Sk =

⎧
⎪⎪⎨
⎪⎪⎩

1 (k = m)

0 (k � m)
(7)

As shown in Fig. 3, a speaker code S is fed through an ad-
ditional set of connection weights to a certain hidden layer
(Fig. 3 (a)) or all hidden layers (Fig. 3 (b)).

For one-hot vector speaker codes, we can get

yk = Wk
SS, (8)

where S is a one-hot vector that represents the speaker ID in
(7). The size of each vector or matrix is:

yk : Dk
h (9)

Wk
S : Dk

h × K (10)

S : K. (11)

It can be seen that Wk
S is full rank and yk has no constraint,

unlike the embedded speaker code model in (2). This means
that one-hot vector speaker code models may model speaker
characteristics precisely using larger number of parameters
while they can be less robust for limited training data when
compared with embedded speaker code models.

3.3 Training Procedure for Multi-Speaker Modeling Us-
ing Speaker Codes

For multi-speaker modeling based on embedded speaker
codes and one-hot speaker codes, the proposed methods
train connection weights of the whole DNN using a multi-
speaker speech corpus. When synthesizing a speech param-
eter sequence, a target speaker is chosen from the corpus
and the speaker code corresponding to the selected target
speaker is fed to the DNN to generate the speaker’s voice.
The proposed model is expected to generate more stable and
natural speech compared with conventional speaker depen-
dent DNNs because the networks from the linguistic feature
to the acoustic feature are trained with a greater variety of
contextual information by using a multi-speaker speech cor-
pus.

4. Speaker Adaptation Using Speaker Codes

The multi-speaker modeling approach will need high com-
putational cost every time we want to generate speech from a
new target speaker. This is because the whole model needs
to be retrained using a corpus including the new speaker’s
utterances. It is considered that model adaptation by re-
estimating a subset of model parameters using the target
speaker utterances can address this problem. Following up
on the previous research work that has been done in the field
of speaker adaptation for speech synthesis [12], [14]–[16],
we consider that the speaker code based DNN can also be
used as a speaker adaptation method, since this approach has
been shown to be effective in speech recognition [10], [11].
The set of parameters re-estimated for adaptation is set dif-
ferently than that for the model architectures.

4.1 Speaker Adaptation Using Embedded Speaker Codes

The adaptation procedure described in this section is similar
to those in [10], [11]. First, the connection weights of the
whole DNN are trained using a multi-speaker speech cor-
pus. The speaker ID vector u is set in a form similar to that
given in Sect. 3.1, but this time u is appended by an addi-
tional dimension to have K + 1 dimensions in total. This ad-
ditional dimension is used to represent unseen target speaker
information, and always set to 0 in the training procedure.
Second, the model is adapted to a new target speaker using
only the target speaker utterances as adaptation data. This
time the additional dimension of u is set to 1 and other di-
mensions to 0, and only the connection weights for embed-
ding are re-estimated to minimize the distance between the
output features of the adaptation data and predicted values.
When synthesizing, a one-hot vector u whose additional di-
mension is set to 1 is used. This adaptation procedure cor-
responds to updating only the K + 1-th column of WE in (2).

The adaptation algorithm amounts searching a new
point of yk to model a new target speaker. Here, by setting
DS < Dk

h we can constrain the search space of yk to be in the
DS-th linear subspace. This constraint decreases the number
of free parameters for adaptation. Therefore, it is expected
to make the model robust even when the amount of adapta-
tion data is limited. The adaptation procedure for embedded
speaker codes described above was originally proposed in
the speech recognition field [10], [11] in order to make an
adapted model robust to a limited amount of adaptation data
by reducing the number of adaptation parameters. Specif-
ically, the number of adaptation parameters for embedded
speaker codes is reduced to DS,while that in Sect. 4.2 is Dh.
However, it is not clear whether this reduction is effective
for speech synthesis. In order to confirm this point, we con-
ducted experiments to compare these two methods.

4.2 Speaker Adaptation Using One-Hot Speaker Codes

While a DNN using one-hot speaker codes is adapted in
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the similar procedures similar to those of embedded speaker
code models, this time the set of re-estimated parameters
is different. First, the connection weights of the whole
DNN are trained using a multi-speaker speech corpus. The
speaker code S is set in a form similar to that of speaker
ID vector u in the embedded speaker code. The vector S
has K + 1 dimensions in total. The additional dimension is
always set to 0 in the training procedure and 1 in the adap-
tation and synthesis procedure. For the adaptation proce-
dure, only the connection weights from the speaker codes
S to the hidden layers are re-estimated to minimize the dis-
tance between the output features of the adaptation data and
predicted values. This adaptation procedure corresponds to
updating only the K + 1-th column of Wk

S in (8). This time
the number of parameters for adaptation is Dk

h.
This adaptation procedure is different from those re-

ported in previous speech recognition studies [10], [11] and
the procedure described in Sect. 4.1. These references for
speaker adaptation for speech recognition mainly focus on
fast and robust adaptation with a limited amount of adap-
tation data. On the other hand, for speech synthesis, it is
necessary to model the speaker characteristics precisely to
generate the target speaker’s speech. The procedure for this
model is expected to be flexible and more appropriate for
speech synthesis, because it re-estimates a set of parameters
whose dimensions are generally larger than those of S for
adaptation.

Another possible adaptation procedure for one-hot
speaker codes was proposed by Luong et al. [13]. They pro-
posed to update only S in (8) for a new target speaker. This
time the number of parameter for adaptation is K, which is
usually smaller than the number for Dk

h. This constraint is
expected to have effect similar to embedded speaker code
models. We adopted the proposed adaptation procedure be-
cause it enabled us to see whether or not a large number of
parameter for adaptation is needed by comparing the perfor-
mance of one-hot and embedded speaker code models.

5. Experiments

As described in Sect. 3, there are various possible architec-
tures for DNN-based speech synthesis using speaker codes.
In this section, we will first explain how we investigated
the relationship between the model architecture and the pro-
posed method’s performance through objective measure-
ments. We determined the best architecture for the proposed
method on the basis of the measurement results. We then
conducted a subjective evaluation to confirm whether our
method could improve the speech quality compared with
the conventional speaker dependent DNN. We also com-
pared the results with those obtained by HMMs as well
as those by speaker dependent DNNs in these experiments.
This is because prediction performance obtained by HMM
is known to be superior to that obtained by speaker de-
pendent DNN [2], In Sect. 5.1, we present the experimental
conditions we used. We describe the objective evaluation
experiments in Sect. 5.2 and the subjective experiments in

Sect. 5.3.

5.1 Experimental Setup

In the experiments, we used speech data in Japanese ob-
tained from 35 speakers (17 males and 18 females). Two
speakers, one male and one female, were used as target
speakers. The training corpus included 7,260 utterances
(about 1,340 minutes) from 33 speakers apart from the two
target speakers. We conducted objective evaluation for two
tasks: multi-speaker modeling and speaker adaptation. For
each task, we considered two training conditions: five ut-
terances (about 1.2 minutes) and 300 utterances (about 63
minutes) for the training corpus for each target speaker.
Twenty utterances were used as a testing set for each target
speaker. The sampling rate of the corpus was 22.05 kHz.
The STRAIGHT vocoder [17] was employed to extract 40
dimensional mel-cepstral coefficients, five band aperiodici-
ties, and F0 in log-scale at 5 msec steps.

We compared the performance obtained with the fol-
lowing five acoustic models.

• HMM: The conventional HMM-based average voice
model with adaptation.
• DNN SD: The conventional speaker dependent

model [2].
• SPKCODE EMBED: The proposed method using em-

bedded speaker codes described in Sect. 3.1.
• SPKCODE ONE-HOT: The proposed method using

one-hot speaker codes described in Sect. 3.2.

The input linguistic feature vector of a DNN contained
506 dimensional linguistic features. Each observation vec-
tor consisted of 40 mel-cepstral coefficients, log F0, five
band aperiodicities, their delta and delta-delta features, and
a voiced/unvoiced binary value. The input numeric features
were normalized to the 0.01-0.99 range, and the output fea-
tures were normalized by speaker-dependent mean and vari-
ance. The DNN systems had five hidden layers and each
hidden layer had 1024 units. A sigmoid activation function
was used in the hidden layers followed by a linear activation
at the output layer. For the training procedure, the weights
of the DNN were initialized randomly with Gaussian distri-
bution with zero mean and variance 1√

D
, where D denotes

the dimension of an input vectors. The initial values for bi-
ases of the DNN were set to zero. The weights and biases
were then optimized to minimize the mean squared error
between the output features of the training data and pre-
dicted values, using the Adam-based back-propagation al-
gorithm [18]. The parameters for the Adam algorithm were
set as α = 0.0001, β1 = 0.9, β2 = 0.999, ε = 1e−8. Five per-
cent of the utterances of the whole training data were used
as a development set. The DNN SD models were trained
using only the target speaker utterances in the training cor-
pus. We did not train DNN SD models using five utterances
because the amount of data in the training corpus was too
small to train a model properly.

For the HMM, we used a five-state left-to-right hidden
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Fig. 4 The objective evaluation results for embedded speaker code model. The horizontal axis indi-
cates the size (dimension) of the speaker codes.

semi-Markov model with no skip topology. Each observa-
tion vector consisted of 138 features (40 mel-cepstral coef-
ficients, log F0, five band aperiodicities, and their delta and
delta-delta features). The output distribution in each state
was modeled as a single Gaussian density function and the
covariance matrices were assumed to be diagonal. For the
multi-speaker training task, the average voice model was
trained using a multi-speaker speech corpus including the
target speaker utterances. Then the average voice model
was adapted using the target speaker utterances again. For
the speaker adaptation task, on the other hand, the target
speaker utterances were excluded from the corpus for train-
ing the average voice model. The average voice model was
then adapted using the target speaker utterances. We used
the combined technique of CSMAPLR and MAP adapta-
tion as the speaker adaptation algorithm [6]. The model size
was determined automatically by the minimum description
length (MDL) criterion [19], where the control parameter of
the model size was set to α = 1.0.

For all of the four methods evaluated in these exper-
iments, segmentations (phoneme durations) from natural
speech were used instead of predicting duration. We applied
MLPG [20] to the output features for all of the four methods.
For DNN-based methods, we used pre-computed variances
from the training data for MLPG. We did not apply spec-
tral enhancement techniques such as global variance [21] to
reduce factors considered in the experiments.

5.2 Objective Evaluation

We first investigated the relationship between the predic-
tion performance and the architectures of the proposed
method. We changed the embedded speaker code dimen-
sion for SPKCODE EMBED models. The embedding di-
mensions were set to 2, 10, 33, 128 and 256. For SP-
KCODE ONE-HOT models, the input hidden layer(s) for
speaker codes were changed. The input hidden layer(s) for
SPKCODE ONE-HOT models were set to the 1st, 2nd, 3rd,
4th, 5th hidden layer and all hidden layers. We used ob-
jective measurements to compare the performances we ob-
tained in these cases with those obtained with conventional
HMM and DNN SD.

5.2.1 Objective Evaluation for SPKCODE EMBED

Figure 4 presents the mel-cepstral distortions (MCDs) and
RMSEs of log F0 for SPKCODE EMBED models. The hor-
izontal axis indicates the size of the embedded speaker code
vector. The results are presented with HMM and DNN SD.

First, we compared the performance for the model
structure of the SPKCODE EMBED models. For both the
conditions using five and 300 target speaker utterances, the
experimental results showed the tendency that a larger em-
bedding vector size achieves smaller MCDs. This ten-
dency was common for both the multi-speaker modeling and
speaker adaptation tasks and similar to that reported by Lu-
ong et al. [13]. As for RMSEs of log F0, on the other hand,
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there was no consistent relationship between the size of the
embedding vector and F0 RMSEs for both the multi-speaker
modeling and speaker adaptation tasks. This tendency con-
trasted with that reported in a previous study [13], in which it
was stated that a larger embedding vector size effectively re-
duces RMSEs of log F0. We consider that this is because of
the difference in the number of speakers in the training data.
There were 33 speakers in our experiments, while there were
100 speakers in those conducted by Luong et al. [13]). Since
the number of speakers was smaller in our experiments, the
embedding speaker code vector space became sparse when
the vector size was large, which led to over-fitting and di-
minished performance.

We then compared the performance of the conventional
methods, i.e., HMM and DNN SD. We found the relation-
ship of

• DNN SD < HMM
(300 utterances, MCDs)
• HMM < DNN SD

(300 utterances, F0 RMSEs)

for both multi-speaker modeling and speaker adaptation
tasks. The MCDs of DNN SD were better than those
of HMM because in modeling complex context dependen-
cies DNN-based methods have an advantage over the tree-
clustered HMM-based methods as Zen et al. described [2].
The F0 RMSEs of DNN SD were higher than HMM, which
is the same tendency as Zen et al. reported [2].

We then compared the performance of
SPKCODE EMBED with that obtained with these conven-
tional methods. From the results of multi-speaker modeling
tasks, we can see the relationship of

• SPKCODE EMBED < HMM
(5 utterances, MCDs)
• HMM < SPKCODE EMBED

(5 utterances, F0 RMSEs)
• SPKCODE EMBED < DNN SD < HMM (300 utter-

ances, MCDs)
• HMM < SPKCODE EMBED < DNN SD (300 utter-

ances, F0 RMSEs).

From these results for multi-speaker modeling, we confirm
that the SPKCODE EMBED models can slightly improve
the parameter estimation accuracy compared with DNN SD
models by utilizing a multi-speaker speech corpus.

From the results obtained from the speaker adaptation
task in Fig. 4, we found the relationship of

• HMM < SPKCODE EMBED
(five utterances, MCDs)
• HMM < SPKCODE EMBED

(five utterances, F0 RMSEs)
• DNN SD < HMM < SPKCODE EMBED (300 utter-

ances, MCDs)
• HMM < DNN SD < SPKCODE EMBED (300 utter-

ances, F0 RMSEs).

The performance of SPKCODE EMBED was comparable

to or worse than that obtained with the conventional HMM
and DNN SD. This is because the embedded speaker code
model architecture has too small a number of free parame-
ters for adaptation. The number of free parameters for adap-
tation is equal to the size of the embedded speaker codes
in SPKCODE EMBED (e.g., 2, 10, 33, 128 and 256 in our
experiments). This too small a number of free parameters
led to poor reproducibility of speaker characteristics. From
these results, we confirmed the embedded speaker code-
based approach for speaker adaptation task was not effective
because it was worse than DNN SD when using 300 target
speaker utterances and also worse than HMM when using
five target speaker utterances.

5.2.2 Objective Evaluation for SPKCODE ONE-HOT

Figure 5 presents the MCDs and F0 RMSEs for SP-
KCODE ONE-HOT models. The horizontal axis indicates
the speaker code input layer. The results for conventional
HMM and DNN SD are the same as those in Fig. 4.

First, we compared the performance for the model
structure of the SPKCODE ONE-HOT models. For both
the multi-speaker modeling and speaker adaptation tasks,
we found that the models using the 4th hidden layer gave
consistently low MCDs and F0 RMSEs when using five tar-
get speaker utterances while the models using all hidden lay-
ers gave lower MCDs and F0 RMSEs when using 300 target
speakers’ utterances. From these results, we determined that
the models using the 4th hidden layer were optimal when
using five target speaker utterances while the models us-
ing all the hidden layers were optimal when using 300 tar-
get speaker utterances, for both multi-speaker training and
speaker adaptation tasks.

We then compared the performance for the SP-
KCODE ONE-HOT models with that of the conventional
methods. From the results for the multi-speaker modeling
task, we found the relationship of

• SPKCODE ONE-HOT < HMM
(five utterances, MCDs)
• HMM < SPKCODE ONE-HOT

(five utterances, F0 RMSEs)
• SPKCODE ONE-HOT < DNN SD < HMM (300 ut-

terances, MCDs)
• HMM < SPKCODE ONE-HOT < DNN SD (300 ut-

terances, F0 RMSEs)

when the model structure for SPKCODE ONE-HOT was set
at optimal. For each condition, we found that the perfor-
mance of DNN ONE-HOT was consistently better than that
of DNN SD models. These results confirmed the prediction
performance improvement of SPKCODE ONE-HOT using
a multi-speaker speech corpus. When SPKCODE ONE-
HOT is compared with HMM, it is found that MCDs of SP-
KCODE ONE-HOT are improved. The advantage of DNN
over HMM in modeling mel-cepstra was also confirmed for
SPKCODE ONE-HOT models. We can also see that F0
RMSEs of SPKCODE ONE-HOT were comparable to or
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Fig. 5 The objective evaluation results for one-hot speaker code models. The horizontal axis indicates
the speaker code input layer.

higher than those of HMM. These results revealed that, rel-
ative to HMM, there is still room to improve F0 prediction in
SPKCODE ONE-HOT models, although their performance
is considerably better than that of conventional DNN SD
models.

For the speaker adaptation results, we can see found the
relationship of

• SPKCODE ONE-HOT < HMM
(five utterances, MCDs)
• HMM < SPKCODE ONE-HOT

(five utterances, F0 RMSEs)
• DNN SD < SPKCODE ONE-HOT < HMM (300 ut-

terances, MCDs)
• HMM < SPKCODE ONE-HOT < DNN SD (300 ut-

terances, F0 RMSEs)

when the model structure for SPKCODE ONE-HOT was
set at optimal. When the performance of SPKCODE ONE-
HOT was compared with that of DNN SD, it was found
that MCDs were degraded while F0 RMSEs were im-
proved. Since the multi-speaker speech corpus for SP-
KCODE ONE-HOT model training has a larger variety of
context than those for DNN SD, SPKCODE ONE-HOT
models are especially advantageous in F0 prediction. From
the results of MCDs’ degradation results we obtained, we
were concerned that the adaptation by SPKCODE ONE-
HOT could not represent the precise speaker characteris-
tics by effectively using the large amount of adaptation
data. The results revealed that more flexible adaptation
models were needed when given a large amount of adap-

tation data. To solve this problem, one promising approach
would be a more elaborate speaker code-based adaptation
method for which the number of parameters for adapta-
tion can change in accordance with the amount of adapta-
tion data, in the same way that for the HMM-based adap-
tation method, CSMAPLR reported by Yamagishi et al. [5].
When we compared SPKCODE ONE-HOT with HMM, we
found the relationship was the same as that for the multi-
speaker modeling task; MCDs were improved while F0 RM-
SEs were degraded.

Finally, we compared the performance of the two pro-
posed models. For multi-speaker modeling, the perfor-
mance of SPKCODE ONE-HOT and SPKCODE EMBED
was comparable regardless of the amount of training data
when the model structure was set optimal. For speaker adap-
tation, SPKCODE ONE-HOT models showed superior per-
formance to that of the SPKCODE EMBED models regard-
less of the amount of adaptation data or the objective mea-
sure. The difference between the two models was especially
large when the amount of the adaptation data was large.
This is because the performance of SPKCODE EMBED
models saturated with the amount of adaptation data while
SPKCODE ONE-HOT models showed greater performance
for a larger amount of adaptation data. SPKCODE ONE-
HOT models can represent the speaker characteristics in
more detail because they have a larger number of parameters
for each speaker. The number of parameters for adaptation
for these models, whose speaker code vector is connected to
all hidden layers, is equal to unit number × the number of
hidden layers. In our experimental condition, for example,
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it is equal to 1024 × 5 = 5120. Since this number is greater
than that for SPKCODE EMBED models (2, 10, 33, 128
or 256 as described in Sect. 5.2.1), SPKCODE ONE-HOT
models show more precise reproducibility for speaker char-
acteristics. These results confirm that reducing adaptation
parameters by adopting the SPKCODE EMBED model was
not effective for adapting speech synthesis models to speak-
ers when five utterances were given as adaptation data.
From the results of the objective evaluation experiment,
we concluded that SPKCODE ONE-HOT models generally
perform better than the SPKCODE EMBED and the best
speaker code input layer for SPKCODE ONE-HOT models
for all the hidden layers.

5.3 Subjective Evaluation

We conducted subjective evaluations with respect to the
naturalness and similarity of synthesized speech to con-
firm the effectiveness of the proposed method. We used
four models for these evaluations, DNN SD, HMM (multi-
speaker modeling), SPKCODE ONE-HOT (multi-speaker
modeling) and SPKCODE ONE-HOT (speaker adaptation).
The proposed SPKCODE EMBED models were eliminated
from these experiments because the objective evaluation
experiments revealed that the proposed SPKCODE ONE-
HOT models perform better and they are not necessary to
reveal the effectiveness of the proposed method. We used
the optimal architectures for SPKCODE ONE-HOT models
as discussed in the last section, the model using the 4th hid-
den layer when using five target speaker utterances and the
model using all hidden layers when using 300 target speaker
utterances. The number of listeners was 24 for a naturalness
test and 22 for a similarity test. We conducted five-point
MOS and DMOS tests. The scale for the MOS test was five
points for “very natural” and 1 points for “very unnatural”.
The scale for the DMOS test was five points for “very simi-
lar” and 1 point for “very dissimilar”.

Figures 6 and 7 show the naturalness and similar-
ity scores obtained in the subjective evaluations with con-
fidence intervals of 95%. We found the relation of HMM <
SPKCODE ONE-HOT for both naturalness and similarity
scores. Furthermore, the scores of SPKCODE ONE-HOT
using five target speaker utterances were equivalent to those
of DNN SD using 300 target speaker utterances. We can
also see the relation of DNN SD < SPKCODE ONE-HOT
for both naturalness and similarity when using 300 target
speaker utterances. These results confirmed that the pro-
posed method can improve the synthetic speech quality by
using a multi-speaker speech corpus in DNN-based speech
synthesis. On the other hand, there were no significant dif-
ferences between HMM and SPKCODE ONE-HOT when
using 300 target speaker utterances.

Although the speaker adaptation scores obtained for
SPKCODE ONE-HOT were slightly worse than those ob-
tained for multi-speaker modeling under each condition,
they were higher than those obtained for HMM when using
five target speaker utterances and comparable to those ob-

Fig. 6 Naturalness and similarity test results with their 95% confidence
interval. (The number of target speaker utterances: 5)

Fig. 7 Naturalness and similarity test results with their 95% confidence
interval. (The number of target speaker utterances: 300)

tained for HMM and higher than DNN SD when using 300
target speaker utterances. These results confirmed that the
adaptation based on speaker codes generates speech whose
quality is comparable to or higher than that obtained with a
conventional speaker dependent DNN, or a speaker adapted
HMM.

Although we were able to observe performance im-
provement with the proposed method for the two target
speakers in our experiments, the obtained subjective evalua-
tion results were not always consistent between the two tar-
get speakers. Therefore, our future work will include further
investigating whether or not the improvements by the pro-
posed method provides can be obtained for any speakers in-
cluded in the training corpus. For HMM-based cluster adap-
tive training [7], it is known that the performance depends
on the speaker similarity between a target speaker and those
in the training corpus. Our future work will also include
investigating the relationship between the performance and
the speaker similarity between training and target speakers
for the proposed DNN-based multi-speaker modeling and
speaker adaptation.

6. Comparison with the Conventional Shared Hidden
Layers (SHL) Model [8]

6.1 Objective of the Experiments

As a method of DNN-based multi-speaker modeling and
speaker adaptation for DNN-based speech synthesis, a
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shared hidden layer (SHL) [8] model is proposed as well as
the proposed speaker code-based method. In this section,
we compare the performance of the conventional SHL and
the proposed model through objective measurements.

Figure 8 shows the architecture of the conventional
shared hidden layer structure. In this model, hidden layers
are shared across all the speakers in the training corpus, and
can be considered as the global linguistic feature transfor-
mation shared by all the speakers. Conversely, all speakers
have their own output layers, the so-called regression layer,
to model their own specific acoustic spaces. Compared with
the speaker dependent DNN, the shared hidden layer model
takes the same input linguistic feature, which is converted
from text in the same manner, and the same output acoustic
feature for each speaker.

For the multi-speaker modeling task performed by
the shared hidden layer model, connection weights of the

Fig. 8 The model architecture of the conventional shared hidden layer
model [8]. The red bold lines indicate the re-estimated parameters for
speaker adaptation.

Fig. 9 The objective evaluation results for embedded speaker code model. The horizontal axis indi-
cates the size (dimension) of the speaker codes.

whole DNN are trained using a multi-speaker speech cor-
pus. When synthesizing a speech parameter sequence, a tar-
get speaker is chosen from the corpus and the corresponding
output layer is selected to generate the speaker’s voice.

For the speaker adaptation task performed by the
shared hidden layer model, first, the model is trained us-
ing multi-speakers’ speech corpus. Then, the hidden layers
transferred from multiple speakers’ data are fixed and only
the regression layer is updated using the target speaker’s
speech data. While this re-estimation can be conducted
by a back propagation algorithm, it is also possible to use
the least squares method to minimize the squared residu-
als between prediction and ground-truth since there is only
a linear regression between the last hidden layer’s output
and the target [8]. In our experiments, we used a back-
propagation algorithm to re-estimate these values. Specif-
ically, we randomly initialized the connection weights to a
new output layer and then optimized them to minimize the
mean squared error between the output feature of the adapta-
tion data and predicted values, using the Adam-based back-
propagation algorithm [18].

The conventional SHL models are indicated by
“DNN SHL” below. For DNN SHL, the output layers are
composed of speaker-dependent nodes while the architec-
ture of the shared hidden layers (the number of hidden lay-
ers and their units) was set to the same as that of other DNN
models. The other experimental conditions were set in a
way similar to those for the SPKCODE ONE-HOT models.
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Fig. 10 The objective evaluation results for one-hot speaker code models. The horizontal axis indi-
cates the speaker code input layer.

6.2 Experimental Results

Figure 9 and Fig. 10 show the objective evaluation re-
sults for SHL. When SPKCODE EMBED is compared with
DNN SHL in Fig. 9, it is found that SPKCODE EMBED
shows performance comparable or superior or comparable
performance to that of DNN SHL for the multi-speaker
modeling task when the size of the speaker code is set large.
On the other hand, SPKCODE EMBED show inferior per-
formance to DNN SHL for the speaker adaptation task. This
is because the DNN SHL has a larger number of free pa-
rameters for adaptation, which is equal to (1024 × 139 =)
142336. In comparison, SPKCODE EMBED has free pa-
rameters for adaptation of 2, 10, 33, 128 or 256 as described
in Sect. 5.2.1. The larger number of free parameters led to
more precise reproducibility for speaker characteristics.

When SPKCODE ONE-HOT is compared with
DNN SHL models in Fig. 5, it is found that MCDs for SP-
KCODE ONE-HOT are lower than those for DNN SHL
models when using five target speaker utterances. It is also
revealed that MCDs of SPKCODE ONE-HOT are equiva-
lent to those for DNN SHL models when using 300 tar-
get speakers’ utterances. We can also see that F0 RMSEs
of SPKCODE ONE-HOT are consistently lower than those
for DNN SHL. These results confirmed that the proposed
SPKCODE ONE-HOT models are advantageous compared
with DNN SHL in both multi-speaker modeling and speaker
adaptation tasks, especially in modeling F0 contour. Since
DNN SHL models utilize the connections to the output

layer to model the speaker characteristics, they can rep-
resent only the simple characteristics that can be inter-
preted by a single affine transformation. In contrast, since
SPKCODE ONE-HOT models utilize the augmented input
vector to model complex context dependencies, they are ad-
vantageous in modeling speaker characteristics more pre-
cisely.

7. Conclusion

In this paper, we proposed a DNN-based speech synthe-
sis method using speaker codes to improve speech quality
by using a multi-speaker speech corpus. Objective evalu-
ation results showed that the proposed model outperforms
the speaker dependent DNNs and multi-speaker DNNs with
shared hidden layers for both multi-speaker modeling and
speaker adaptation tasks. Subjective evaluation results
showed that the proposed model can produce more natural
speech than the conventional speaker dependent DNNs and
HMM-based speaker adaptation method, especially when
using a small number of target speaker utterances.
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