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A Machine Learning-Based Approach for Selecting SpMV Kernels
and Matrix Storage Formats∗∗

Hang CUI†∗, Shoichi HIRASAWA††, Nonmembers, Hiroaki KOBAYASHI†,
and Hiroyuki TAKIZAWA†,†††a), Members

SUMMARY Sparse Matrix-Vector multiplication (SpMV) is a compu-
tational kernel widely used in many applications. Because of the impor-
tance, many different implementations have been proposed to accelerate
this computational kernel. The performance characteristics of those SpMV
implementations are quite different, and it is basically difficult to select
the implementation that has the best performance for a given sparse ma-
trix without performance profiling. One existing approach to the SpMV
best-code selection problem is by using manually-predefined features and
a machine learning model for the selection. However, it is generally hard
to manually define features that can perfectly express the characteristics of
the original sparse matrix necessary for the code selection. Besides, some
information loss would happen by using this approach. This paper hence
presents an effective deep learning mechanism for SpMV code selection
best suited for a given sparse matrix. Instead of using manually-predefined
features of a sparse matrix, a feature image and a deep learning network
are used to map each sparse matrix to the implementation, which is ex-
pected to have the best performance, in advance of the execution. The
benefits of using the proposed mechanism are discussed by calculating the
prediction accuracy and the performance. According to the evaluation, the
proposed mechanism can select an optimal or suboptimal implementation
for an unseen sparse matrix in the test data set in most cases. These re-
sults demonstrate that, by using deep learning, a whole sparse matrix can
be used to do the best implementation prediction, and the prediction ac-
curacy achieved by the proposed mechanism is higher than that of using
predefined features.
key words: SpMV, code selection, deep learning, convolutional neural
network

1. Introduction

Sparse Matrix-Vector multiplication (SpMV) is a computa-
tional kernel widely used in many applications. A sparse
matrix means a large-scale matrix whose elements are al-
most all zero elements, and non-zero elements appear only
in some specific locations of it. Figure 1 shows an example
of visualizing a sparse matrix used in a circuit simulation
problem. Black points in the figure express the locations
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of non-zero elements. In scientific computation, operation
research, image processing, data mining, structural mechan-
ics and some other fields, systems are naturally sparse, and
sparse matrix algorithms are required for analyses [25]. Be-
cause of the strong demands for high performance and ef-
ficiency, many different approaches have been proposed to
accelerate the SpMV computation.

Different platforms, algorithms, and storage formats
can be used to build SpMV implementations. The per-
formance characteristics of each SpMV implementation
change depending also on the matrix to be processed. For
example, Graphics Processing Units (GPUs) and general-
purpose Central Processing Units (CPUs) have totally dif-
ferent architectures, and hence different features of a matrix
would affect their performances on SpMV computations.
Also, a storage format designed for a specific kind of sparse
matrices would not work well for other kinds of sparse ma-
trices. Thus, if the best implementation for a given matrix
can be predicted in advance of the execution, the computing
system is able to achieve a better performance.

One solution of this problem is to use manually-
predefined features of an input sparse matrix and a machine
learning model such as Support Vector Machine (SVM) [28]
to build up a classifier for the prediction. For example,
Muralidharan et al. [19] have used three features related to
row lengths and other two features to estimate the padding
size required for DIA and ELL formats, and used SVM
to predict the most appropriate implementation. However,
there are some weaknesses of this existing approach. First,
it is challenging to manually predefine features that properly

Fig. 1 An example of a visualized sparse matrix, fpga dcop 01.mtx from
[8].
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represent characteristics of a matrix and available platforms
for the prediction. Second, since a limited number of fea-
tures are defined and used to express a sparse matrix in the
classification process, some information loss would happen.
It can influence the classification accuracy of the existing
approach.

Recently, deep learning is being used to solve classi-
fication problems, and often outperforms the existing ap-
proaches [6], [9], [13], [20], [23]. A Convolutional Neural
Network (CNN) [16] is a popular deep learning model in the
field of image recognition. A CNN can automatically learn
not only classification rules but also useful features of im-
ages for the classification. This learning capability is called
feature learning or representation learning [15]. Therefore,
if a sparse matrix is represented as an image and input to a
CNN for the classification, the CNN is expected to capture
the useful underlying features as well as the classification
rules to predict the best SpMV implementation.

The main objective of this paper is to show that, by
using deep learning, a whole sparse matrix can be used to
attain SpMV code selection, and the classification accuracy
can be higher than those of existing approaches with prede-
fined features. To this end, this paper builds up a classifier
using a CNN and represents sparse matrices in an image
data format for the classifier. By using an appropriate image
format to express the characteristics of a sparse matrix, and
enlarging the data set, the proposed mechanism is trained
and evaluated. The evaluation results demonstrate that use-
ful features and classification rules of SpMV code selection
can be extracted by the proposed mechanism.

The remainder of this paper is organized as follows.
Section 2 briefly reviews some background knowledge such
as SpMV acceleration and deep learning, and also some re-
lated studies for SpMV code selection. Section 3 describes
the proposed mechanism of using deep learning on SpMV
code selection in detail. Section 4 evaluates the proposed
mechanism in terms of prediction accuracy and execution
time of the selected SpMV implementation. Section 5 gives
concluding remarks of this paper, and also mentions the fu-
ture work.

2. Background and Related Work

There are various approaches to acceleration of SpMV. One
approach is to use accelerators [21], [22], [24], [30], [33],
and different accelerators will perform differently on the
same sparse matrix. Another is to optimize sparse storage
formats [10], [12], [17], [25], [26]. Sparse storage formats
allocate a continuous memory region for nonzero elements
of the sparse matrix, and also for a limited number of ze-
ros in general. The ELL, CSR, HYB and COO formats [4]
are sparse storage formats used in this paper. Similar to dif-
ferent processors, different storage formats will also work
differently on the same sparse matrix. In [14], [32], Zhang
et al. and Langr et al. analyzed the characteristics of differ-
ent accelerators and different storage formats, respectively.
However, both of them did not analyze the situation where

Fig. 2 Performance evaluation results of three SpMV implementations.

the platforms and storage formats are evaluated together.
A program that has a so-called autotuning ability can

automatically optimize itself for a given input to gain a bet-
ter performance. In [27], Thomas et al. developed a frame-
work to select an adaptive algorithm according to the input
size and data type. In [3], some heuristics are used in explor-
ing the feasibility of autotuning SpMV. Also, machine learn-
ing approaches [5], [18], [19] are available for SpMV code
selection. Besides, Vuduc et al. have proposed a framework
called OSKI [29] to tune data structures and code transfor-
mations that lead to the fastest implementation of a kernel
for a given machine and a given matrix.

In this paper, it is assumed that some different SpMV
implementations are available. Figure 2 shows the perfor-
mance evaluation results of three SpMV implementations on
different matrices on a computing system of an Intel Core i7-
3770 CPU, an NVIDIA GeForce GT430 GPU and an 8GB
main memory. In this figure, CPU COO, GPU CSR, and
GPU HYB indicate the CPU implementation for the COO
format, the GPU implementation for the CSR format, and
the GPU implementation for the HYB format, respectively.
These results show that the best combination of an SpMV
kernel and a matrix format changes for each matrix. An au-
totuning system is expected to empirically evaluate the per-
formance of each implementation on the computing system,
and map the SpMV computation to its most appropriate im-
plementation.

For the problem of SpMV code selection, some ap-
proaches using manually-predefined features have been pro-
posed so far. Muralidharan et al. used five predefined fea-
tures for code selection [19]. They used SVM as the ma-
chine learning algorithm. Their approach can achieve a pre-
diction accuracy of approximately 80% when predicting the
best implementation of each of 100 different sparse matri-
ces.

The existing approach that uses manually-predefined
features and a machine model has some weaknesses when
building a classifier. First, it is challenging to manually pre-
define some features that can perfectly express the features
of any sparse matrix. Second, it is difficult to prevent the pa-
rameterization from losing information available to predict
the best SpMV implementation for an input sparse matrix.

On the other hand, a deep learning approach can over-
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come the weaknesses mentioned above. Since deep learning
can extract useful features as well as classification rules au-
tomatically from training data, the whole of a sparse matrix
can be used for the classification. Deep learning is a kind
of machine learning that attempts to model high-level ab-
straction of data by using multiple processing layers. As
with other machine learning algorithms, deep learning can
also be treated as a black box and used as a classifier. Re-
cently, deep learning is being widely used in image recog-
nition [13], [20], [23] and some other classification prob-
lems such as sentiment classification [9] and natural lan-
guage processing [6], and often achieves a higher classifi-
cation accuracy than traditional approaches.

A CNN is a kind of deep learning model that is used
in the field of image recognition. In [13], a CNN is used
to classify images from ImageNet [1] into 1,000 categories
and achieves a higher accuracy than ever. A different input
data size, convolution kernel size, pooling kernel size and
fully-connected layer size can make different CNN topolo-
gies. Different CNN topologies perform differently on the
same data set of a classification problem. Therefore, an ap-
propriate topology is usually essential to achieve accurate
classification. Finding an appropriate topology is an impor-
tant stage to gain a good performance by using a CNN. If a
sparse matrix can be expressed as an image, a CNN can also
be a good classifier for SpMV code selection.

In our preliminary work [7], SpMV code selection was
performed as an image classification problem by converting
a sparse matrix to an image. However, the classification ac-
curacy was not high because several design options of the
proposed approach such as the image format and the CNN
model parameters were not well examined yet. Therefore,
in this paper, we present a new image format that contains
additional information to achieve a higher classification ac-
curacy. Moreover, we propose a systematic way of artifi-
cially generating images for training and testing of a CNN
model.

3. A Code Selection Mechanism Using Deep Learning

In this section, the proposed mechanism is described in
detail. Section 3.1 presents an overview of the proposed
SpMV code selection mechanism using a CNN, and shows
that there are two technical challenges to use. One is how
to translate the problem into an image recognition problem.
The other is how to obtain a training data set that is large
enough to train a CNN to achieve a high prediction accu-
racy. Therefore, we first describe how to convert the prob-
lem to an image recognition problem in Sect. 3.2, and then
discuss how to artificially generate training data effective to
improve the prediction accuracy of a CNN in Sect. 3.3.

3.1 Proposed Mechanism

Figure 3 illustrates an overview of the SpMV code selection
process using the proposed mechanism. As shown in the
figure, the proposed mechanism selects one of the available

Fig. 3 An overview of an SpMV computing system using the proposed
mechanism.

Table 1 Sparse matrix features and best implementation.

Matrix Name M N nnz Best Implementation
fpga dcop 13 1220 1220 5892 GPU CSR
fpga dcop 14 1220 1220 5892 CPU COO

dw2048 2048 2048 10114 GPU CSR
dw4096 8192 8192 41746 GPU HYB

SpMV implementations in an implementation set, which is
expected to complete the SpMV computation in the shortest
execution time. As shown in the center part of Fig. 3, the
proposed mechanism uses a feature image generated from
a sparse matrix, and a CNN for the classification. The in-
put of the CNN is a feature image, and the output of the
CNN is a vector whose elements correspond to the avail-
able SpMV implementations. That is, the dimension of the
output vector is the number of the SpMV implementations,
to which sparse matrices are mapped. Each element of the
output vector is expected to represent the possibility that its
corresponding SpMV implementation is the best implemen-
tation for a given sparse matrix. The implementation cor-
responding to the output vector element with the maximum
value is selected as the best implementation by the proposed
mechanism.

To the best of our knowledge, there is no existing ap-
proach that uses a whole matrix for the selection. On the
other hand, in the proposed mechanism, a whole matrix is
converted to a feature image, and then a CNN is used to ex-
tract underlying matrix features from the image. Namely, a
whole matrix is used for the SpMV code selection. There-
fore, in the proposed mechanism, it is not needed to prede-
fine the features of a matrix as a number of parameters. This
is an important benefit of using the proposed mechanism,
because the necessity of predefining features is one severe
drawback of the existing approaches.

3.2 Conversion to an Image Recognition Problem

All the predefined features used in [19] can be summarized
as the size (AvgNZPerRow, RL SD, MaxDeviation) of an in-
put sparse matrix and the layout of the non-zero elements
(DIA Fill-in, ELL Fill-in) in the sparse matrix. Therefore,
the size of a spare matrix and the layout of the non-zero el-
ements in the sparse matrix would basically be important to
determine the best implementation for the matrix.

Four sparse matrix examples are shown in Table 1 to
discuss the relationship between the sparse matrix features
and the best implementation. In the first two examples in
Table 1, fpga dcop 13 and fpga dcop 14 have the same di-
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mension and quantity of non-zero elements. However, their
layouts of the non-zero elements are different. From these
two examples, it is confirmed that a different implementa-
tion would perform best on each of the two matrices. These
two examples demonstrate that the layout of the non-zero
elements can influence the best implementation. In the last
two examples in Table 1, although dw2048 and dw4096 have
the same layout of the non-zero elements, their dimensions
are different. Thus, a different implementation should be se-
lected for each of the two matrices. These two examples
demonstrate that the dimension of a sparse matrix can influ-
ence the best implementation. Therefore, if a CNN is used
to predict the best implementation for a sparse matrix, the
input image data should be able to contain these two fea-
tures, the dimension of the original sparse matrix and the
layout of the non-zero elements.

An image representing the features of a sparse matrix,
called a feature image in this paper, is generated as the in-
put of a CNN to select the best implementation for a given
sparse matrix. Table 1 clearly indicates that the width and
height of a matrix, M and N, are important features for
SpMV code selection. On the other hand, for a CNN, the
image needs to be of a fixed size. In addition, since the
distribution of non-zero elements in a sparse matrix also af-
fects the best SpMV implementation of the matrix, a feature
image should be able to express the distribution as well as
the matrix size. Moreover, in our preliminary evaluation,
it is empirically proved that the number of non-zero ele-
ments (nnz) in a sparse matrix is also an important feature
of the matrix for SpMV code selection. Accordingly, the
feature image of a sparse matrix has to be of a fixed size,
and represents the distribution of non-zero elements while
keeping three important features of the original matrix, M,
N, and nnz.

Figure 4 illustrates the process proposed to generate a
3-channel feature image of 64× 64 pixels from a sparse ma-
trix. In order to insert the matrix size information as a kind
of feature into the feature image of a fixed size, an interme-
diate image is first generated. The intermediate image has
the same dimension as that of the original sparse matrix. In
the intermediate image, every image pixel corresponding to
a non-zero element is used to express the three parameter-
ized features, M, N, and nnz. On the other hand, every pixel
corresponding to a zero element is set to zero. As a result,
the intermediate image represents the distribution of non-
zero elements, while keeping the three important features as
the pixel color values. The intermediate image is then re-
sized to the target size of 64×64 pixels to generate a feature
image.

3.3 Artificial Sparse Matrix Generation

As mentioned in Sect. 3.1, a CNN needs a big training data
set to extract useful features and learn classification rules.
To increase data to organize big training and test data sets,
this paper presents a method to generate artificial sparse ma-
trices from other sparse matrices. Sparse matrices are gen-

Fig. 4 An overview of the 3-channel feature image generation process.

Fig. 5 An overview of the artificial sparse matrix generation process.

Table 2 Best implementations of original and artificial matrices.

Matrix Name M N nnz Best Implementation
add32 4960 4960 23884 GPU CSR

add32 1182 1182 1182 1992 CPU CSR
add32 2797 2797 2797 7949 CPU COO
add32 7555 7555 7555 55749 GPU HYB

erally used in real applications, and the distributions of their
non-zero elements are structured and meaningful. There-
fore, in this paper, artificial matrices are generated by resiz-
ing a sparse matrix so as to roughly keep the distribution of
the non-zero elements in the sparse matrix.

The process to generate artificial matrices is shown in
Fig. 5. The idea behind this process is to generate a new ma-
trix by randomly resizing an existing sparse matrix so that
the distribution of non-zero elements in the generated ma-
trix still remains structured at a certain level. The process
in Fig. 5 is similar to the feature image generation processes
in Fig. 4. However, in the intermediate image, every pixel
of a non-zero element does not have M, N, nor nnz. First, a
single-channel intermediate image of the original sparse ma-
trix is generated, and every pixel has the value of one matrix
element. Then, the intermediate image is resized to a ran-
dom size. In this way, the distribution of non-zero elements
in a new artificial matrix roughly retains that of the original
matrix. By using this process, the size of a sparse matrix
is changed, while the non-zero element distribution is kept.
The best implementation of a new artificial matrix can be
different from that of the original one, resulting in increas-
ing the number and variety of data available for training.

In this work, original matrices are randomly classified
into training and test data sets, and artificial matrices are
generated from only matrices in the training data set. Table 2
shows an example of one original sparse matrix and three
artificial sparse matrices generated from it. The name of a
new artificial sparse matrix is decided according to the width
of the new size. It is shown that, by changing the size of
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a sparse matrix, a different implementation works best for
the resized one. As a result, the data set is enlarged, and a
CNN can use more data to extract useful features and learn
classification rules for SpMV code selection.

A pair of a matrix and its best implementation is called
an execution record. The best implementation of each sparse
matrix is obtained by executing every available implementa-
tion for the matrix and measuring the execution time. Using
execution records in the training data set, a CNN is trained
so that it can predict the best implementation of a sparse
matrix that is unseen during the training process. Execution
records in the test data set are used to evaluate the classifi-
cation accuracy of the trained CNN.

4. Evaluation and Discussions

This section discusses the performance of the proposed
mechanism in terms of two evaluation metrics. One is the
classification accuracy, and the other is the expected perfor-
mance gain by using the proposed approach.

In the evaluation, original matrices are selected from
a collection of sparse matrices from a wide variety of sci-
entific and engineering applications, UFSMC [8], and then
randomly split into training and test data sets. Then, arti-
ficial matrices are generated from matrices in the training
data set, as described in Sect. 3.3, i.e., the test data set does
not include any artificial matrices to discuss the classifica-
tion accuracy for real sparse matrices. After that, a training
process is executed by monitoring the training and test ac-
curacies and data losses.

4.1 Evaluation Setup

This paper uses a deep learning framework, Caffe [31], for
training and testing. Each element of the output vector cor-
responds to one SpMV implementation, and the CNN is
trained so that the element of the best implementation be-
comes the largest. A basic CNN model called LeNet [16]
is used as the baseline topology, its parameters are adjusted
in a try-and-error manner, and then the best one among the
examined topologies is selected for the evaluation. Figure 6
shows the CNN topology used to predict the best SpMV im-
plementation of each feature image.

In this paper, three different SpMV implementations
are implemented for both GPU and CPU platforms. The
execution time of each SpMV implementation for a sparse
matrix is recorded to obtain the best implementation for the
matrix. The performance evaluation of this mechanism is

Fig. 6 CNN topology for SpMV code selection.

executed on a system with an Intel Core i7-3770 CPU, an
NVIDIA GeForce GT430 GPU and an 8GB main memory.

First, sparse matrices whose row and column are both
between 100 and 20,000 are selected from UFSMC. The
number of matrices selected from UFSMC is 877. Then,
207 matrices are used for testing, and the other 670 matrices
are used for training. As a result of artificial matrix genera-
tion from the 670 training data, the number of training data
is increased to 4,811. Then, the execution record of every
matrix is generated for training and testing.

The cvResize function of OpenCV [2] is used with
the CV INTER LINEAR mode for the feature image genera-
tion process and artificial matrix generation process. In the
feature image generation process, M, N, and nnz are nor-
malized so that their values fall in the range from 0 to 1, by
considering their maximum and minimum values.

Although the matrices in UFSMC are stored in the
COO format, an SpMV implementation might assume an-
other format. In such a case, the matrix needs to be con-
verted to the assumed format before SpMV computation in
practice. However, this paper focuses only on selecting the
best SpMV implementation for a given matrix, and hence
does not discuss the conversion time.

4.2 Training Process

The training process is monitored in terms of training and
test data accuracies, and also of training and test data losses.
The loss function used in this paper is softmax loss [13]. The
changes of training and test data accuracies, as well as train-
ing and test data losses, are shown in Fig. 7. This figure
shows that the test data accuracy increases with the train-
ing data accuracy, as the training proceeds. This means that,

Fig. 7 Changes of the training and test data accuracies and data losses.
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during the training process, the CNN discovers useful fea-
tures of images, and thereby learns the underlying classifi-
cation rules for SpMV code selection.

In Fig. 7, the test data accuracy increases quickly with
the training data accuracy until the 100-th epoch, i.e., un-
til every training data is presented to the CNN model 100
times. After the 100-th epoch, the test data accuracy slowly
increases, and it reaches its maximum value at the 900-th
epoch. The training and test data losses decrease drastically
at the initial stage of the training process. Then, the test data
loss becomes slightly increasing, while the training data loss
still keeps gradually decreasing. It can be observed that a
smaller training/test data loss does not necessarily mean a
better test data accuracy. Since the best test data accuracy
is achieved after the 900-th epoch of this process, the model
obtained at the 1000-th epoch is used to discuss the benefits
of the proposed mechanism in Sect. 4.3.

4.3 Performance of the Proposed Mechanism

4.3.1 Prediction Accuracy

During the training process, the accuracy of exactly select-
ing the best SpMV implementation reaches 85.1%. In order
to discuss its stability, the training and test data are reorga-
nized three times, and the same training process is executed
using the CNN in Fig. 6. The classification accuracies are
84.61% and 84.13%. Therefore, the classification accuracy
of the proposed mechanism is stable. Even the worst-case
accuracy is higher than that of the existing approach pre-
sented in [19]. Thus, the proposed mechanism outperforms
the existing approach in terms of classification accuracy.

4.3.2 Expected Performance Gain

Figure 8 shows the performance difference in execution time
among the best implementation, the worst implementation,
and the implementation selected by the proposed mecha-
nism. The matrices in the test set are ordered in ascending
order according to the execution time of the best implemen-
tation. The vertical axis is logarithmic. These results show
that, even if the mechanism cannot select the best imple-
mentation, the performance of the selected implementation
is quite close to that of the best one in most cases.

For performance comparison among different SpMV
code selection mechanisms, this paper uses the geometric
mean of normalized performance [11] defined by

GM =

⎛⎜⎜⎜⎜⎜⎝
N∏

i=1

Besti/Selectedi

⎞⎟⎟⎟⎟⎟⎠
1/N

, (1)

where N is the total number of test data, and Besti and
Selectedi are the execution times of the best implementa-
tion and the selected implementation, respectively, for the
i-th test matrix.

To discuss the performance gain of the proposed mech-
anism, five mechanisms are used in the following evalua-

Fig. 8 Performance difference between the best and selected
implementations.

Fig. 9 The geometric mean of normalized performance of five different
mechanisms.

tion for comparison. The system uses five kinds of mecha-
nisms to select the implementations in the implementation
set. One is the perfect mechanism that can always predict
the best implementation for each test matrix. During the
execution period, every test matrix is mapped to its best
implementation, and the system performance of the perfect
mechanism is hence ideal. The second one is the proposed
mechanism that uses a feature image mentioned in Sect. 3,
and every test matrix is converted to a feature image for the
prediction of its best implementation. In the prediction pro-
cess, a feature image and a CNN model trained in advance
are used. In the proposed mechanism, the implementation
that is considered by the proposed mechanism to have the
highest possibility is selected for each sparse matrix. The
remaining three are simple selection mechanisms that will
keep using a particular implementation in the implementa-
tion set.

Figure 9 shows the geometric means of normalized per-
formances for the perfect mechanism, the proposed mech-
anism, and three implementations (GPU CSR, CPU COO
and GPU HYB). These results indicate that the expected
performance of the proposed mechanism is 93.84% of that
of the perfect mechanism. Thus, the performance of the pro-
posed mechanism is close to the ideal one. Besides, it is
obvious that the performance of the proposed mechanism
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is expected to be much better than those of the other three
mechanisms that are achieved when no selection mechanism
is used. Accordingly, these results indicate that the proposed
mechanism is able to improve the expected performance of
the SpMV computing system. This means that underly-
ing features of a sparse matrix for code selection are cer-
tainly discovered by deep learning, and the proposed mech-
anism has a potential to predict an appropriate implementa-
tion without predefined matrix features for the prediction.

In Fig. 8, it is observed that the proposed mechanism
sometimes fails in predicting the best implementation of a
middle-size matrix. A simple reason is that it is hard for
the proposed mechanism to correctly predict the best imple-
mentation if the difference in performance between the best
and worst implementations is small. If the matrix size is ex-
tremely small or large, the performance difference tends to
be large. Therefore, most of the matrices mis-predicted by
the proposed mechanisms are middle-size matrices.

5. Conclusions and Future Work

This paper has proposed a mechanism that uses a deep learn-
ing approach to solve the SpMV code selection problem. In
the proposed mechanism, a sparse matrix is expressed by a
feature image, and a deep leaning model is used to do the
classification of the best implementation. The evaluation re-
sults show that a whole sparse matrix can be used to do the
SpMV code selection, and the classification accuracy can
be higher than those of existing approaches with predefined
features.

This work has demonstrated that, only from the feature
image of an input matrix, a deep leaning model can pre-
dict the best SpMV implementation among available ones.
Hence, only little information about the original matrix size
and a rough sketch of the non-zero element distribution is
needed for the prediction. This is an important contribution
of this work that had not been reported so far.

The general conclusion of this paper indicates the pos-
sibility of using deep learning for some other performance
tuning problems. The combination of the SpMV kernels and
the deep learning model of this paper is just one particu-
lar example in code selection problems. The proposed ap-
proach can be used for other SpMV implementations and
matrix formats. Moreover, some other appropriate deep
learning models can be used to solve other code selection
problems. This will be further discussed in our future work.
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