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PAPER

Accurate Estimation of Personalized Video Preference Using
Multiple Users’ Viewing Behavior

Yoshiki ITO†a), Student Member, Takahiro OGAWA†b), and Miki HASEYAMA†c), Members

SUMMARY A method for accurate estimation of personalized video
preference using multiple users’ viewing behavior is presented in this pa-
per. The proposed method uses three kinds of features: a video, user’s
viewing behavior and evaluation scores for the video given by a target user.
First, the proposed method applies Supervised Multiview Spectral Embed-
ding (SMSE) to obtain lower-dimensional video features suitable for the
following correlation analysis. Next, supervised Multi-View Canonical
Correlation Analysis (sMVCCA) is applied to integrate the three kinds of
features. Then we can get optimal projections to obtain new visual features,
“canonical video features” reflecting the target user’s individual preference
for a video based on sMVCCA. Furthermore, in our method, we use not
only the target user’s viewing behavior but also other users’ viewing be-
havior for obtaining the optimal canonical video features of the target user.
This unique approach is the biggest contribution of this paper. Finally, by
integrating these canonical video features, Support Vector Ordinal Regres-
sion with Implicit Constraints (SVORIM) is trained in our method. Conse-
quently, the target user’s preference for a video can be estimated by using
the trained SVORIM. Experimental results show the effectiveness of our
method.
key words: multiview approach, spectral embedding, canonical correla-
tion analysis, video preference, viewing behavior

1. Introduction

The Internet has made it easier to access many videos
via video-sharing services such as YouTube∗ and video-
streaming services such as Netflix∗∗ and Hulu∗∗∗. The num-
ber of videos posted to these services is expected to continue
to increase [1]. Users are generally required to input queries
when they want to watch a video. Thus, when users cannot
provide suitable queries that accurately reflect their desired
video, successful retrieval of a video becomes difficult [2].
In order to solve this problem, many video recommenda-
tion methods that do not require any queries have been stud-
ied, and they are broadly classified into two main types of
method [3]: collaborative filtering [4], [5] and content-based
filtering [6], [7]. In methods based on collaborative filtering,
users who have similar preferences are found on the basis of
evaluation scores given by the users. However, there is the
problem that videos that have not been evaluated in advance
cannot be recommended by these methods (first-rater prob-
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lem). In methods based on content-based filtering, on the
other hand, videos are recommended to the target user by
using features obtained from the video (video features) to
overcome the problem of collaborative filtering. However,
video features obtained by these methods do not take the
user’s preference into consideration. Thus, it is difficult to
recommend videos by using only video features.

In order to solve the above problem, it is neces-
sary to extract each user’s preference. There have been
some benchmarking studies on extraction of important fea-
tures included in original features by using the relationship
between original features and their corresponding scores
(e.g., original video features and evaluation scores for the
video) [8]–[13]. However, when different users give the
same evaluation scores for the same video, features ex-
tracted by these methods become the same. In other words,
supervised feature extraction methods for original features
are still not sufficient to extract each user’s preference.
Therefore, the introduction of other features that can repre-
sent the target user’s preference more accurately is needed.

Many methods use biological signals (e.g., brain
waves and heart rate) to extract unique features for each
user [14]–[19]. However, these approaches put a physical
burden on the users since biological signals are usually ob-
tained by a device attached to the body. However, since in-
cameras are mounted on some information and communi-
cation devices (e.g., personal computers, smartphones and
tablet-type information terminals), user’s viewing behavior
can be determined without putting a physical burden on
the user. In addition, viewing behavior such as gazing, fa-
cial expressions and body movements is closely related to
the user’s attention, and they are important factors for ex-
tracting the user’s individual preference [20]. From these
viewpoints, some methods to predict a target user’s evalu-
ation score for a video by using his/her viewing behavior
have been reported [21]–[24]. However, these methods have
not taken into account users who do not show conspicuous
viewing behavior. There are clear differences in the degrees
of viewing behavior shown by users. Thus, the problem of
the use of only a target user’s viewing behavior not working
effectively must be overcome.

In this paper, we propose a new framework to further
improve the accuracy of estimation of personalized video

∗http://www.youtube.com/
∗∗http://www.netflix.com/
∗∗∗http://www.hulu.com/
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Fig. 1 Overview of the proposed method. Our method uses viewing behavior obtained from multiple
users (P users), not just a target user. The use of multiple users’ viewing behavior is supportive for
estimation of the target user’s preference.

preference in order to solve the above problem. Figure 1
shows an overview of the proposed method. As shown in
the figure, we focus on the relationships between the video,
viewing behavior and evaluation scores. Furthermore, our
method uses not only the target user’s viewing behavior
but also other users’ viewing behavior. Therefore, the pro-
posed method tries to find the target user’s preference based
on multiple relationships obtained from “video”, “viewing
behavior acquired from multiple users including the target
user” and “evaluation scores given by the target user for the
video”. In our method, we first introduce Supervised Mul-
tiview Spectral Embedding (SMSE) [25], which is one of
the state-of-the-art methods for multimodal dimensionality
reduction. Using this method, the dimension of the video
features can be effectively reduced while weights of each
feature are being considered. Next, our method calculates
“canonical video features”, which maximize correlations
between the three kinds of features using Supervised Multi-
View Canonical Correlation Analysis (sMVCCA) [26]. Fur-
thermore, we also calculate several canonical video features
using multiple users’ viewing behavior, and these canonical
video features are integrated to represent the target user’s
video preference. This approach using multiple users’ view-
ing behavior provides a solution to the above-mentioned
problem, and this is the biggest contribution of this paper.
Finally, Support Vector Ordinal Regression with Implicit
Constraints (SVORIM) [27] (i.e., a classifier) is trained by
the integrated canonical video features, and prediction of
evaluation scores for a new video becomes feasible. Note
that our work shown in this paper is an extended version
of [28].

In our method, all of the three features (video, viewing
behavior and evaluation scores for videos) are required for
training. Meanwhile, in the test phase to predict evaluation
scores for new videos, only the video features are input to
the classifier; that is, any users’ viewing behavior and eval-
uation scores are not needed. This prediction is made possi-
ble by transforming the raw video features into the canonical

video features that have strong correlations with the users’
viewing behavior and evaluation scores. This is one of the
strengths of our method. On the other hand, if one of these
features (e.g., viewing behavior or evaluation scores) cannot
be obtained at all, our method does not work. In actual ap-
plication, viewing behavior may not be obtained in sections
of videos by the error of face or body tracking. However,
in our method, the viewing behavior (and evaluation scores)
is used in the training phase only, and not used in the test
phase described the above. We do not need to be concerned
about the tracking error of short time since training data that
failed to obtain can be substituted for data obtained from
other videos.

This paper is organized as follows. First, we explain
extraction of three kinds of features used in our method and
their smoothing in Sect. 2. In Sect. 3, we calculate the inte-
grated canonical video features that are newly desired based
on SMSE and sMVCCA using multiple users’ viewing be-
havior. In Sect. 4, SVORIM is trained from the integrated
canonical video features to realize estimation of the evalu-
ation scores for a new video. In Sect. 5, we show experi-
mental results to confirm the effectiveness of our method.
Finally, conclusions are given in Sect. 6.

2. Feature Calculation

This section shows the extraction of features. First, we
explain three kinds of features used in our method in 2.1.
Next, we explain procedures for smoothing of these features
in 2.2.

2.1 Extraction of Three Kinds of Features

In this subsection, we explain three features used in our
method: video features, viewing behavior features and la-
bel features. In a training dataset, the proposed method cal-
culates video features ui (i = 1, 2, · · · ,N) and their corre-
sponding pth (1 ≤ p ≤ P) user’s viewing behavior features
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Table 1 Three kinds of features used in the proposed method.

Feature Type Dimensions

Audio (Dynamics, Spectral, Timbre, Tonal, Rhythm) [29] 145
Video features HSV Color Histogram (HSVCH) [30] 64

Bag of features [31] based on Speeded-Up Robust Features [32] (SURF-Bof) 1000
Total - 1209

2D rectangle region of the face 2
Viewing behavior 3D angle of the face 3

features (Face) 3D movement of the head position 3
Facial expression descriptor based on Action Units [33] 6

Distance between the user’s centroid and a display 1
Viewing behavior 2D movement of the user’s centroid 2
features (Body) 2D rectangle region of the body 2

Angle of the body based on distance between both shoulders and a display 3
Total - 22

Label features Features based on the score evaluated by a target user R
Total - R

b(p)
i and label features li of a target user, where N =

∑Nv
i=1 ni,

and Nv means the number of training video, and ni is the
number of frames in ith video; that is, N is the number of
all training samples. The details of these three features are
shown below.

Video features (1209 dimensions):
We adopt 145-dimensional audio features obtained by MIR-
toolbox [29], which consists of Dynamics, Spectral, Tim-
bre, Tonal and Rhythm as shown in Table 1. In addi-
tion, we use HSV Color Histogram (HSVCH) [30] and Bag
of features [31] based on Speeded-Up Robust Features [32]
(SURF-Bof). Thus, the video feature vectors ui ∈ RDv are
extracted for each ith sample, where Dv = 1209 as shown in
Table 1. Note that we apply SMSE to the 1209-dimensional
original video features in 3.1 and then reduce these dimen-
sions.

Viewing behavior features (22 dimensions):
The user’s facial features and body movement features are
obtained by using a Kinect sensor† as shown in Table 1. In
order to calculate the facial features, Kinect detects land-
mark points on the user’s face and then constructs a 3D
face model corresponding to the landmark points. This 3D
face model enables acquisition of some data such as head
poses and facial expression descriptor based on Action Units
(AUs) [33] provided by the Microsoft Face Tracking Soft-
ware Development Kit for Kinect for Windows (Face Track-
ing SDK)††. These AUs support six points of facial move-
ments (Upper lip raiser, Jaw lowerer, Lip stretcher, Brow
lowerer, Lip corner depressor and Outer brow raiser). Thus,
14-dimensional facial features can be obtained. In addition,
we also obtain the user’s angle or distance to a display based
on the user’s skeleton extracted from the Kinect. Thus, we
obtain 8-dimensional body movement features. In this way,
we obtain the viewing behavior feature vectors b(p)

i ∈ RDb

for each ith sample, where Db = 22.

†http://www.microsoft.com/en-us/kinectforwindows/
††http://msdn.microsoft.com/en-us/library/jj130970.aspx

Label features (R dimensions):
A target user evaluates all videos in R grades while watching
them. Thus, we obtain evaluation scores for video li ∈ R1

from the target user. Note that these scores are expanded
into R-dimensional binary vectors based on [26] after they
are smoothed in 2.2. Finally, the label feature vectors li ∈
R

Dl are extracted for each ith sample, where Dl = R.

2.2 Smoothing of Features

In this subsection, we explain smoothing of the three fea-
tures described in the previous subsection. These features
are smoothed in order to improve their robustness based on
[28]. First, we define a constant parameter of short time
width s corresponding to a frame of the video. We use
before and after s samples for each ith sample. In other
words, 2s + 1 samples in total are used for each sample.
Next, the three features shown in the previous subsection
are smoothed as follows:

ui ← 1
2s + 1

i+s∑
w=i−s

uw,

b(p)
i ← 1

2s + 1

i+s∑
w=i−s

b(p)
w ,

li ← round

⎛⎜⎜⎜⎜⎜⎝ 1
2s + 1

i+s∑
w=i−s

lw

⎞⎟⎟⎟⎟⎟⎠ ,

(1)

where round(·) means an operator to round off evaluation
scores. As described in 2.1, label features are expanded into
binary vectors after smoothing. Since the smoothing of the
three features enables improvement of their robustness, we
will be able to observe more practical features.

3. Calculation of Integrated Canonical Video Features

In this section, the method for calculation of the integrated
canonical video features is shown. First, we explain the di-
mensionality reduction of video features based on SMSE in
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3.1. Next, we explain the method for calculating sMVCCA-
based integrated canonical video features using the three
kinds of features in 3.2. It should be noted that the maximum
dimensionality of the canonical video features calculated by
sMVCCA becomes less than the lowest one in each modal-
ity. Since the dimensionality of video features is higher than
those of the other features, viewing behavior features and
label features, we first show reduction of the dimensionality
of video features in 3.1.

3.1 Dimensionality Reduction of Video Features Based on
SMSE

SMSE is one of the state-of-the-art supervised dimension-
ality reduction methods for multimodal features. In our
method, SMSE is used in order to reduce dimensions of
video features while weights of each feature can be adjusted.

As described in the previous section, our method
prepares three kinds of video features, Audio, HSVCH
and SURF-Bof. We then define the mth (m ∈ {A,H,S})
features as Vm = [um,1, · · · , um,N] ∈ RDvm×N , where A, H
and S mean Audio, HSVCH and SURF-Bof, respec-
tively. Furthermore, Dvm means the dimensionality of
the mth feature. Next, we define a matrix contain-
ing a target sample and its K-nearest neighborhoods as
Vm,i = [um,i, um,i1 , · · · , um,iK ] ∈ RDvm×(K+1) for each sample i.
In our method, the mapping of Vm,i in the spaces constructed
for dimensionality reduction (embedding spaces) is defined
as V̂m,i = [ûm,i, ûm,i1 , · · · , ûm,iK ] ∈ RDv̂×(K+1), where Dv̂ means
the dimensionality of the mapped video features in the em-
bedding space, and Dv̂ ≤ Dvm . In order to preserve local
neighborhood embeddings for all samples, the following op-
timization problem is solved:

arg min
V̂,α

∑
m∈{A,H,S}

αm

N∑
i=1

K∑
k=1

||ûm,i − ûm,ik ||2 · (ωm,ik ), (2)

where V̂i = {V̂m,i}m∈{A,H,S}, and V̂ = {V̂i}Ni=1. Moreover,
α = {αm}m∈{A,H,S} means weights for each feature. In addi-
tion, we calculate the following weights in order to preserve
the same evaluation scores for a video and calculate the sim-
ilarity between um,i and um,ik in the original video feature
space:

ωm,ik =

⎧⎪⎪⎨⎪⎪⎩
exp(−||um,i − um,ik ||2/tm) if li = lik
0 otherwise,

(3)

where li is an evaluation score of um,i, and lik is an evaluation
score of um,ik , and tm is defined as follows:

tm =
2

N(N − 1)

N∑
p=1

N∑
q=p+1

exp(−||um,p − um,q||2). (4)

Thus, the optimization problem is solved with consideration
of the similarity within the same evaluation scores.

Next, we explain global coordinate alignment. Each
local neighborhood embedding V̂m,i ∈ RDv̂×(K+1) is a subset

of a global embedding V̂ ∈ RDv̂×N . Thus, Eq. (2) can be
rewritten as follows:

arg min
V̂,α

∑
m∈{A,H,S}

α
γ
m

N∑
i=1

V̂L(n)
m,iV̂

T

s.t. V̂V̂
T
= IDv̂ ;

∑
m∈{A,H,S}

αm = 1, αi ≥ 0,
(5)

where L(n)
m,i ∈ RN×N is the normalized Laplacian matrix,

and IDv̂ ∈ RDv̂×Dv̂ is the identity matrix. The matrix L(n)
m,i

is calculated as follows. We first define the weight ma-
trix Wm ∈ RN×N , whose (i, ik) element is ωm,ik defined in
Eq. (3). At the same time, we also define the diagonal
matrix Dm ∈ RN×N , whose diagonal element has

∑
l[Wm]i,l.

From these, Laplacian matrices Lm = Dm −Wm are calcu-
lated. Thus, we can obtain the normalized Laplacian matrix
as follows:

L(n)
m = D−1/2

m Lm D−1/2
m

= IN − D−1/2
m Wm D−1/2

m .
(6)

Note that we use the symmetric normalized graph Lapla-
cian used in SMSE [25] and multiview spectral embedding
(MSE) [34], which is an unsupervised version of SMSE.
Since αm must be non-negative values in Eqs. (2) and (5), the
property that the eigenvalues of the positive semi-definite
matrix are non-negative values is used in [25], [34]. There-
fore, other than the symmetric version, we will also be able
to use other versions of graph Laplacian (e.g., combinatorial
or random-walk version) in SMSE. Moreover, γ in Eq. (5) is
a parameter that can control the weights of each feature. The
domain of this parameter is 1 < γ. If the parameter is set as
γ → 1, the bias of the weights of each feature becomes
large. On the other hand, if the parameter is set as γ → ∞,
the bias becomes small; that is, each weight becomes equal.

Finally, in order to solve Eq. (5), an alternating opti-
mization algorithm is adopted on the basis of [34], [35].
First, the weights are initialized as αi = 1/3, and the fol-
lowing Λ is calculated:

Λ =
∑

m∈{A,H,S}
α
γ
m

N∑
i=1

L(n)
m,i. (7)

Next, we obtain embedding video features V̂ ∈ RDv̂×N

(Dv̂ = min{Dv1 ,Dv2 ,Dv3 }) by solving the following opti-
mization problem using Λ obtained from Eq. (7):

arg min
V̂

V̂ΛV̂
T

s.t. V̂V̂
T
= IDv̂ , (8)

where V̂ is a matrix including eigenvectors corresponding
to eigenvalues obtained by eigenvalue decomposition of Λ.
Note that we choose the smallest Dv̂ eigenvalues. From
Eq. (5), we obtain the following Lagrange function using the
Lagrange multiplier approach:
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Λ(α, ζ)

=
∑

m∈{A,H,S}
α
γ
m

N∑
i=1

V̂L(n)
m,iV̂

T − ζ
⎛⎜⎜⎜⎜⎜⎜⎝

∑
m∈{A,H,S}

αm − 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,
(9)

where ζ is the Lagrange multiplier. From Eq. (9), αm are
updated by solving the above function as follows:

αm =

{
1/tr

(
V̂L(n)

m V̂
T
)} 1
γ−1

∑
m∈{A,H,S}

{
1/tr

(
V̂L(n)

m V̂
T
)} 1
γ−1

, (10)

where tr(·) is an operator of trace. Since L(n)
m is a pos-

itive semi-definite matrix, its eigenvalue and αm are non-
negative values. We then perform calculations from Eq. (7)
to Eq. (10), iteratively. Our method continues to update αm

until the difference by updates is less than Thα. From the
converged αm, we can obtain the final V̂ using Eqs. (7) and
(8). Specifically, the objective function in Eq. (8) can be
rewritten as follows:

arg min
V̂

V̂ΛV̂
T
= arg min

Q
QTVΛVTQ, (11)

where Q is the optimal projection for VΛVT under the con-
straint of QQT = IDv . As seen from the above, SMSE effec-
tively reduces dimensions from the original video features
V ∈ RDv×N (Dv = 1209) to the embedding video features
V̂ ∈ RDv̂×N (Dv̂ = min{Dv1 ,Dv2 ,Dv3 }) while giving consider-
ation to the weights of each feature and the local neighbor-
hood structures within classes.

3.2 sMVCCA-based Integrated Canonical Video Features

In this subsection, we calculate sMVCCA-based integrated
canonical video features using the three features described
in the previous section. First, we obtain an embedding video
feature matrix V̂ = [û1, û2, · · · , ûN] ∈ RDv̂×N as mentioned in
the previous subsection. Next, we define several matrices
for viewing behavior features since our method uses sev-
eral viewing behavior obtained from multiple users, not just
a target user. Specifically, we define a pth user’s viewing
behavior feature matrix B(p) = [b(p)

1 , b
(p)
2 , · · · , b(p)

N ] ∈ RDb×N ,
where p ∈ {1, 2, · · · , P}, and P is the number of inte-
grated candidate users. We define p = 1 as the tar-
get user. Moreover, we define a binary vector li ∈ RDl

obtained from evaluation scores given by the target user.
Based on [26], the vector is expanded into a binary matrix
L = [l1, l2, · · · , lN] ∈ RDl×N since the dimensionality of the
canonical video features integrated by sMVCCA is less than
min{Dv̂,Db,Dl}. From these matrices, we calculate the opti-
mal projection vectors by maximizing the sum of three kinds
of pair correlations: correlation between V̂ and B(p) (video
and pth user’s viewing behavior), correlation between V̂ and
L (video and label) and correlation between B(p) and L (pth
user’s viewing behavior and label). Specifically, we calcu-
late the following optimization problem in order to obtain

the optimal projection vectors w(p)
v̂ ∈ RDv̂ , w(p)

b ∈ RDb and

w(p)
l ∈ RDl :

(
w(p)
v̂ ,w

(p)
b ,w

(p)
l

)

= arg max
w(p)
v̂ ,w

(p)
b ,w

(p)
l

(
w(p)
v̂

T
V̂B(p)T

w(p)
b

+ w(p)
v̂

T
V̂LTw(p)

l + w
(p)
b

T
B(p)LTw(p)

l

)

s.t. w(p)
v̂

T
(
V̂V̂

T
+ εIDv̂

)
w(p)
v̂

+ w(p)
b

T
(
B(p)B(p)T

+ εIDb

)
w(p)

b

+ w(p)
l

T (
LLT + εIDl

)
w(p)

l = 1,

(12)

where ε is a small hyperparameter to balance the regular-
ization term. The above optimization problem is rewritten
in the following generalized eigenvalue problem using the
Lagrange multiplier approach:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 V̂B(p)T

V̂LT

B(p)V̂
T

0 B(p)LT

LV̂
T

LB(p)T
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w(p)
v̂

w(p)
b

w(p)
l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
V̂V̂

T
0 0

0 B(p)B(p)T
0

0 0 LLT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + εID

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w(p)
v̂

w(p)
b

w(p)
l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
(13)

where λ is an eigenvalue, and D = Dv̂ +Db +Dl. By solving
the above generalized eigenvalue problem, we can obtain
the following projection matrix for a video:

W
(p)
v̂ =

[
w(p)
v̂,1 ,w

(p)
v̂,2 , · · · ,w(p)

v̂,d , · · · ,w(p)
v̂,Dp

]
∈ RDv̂×Dp , (14)

where Dp < min{Dv̂,Db,Dl}, and λd (λd > λd+1;
d = 1, 2, · · · ,Dp − 1). Note that w(p)

v̂,d is an optimal projec-
tion vector for a video corresponding to an eigenvalue λd.
Next, we calculate canonical video features based on the pth
users’ viewing behavior using the optimal projection matrix
for a video as follows:

V
(p)
=W

(p)
v̂

T
V̂ ∈ RDp×N . (15)

We use P users as we defined earlier. Thus, we can obtain a
set of P optimal projection matrices. Finally, these matrices
are integrated by the following concatenation:

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V
(1)

V
(2)

...

V
(P)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RD×N , (16)

where D =
∑P

p=1 Dp. In this way, we calculate the integrated
canonical video features from the collaborative use of multi-
ple users’ viewing behavior. The use of other users’ viewing
behavior, not just the target user’s viewing behavior, is sup-
portive for estimation of the preference for a video that the
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target user has not seen yet.

4. SVORIM-Based Score Prediction for a Video

In this section, we explain the SVORIM-based score predic-
tion method for a video. We first explain the reason why
SVORIM [27] is used in our method as a classifier to pre-
dict evaluation scores for a video. In [36], sixteen kinds
of ordinal regression classification methods are compared
in terms of computation time, Mean Absolute Error (MAE)
and Mean Zero-one Error (MZE) shown as:

MAE =
1
Nt

Nt∑
i=1

∣∣∣lPre
i − lGT

i

∣∣∣ ,

MZE =
1
Nt

Nt∑
i=1

[[
lPre
i � lGT

i

]]
,

(17)

where Nt is the number of test samples, lPre
i is the predicted

evaluation score of the ith sample, and lGT
i is the ground truth

(real score evaluated by the user) of the ith sample. More-
over,

[[·]] is a Boolean expression that outputs one if the in-
ner condition lPre

i � lGT
i is true, otherwise zero. The range of

MAE values is from zero to R − 1, and that of MZE values
is from zero to 1. Thus, we can compare an average error
by using MAE and accuracy without considering the order
by using MZE. The lower their values are, the higher the
performance is. In [36], it has been shown that SVORIM
is one of the most effective ordinal regression methods in
terms of computation time, MAE and MZE†. Thus, we ap-
ply SVORIM to predict evaluation scores.

Next, we explain how to predict evaluation scores for
a video based on SVORIM. This classifier is trained by the
integrated canonical video features V obtained in the previ-
ous section. First, we define pairs of integrated canonical
video feature vectors and evaluation scores of the training
video (ui, li) (i = 1, 2, · · · ,N), where li ∈ {1, 2, · · · ,R}. Then
ui are mapped into a high-dimensional Reproducing Kernel
Hilbert Space (RKHS) to obtain φ(ui). The prediction of
evaluation scores for new test video vectors u(new) can be
calculated by the following discriminant function:

arg min
i

{
i : f (u(new)) < τi

}
,

f (u(new)) =
〈
u · φ(u(new))

〉
,

(18)

where 〈·〉 denotes the inner product in the RKHS, u is a map-
ping direction, and τi are thresholds between classes. In or-
der to obtain the optimal u and τi, we solve the following
primal problem:

min
u,τ,ξ,ξ∗

1
2
〈u · u〉 +C

R−1∑
r=1

⎛⎜⎜⎜⎜⎜⎜⎝
r∑

r̂=1

Nr̂∑
i=1

ξrr̂i +

R∑
r̂=r+1

Nr̂∑
i=1

ξ∗rr̂i

⎞⎟⎟⎟⎟⎟⎟⎠
s.t.

〈
u · φ(ur̂i )

〉
− τr ≤ −1 + ξrr̂i, ξ

r
r̂i ≥ 0,

†Among 16 kinds of methods, it has been reported in [36] that
SVORIM recorded the sixth fastest computation time, the third
lowest MAE and the second lowest MZE.

for r̂ = 1, · · · , r and i = 1, · · · ,Nr̂; (19)〈
u · φ(ur̂i )

〉
− τr ≥ 1 − ξ∗rr̂i , ξ

∗r
r̂i ≥ 0,

for r̂ = r + 1, · · · ,R and i = 1, · · · ,Nr̂,

where C > 0 is a constant variable to suppress over-learning
from the small number of samples, Nr̂ is the number of
samples in class r̂, and ur̂i ∈ RD is the canonical video fea-
ture vector belonging to class r̂. Furthermore, ξrr̂i and ξ∗rr̂i
are slack variables corresponding to the left and right parts
for the rth parallel hyperplane, respectively. The first group
of constraints corresponds to the left part of the r̂th hyper-
planes, and the second group of constraints corresponds to
the right part. The schematic view of SVORIM is shown
in the right side of Fig. 1. In this figure, the horizontal axis
is

〈
u · φ(u)〉 in Eq. (18). In addition, vertical solid lines and

dotted lines are τi and τi ± 1 in Eq. (19), respectively. More-
over, blue arrows are slack variables, and points flamed in
green are support vectors.

Next, the dual problem of Eq. (19) can be rewritten as
the following maximization problem:

max
η,η∗

−1
2

∑
r̂,i

∑
r̂′,i′

⎛⎜⎜⎜⎜⎜⎜⎝
r̂−1∑
r=1

η∗rr̂i −
R−1∑
r=r̂

ηr
r̂i

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

r̂′−1∑
r=1

η∗rr̂′i′ −
R−1∑
r=r̂′
ηr

r̂′i′

⎞⎟⎟⎟⎟⎟⎟⎠

× K(ur̂i , u
r̂′
i′ ) +

∑
r̂,i

⎛⎜⎜⎜⎜⎜⎜⎝
r̂−1∑
r=1

η∗rr̂i +

R−1∑
r=r̂

ηr
r̂i

⎞⎟⎟⎟⎟⎟⎟⎠

s.t.
r∑

r̂=1

Nr̂∑
i=1

ηr
r̂i =

R∑
r̂=r+1

Nr̂∑
i=1

η∗rr̂i ∀r, (20)

0 ≤ ηr
r̂i ≤ C ∀r and r̂ ≤ r,

0 ≤ η∗rr̂i ≤ C ∀r and r̂ > r,

where ηr
r̂i and η∗rr̂i are Lagrangian multipliers, and

K(ur̂i , u
r̂′
i′ ) =

〈
φ(ur̂i ) · φ(ur̂

′
i′ )

〉
. Finally, the discriminant func-

tion in Eq. (18) can be rewritten as the following function
by using the optimal ηr

r̂i and η∗rr̂i :

arg min
i

{
i : f (u(new)) < τi

}
,

f (u(new)) =
∑
r̂,i

⎛⎜⎜⎜⎜⎜⎜⎝
r̂−1∑
r=1

η∗rr̂i −
R−1∑
r=r̂

ηr
r̂i

⎞⎟⎟⎟⎟⎟⎟⎠K(ur̂i , u
(new)).

(21)

In this way, we can predict the target user’s evaluation scores
for a video based on SVORIM using the integrated canoni-
cal video features.

5. Experimental Results

In this section, we show experimental results to confirm
the effectiveness of our method. First, we explain the ex-
perimental conditions. In this experiment, three keywords,
“movie”, “news” and “sports”, were given as queries to
YouTube. Five video clips were obtained for each keyword;
that is, 15 video clips (65 seconds for each video) in to-
tal were prepared for the experiment. The subjects were
eight men and two women of about 22 years of age. We set
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Table 2 Specific procedures and conditions for video and viewing behavior features used in the pro-
posed method and the five comparative methods.

PM CM1 CM2 CM3 CM4 CM5
Video SMSE Vector concat. SMSE Vector concat. SMSE Vector concat.

Viewing behavior Multiple users Multiple users Target user Target user - -

Table 3 MAE and MZE values of the proposed method and the five comparative methods.

PM CM1 CM2 CM3 CM4 CM5
Subject MAE MZE MAE MZE MAE MZE MAE MZE MAE MZE MAE MZE

1 0.618 0.473 0.719 0.528 0.645 0.473 0.738 0.498 0.759 0.578 1.098 0.849
2 0.589 0.484 0.569 0.480 0.622 0.488 0.619 0.496 0.643 0.534 0.900 0.766
3 0.707 0.519 0.713 0.535 0.744 0.539 0.771 0.551 0.808 0.582 1.102 0.738
4 0.660 0.499 0.747 0.528 0.735 0.545 0.844 0.523 0.756 0.544 1.232 0.777
5 0.474 0.378 0.505 0.412 0.515 0.408 0.542 0.428 0.602 0.488 0.710 0.584
6 0.546 0.466 0.549 0.494 0.568 0.482 0.557 0.496 0.571 0.496 0.734 0.641
7 0.417 0.370 0.482 0.416 0.433 0.389 0.535 0.445 0.509 0.444 0.676 0.598
8 0.617 0.452 0.626 0.495 0.702 0.487 0.659 0.492 0.793 0.551 1.024 0.742
9 0.431 0.369 0.508 0.419 0.447 0.384 0.523 0.443 0.510 0.451 0.701 0.554
10 0.644 0.506 0.630 0.518 0.695 0.532 0.677 0.534 0.728 0.578 1.009 0.704

Average 0.570 0.452 0.605 0.483 0.611 0.473 0.646 0.491 0.668 0.525 0.919 0.695

the above experimental conditions using [18], [19] as refer-
ences.

The subjects watched all of the video clips in a sitting
position. A 15-inch display was set at a distance of one me-
ter from the subjects, and a Kinect sensor to extract their
viewing behavior was set on the display. Then the subjects
evaluated all of the video clips by five ordinal grades, i.e.,
5 (high preference), 4 (preference), 3 (undecided), 2 (low
preference) and 1 (very low preference), by a console input
using a keyboard. Note that three features (video, viewing
behavior, label) used in our method were extracted by 10
fps, and we did not extract features for five seconds imme-
diately after watching each video to avoid noise by the user.
In this way, a dataset including the three features could be
obtained.

Next, we explain the parameter settings. First, the time
width s in Eq. (1) was set as one second, and the threshold
in 3.1 was set as Thα = 10−3. In this experiment, we empir-
ically set Dv̂ = min{Dv1 ,Dv2 ,Dv3 } = 64, ε = 0.01, Dp = 4 <
min{Dv̂,Db,Dl} for all subjects, and the number of users to
integrate the canonical video features in Eq. (16) was set as
P = 10 (all users including the target user). Moreover, the
constant variable C in Eq. (19) was chosen by searching the
following parameters: C ∈ [2−5, 2−3, 2−1, · · · , 25, 27]. Addi-
tionally, we adopted the Gaussian kernel in Eq. (20) as fol-
lows:

K(ur̂i , u
r̂′
i ) = exp

⎛⎜⎜⎜⎜⎜⎜⎝
−||ûr̂i − ûr̂

′
i ||2

2σ2

⎞⎟⎟⎟⎟⎟⎟⎠ , (22)

where the kernel width σ2 was chosen by searching the fol-
lowing parameters: σ2 ∈ [2−15, 2−13, 2−11, · · · , 21, 23]. We
then decided an optimal set of two parameters by a grid
search [37]. In this experiment, we conducted 15-fold cross-
validation and compared the performance of our method
with the performances of comparative methods by using
MAE and MZE described in the previous section.

Next, we explain the comparative methods. We com-
pared the Proposed Method (PM) with five Comparative
Methods (CMs) as shown in Table 2. Note that “Vector con-
cat.” means the vector concatenation of the three kinds of
features used as video features (Audio, HSVCH and SURF-
Bof). CM1 is a method based on [28], which is the latest
method in our previous work. CM3 is a method using not
multiple users’ viewing behavior but only the target user’s
viewing behavior [23]. CM4 and CM5 are methods not us-
ing any user’s viewing behavior, and the methods maximize
correlations between video features and label features based
on Canonical Correlation Analysis [8]. Note that SMSE was
used in CM4 but was not used in CM5. Moreover, we
adopted Welch’s t-test to determine whether the difference
between “MAE and MZE of the PM” and “those of CMs”
was significant or not.

The results presented in Table 3 show the effectiveness
of the PM since we can see that MAE and MZE of the PM
are lower than those of all CMs for the most part. In addi-
tion, we confirmed that the PM met the significance level of
5% from Welch’s t-test compared to all of the CMs for both
MAE and MZE. Specifically, by comparing CM3 with CM5
and comparing CM2 with CM4, it was confirmed that the
target user’s viewing behavior is effective. Next, by compar-
ing CM4 with CM5 and comparing CM2 with CM3, it was
confirmed that SMSE is also effective. Moreover, a com-
parison of CM1 and CM3 showed that the use of multiple
users’ viewing behavior is effective. Finally, we could con-
firm the effectiveness of our method by comparing the PM
with CM1. The results indicate that our method can more
accurately extract video features that reflect the target user’s
preference.

Next, we discuss the reason why SMSE and multiple
users’ viewing behavior contributed to good performance.
First, we discuss the contribution of using SMSE. In our
method, video features (Audio, HSVCH and SURF-Bof) are
integrated by SMSE before integration of three kinds of fea-



488
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Table 4 A comparison of “sMVCCA” and “SLPCCA and DLPCCA”.

SLPCCA DLPCCA
Subject MAE MZE MAE MZE

1 1.062 0.763 1.071 0.696
2 0.849 0.696 0.899 0.765
3 1.028 0.641 1.100 0.710
4 1.232 0.777 1.232 0.776
5 0.706 0.579 0.708 0.583
6 0.689 0.613 0.689 0.608
7 0.676 0.598 0.676 0.598
8 1.023 0.737 1.024 0.742
9 0.701 0.554 0.701 0.554
10 1.008 0.704 1.009 0.704

Average 0.897 0.666 0.911 0.674

tures (video, viewing behavior and label) using sMVCCA.
By comparing PM with CM1 and comparing CM2 with
CM3 in the experiment, it was confirmed that SMSE was
effective for the most part. If video features are used as
concatenation of each vector, the dimensionality of them is
very high (=1209 dim.), which may cause the drop of gen-
eralization performance. Since SMSE has greatly reduced
the dimensionality of the video features from 1209 dim. to
64 dim., the original video features have been transformed
into embedding video features, which is useful condensed
information for a target user. Therefore, the embedding to a
low-dimensional space contributed to good performance.

Second, we discuss the contribution of using multiple
users’ viewing behavior. Our method uses viewing behav-
ior obtained from multiple users, not just a target user. By
comparing PM with CM2 and comparing CM1 with CM3 in
the experiment, it was confirmed that the collaborative use
of viewing behavior obtained from multiple users was effec-
tive for the most part. Specifically, it is conceivable that the
viewing behavior of other users was supportive for viewing
behavior of the target user when much viewing behavior for
specific videos was not caused by the target user.

Moreover, we discuss which of video features and
viewing behavior features is the most important features.
Actually, which of these features is important depends on
each user. Our method uses sMVCCA for correlation anal-
ysis, which maximizes the sum of all pair correlations in-
cluding video features and viewing behavior features. By
using the correlation analysis method, our method can auto-
matically concern about the differences depending on each
user.

In Sect. 3, sMVCCA was used for correlation analy-
sis, which integrated the following three kinds of features:
video, viewing behavior and label. Besides sMVCCA, we
conducted experiments using supervised locality preserving
CCA (SLPCCA) [38] and discriminative locality preserving
CCA (DLPCCA) [39]. SLPCCA and DLPCCA are one of
the state-of-the-art methods of supervised multimodal CCA
as well as sMVCCA. SLPCCA is a supervised version of
locality preserving CCA (LPCCA) [40], which introduces
locality preserving projection (LPP) [41] to CCA. LPP cal-
culates the projections preserving the neighborhood struc-
ture between two kinds of features. On the other hand,

DLPCCA is the method extending LPCCA by Fisher dis-
criminant analysis (FDA) [9], which minimizes intra-class
variance and maximizes inter-class variance. Experiment
conditions are same as CM3. From a comparison of CM3
in Table 3 and Table 4, we can confirm that the method us-
ing sMVCCA is superior to the methods using SLPCCA and
DLPCCA. In addition, it was confirmed that the sMVCCA-
based method met the significance level of 1% from Welch’s
t-test. Therefore, it is appropriate to use sMVCCA for su-
pervised multimodal correlation analysis in this method.

6. Conclusions

A method for accurate estimation of personalized video
preference was presented in this paper. In order to estimate
the target user’s preference more accurately, the proposed
method uses not only the target user’s viewing behavior but
also multiple users’ viewing behavior. We showed the effec-
tiveness of the proposed method from experimental results
since estimation with a high level of accuracy was achieved
by our method compared to the conventional methods.

Finally, we discuss remaining issues and future works.
First, it is necessary to construct a framework to select users
who will give viewing behavior that contributes to accuracy
for the target user. Our method proposed in this paper is a
framework using all other users, which is not realistic when
used in actual applications. Next, hand-crafted features such
as HSVCH and SURF-Bof are used as video features. How-
ever, since videos are time-series data, we have an idea using
features generated from a framework that is suitable for time
change like recurrent neural network (RNN) [42].
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