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Modeling Storylines in Lyrics

Kento WATANABE†a), Yuichiroh MATSUBAYASHI†, Nonmembers, Kentaro INUI†,††,
Satoru FUKAYAMA†††, Members, Tomoyasu NAKANO†††, Nonmember, and Masataka GOTO†††, Member

SUMMARY This paper addresses the issue of modeling the discourse
nature of lyrics and presented the first study aiming at capturing the two
common discourse-related notions: storylines and themes. We assume that
a storyline is a chain of transitions over topics of segments and a song has
at least one entire theme. We then hypothesize that transitions over top-
ics of lyric segments can be captured by a probabilistic topic model which
incorporates a distribution over transitions of latent topics and that such a
distribution of topic transitions is affected by the theme of lyrics. Aiming to
test those hypotheses, this study conducts experiments on the word predic-
tion and segment order prediction tasks exploiting a large-scale corpus of
popular music lyrics for both English and Japanese (around 100 thousand
songs). The findings we gained from these experiments can be summarized
into two respects. First, the models with topic transitions significantly out-
performed the model without topic transitions in word prediction. This
result indicates that typical storylines included in our lyrics datasets were
effectively captured as a probabilistic distribution of transitions over latent
topics of segments. Second, the model incorporating a latent theme variable
on top of topic transitions outperformed the models without such variables
in both word prediction and segment order prediction. From this result, we
can conclude that considering the notion of theme does contribute to the
modeling of storylines of lyrics.
key words: bayesian model, generative model, lyrics structure, lyrics un-
derstanding, natural language processing

1. Introduction

Lyrics are an important element in popular music that con-
veys stories and expresses emotion. Unlike prose text, lyrics
are created in consideration of its specific properties such as
fitness to rhythm and melody, and rhetoric with rhyme, re-
frain and repetition [1], [2]. In writing a piece of lyrics for
a given piece of music, the writer should select right words
such that their syllables fit the rhythm or melody of the mu-
sic. The writer may also consider using rhymes, refrains or
repetitions to color the entire story rhetorically as in the ex-
ample lyrics shown in Fig. 1, where rhymes can be seen at
night, light and tight in Segment 2). Writing lyrics is thus a
complex task.

These characteristics of lyrics have been motivating a
range of research for computer-based modeling of lyrics and
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Fig. 1 Lyrics with a storyline (title: Don’t Say Good bye (RWC-MDB-
P-2001 No. 90 from RWC Music Database [17])).

computer-assisted or fully-automated creation of lyrics [3]–
[10]. In particular, building a computational model of lyrics
is an important research goal. Once a reasonably sophisti-
cated computational model of lyrics is obtained, the model
will provide us a better understanding of the nature and
structure of lyrics, which will then allow us to consider
building computer systems which can enhance the creativ-
ity of human lyrics writers. In reality, however, while an in-
creasing number of papers have been published for demon-
strating computer systems that automatically generate lyrics
or assist human lyricists [3]–[10], research for modeling
lyrics and understanding their properties is still limited [11]–
[15].

One crucial issue we miss in previous studies is mod-
eling the nature of lyrics as discourse. Similar to prose text,
a piece of lyrics typically comprises discourse segments;
namely, lyrics of popular music typically has verse, bridge
and chorus segments [16] and such segments may comprise
more fine-grained segments as in Fig. 1. Each segment pro-
vides part of the entire story and the segments are organized
(or sequentially ordered) so as to constitute a coherent struc-
ture as a whole. In spite of its importance, however, no
prior study has ever addressed the issue of modeling this
discourse-oriented nature of lyrics.

Motivated by this background, in this paper, we report
on our novel study for building a computational model of the
discourse nature of lyrics. We focus on two notions which
characterize lyrical discourse: storyline and theme. Both
notions are described in textbooks on lyrics writing [1], [2].

A segment of lyrics is assumed to have its own pur-
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Fig. 2 The notion of storylines and themes in lyrics.

pose, which corresponds to a discourse segment purpose
in terms of discourse analysis research [18]. In Fig. 1, for
example, Segment 1 introduces the story, Segment 2 retro-
spects a past event, and Segment 3 expresses an emotion
which arises from the retrospection. We model a storyline
as such a chain of coherent shifts between discourse segment
purposes. Specifically, we capture typical types of discourse
segment purposes as latent topics by applying topic mod-
eling techniques [19] to a large collection of lyrical texts,
and then model typical storylines of lyrics as a probability
distribution over the transition of latent topics over succes-
sive segments (Fig. 2). On top of storylines, we additionally
consider the notion of theme, which we assume to be an
entire discourse purpose. We assume that each song has at
least one theme and each theme affects the distribution over
both topic transitions and word choices. For the lyrics in
Fig. 1, for example, our model provides a result with which
we can understand its theme as “Sweet Love” and estimates
the theme-sensitive distributions over topic transitions and
word choices.

In order to examine how well our model of lyrics fit
real-world data, we experiment with two distinct prediction
tasks, word prediction and segment order prediction, and
compare four variant models with different settings for con-
sidering storylines and themes. In the experiments, the mod-
els were trained with unsupervised learning over a large-
scale corpus of popular music lyrics for both English and
Japanese (around 100 thousand songs). The results demon-
strate that the consideration of storylines (topic transitions)
and themes contributes to improved prediction performance.

In what follows, we review related work in Sect. 2 and
describe our novel method of modeling lyrics in Sect. 3. We
then present our experiments in Sect. 4 before concluding
this study in Sect. 5.

2. Related Work

2.1 Modeling Structure of Lyrics

Plenty of studies for capturing lyric-specific properties have

been reported, where a broad range of music elements in-
cluding meter, rhythm, rhyme, stressed/unstressed syllables,
and accent are studied. Reddy and Knight [14] developed a
language-independent rhyme model based on a Markov pro-
cess that finds rhyme schemes. Greene et al. [13] employed
a finite-state transducer to assign syllable-stress pattern to
all words in each line. Nichols et al. [12] identified several
patterns in the relationship between the lyrics and melody in
popular music by measuring the correlation between textual
salience and musical salience. Mayer et al. [11] trained a
support vector machine to classify music genres using only
textual features such as rhyme and part-of-speech patterns.
Barbieri et al. [5], Abe and Ito [6], and Ramakrishnan and
Devi [4] generated English, Japanese and Tamil lyrics that
satisfy a given input constraint, such as rhyme, rhythm, and
part-of-speech templates. Wu et al. [7] applied stochastic
transduction grammar induction algorithms to generate flu-
ent rhyming hip hop lyrics. Watanabe et al. [15] proposed
a computational model that predicts segment boundaries
in lyrics by utilizing a self-similarity matrix, which is fre-
quently used in audio-based music structure analysis.

Several studies aim at modeling semantic structure of
lyrics. Kleedorfer et al. [20] classified lyrics according to
topical clusters calculated using nonnegative matrix factor-
ization [21]. Sasaki et al. [22] visualized lyric clusters cal-
culated using Latent Dirichlet Allocation (LDA) [19].

These prior studies share the motivation of modeling
lyric-specific structure with our study. However, they have
not considered capturing the discourse-oriented nature of
lyrics whereas our study aims at modeling storylines (i.e.
coherent transitions of discourse segment purposes) and
themes (i.e. entire discourse purposes) of lyrics.

2.2 Modeling Topic Sequence

Transition of topics has been studied in the context of topic
modeling for sequential text data such as newspapers, we-
blogs, and conversations. Iwata et al. [23] proposed a Topic
Tracking Model (TTM), an extension of LDA, to models
topic sequences. In the TTM, the topic distribution changes
at each time. The TTM analyzes changes in user inter-
est (e.g., interest in weblogs and microblogs). Blei and
Lafferty [24] proposed the Dynamic Topic Model (DTM),
which is similar to the TTM. In the DTM, the prior distri-
bution of topic distribution changes at each time. The DTM
analyzes changes in topic over time (e.g., topics in news ar-
ticles and academic papers). The TTM and DTM have a
topic distribution for a specific date (e.g., the DTM can train
the topic distribution in a given period). Although the DTM
and TTM can represent the topic sequence, extending these
model to lyrics is difficult because, in lyrics, a segment’s
topic is time-independent.

Barzilay et al. proposed Content Model (CM), which
is typically used for discourse analysis [25], to model topic
sequences in documents without date information. CMs are
sentence-level hidden Markov models that capture the se-
quential topic structure of a news event, such as earthquakes.
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Fig. 3 Plate notation of base models (a, b) and the proposed combination models (c, d). The shaded
nodes are observed variables, dots are hyperparameters, x, y, and z are latent variables, and ψ, θ, φ, and
λ are probability distributions.

Several studies extended Barzilay’s model to dialog acts
(e.g., questions and responses) [26], [27]. Ritter et al. [26]
assumed that an observed sentence is generated from either
a dialog act-specific language model (e.g., questions and re-
sponses) or a dialog-specific language model (e.g., food and
music). Zhai and Williams [27] assumed that an observed
word is generated from either a CM or an LDA and modeled
the latent structure in task-oriented dialog. In their study,
the sequential structure of dialog is modeled as a transition
distribution.

We share the core concept as these studies and apply a
CM to lyrics to model storylines (See Sect. 3.2). We then ex-
tend the CM to capture theme and investigate the effects of
considering themes on top of storylines in our experiments.

3. Model Construction

Our final objective is to model the storyline of lyrics. How-
ever, precise modeling and representation of storylines re-
main an open issue. As mentioned previously, lyricists con-
sider the order of topics when creating storylines; if the or-
der changes, the content of the lyrics also changes. There-
fore, we assume that a better storyline model can be used to
predict the order of segments and the words in lyrics.

Based on the above assumption, we explore different
topic sequence models to improve prediction performance.
Lyricists often consider the order of topics when they create
storylines; therefore, we assume that topic sequences can be
represented as a probabilistic distribution of transitions over
latent states. Since lyricists often assign a certain role to
each segment, we assume that the segment is in one latent
variable for a given lyrical content and words are derived
from each latent state. Moreover, we assume that lyrics
in a song are in one latent variable (i.e., a theme) because
lyricists often create storylines according to themes. Based
on the above idea, we prepared four data-driven Bayesian

models. By comparing the performance of the models, we
investigate which encoding method can better model the
storyline.

In the following, we first describe the notations used in
this study and two baseline methods for modeling the story-
line. Finally, we propose two extended combination models
to handle theme and storyline simultaneously.

3.1 Preliminaries

We assume that we have a set of M lyrics (songs). The
lyric is an index between 1 and M, where M is the num-
ber of songs. The m-th lyric contains Sm segments and
has a single theme denoted as the latent variable ym. The
theme is an index between 1 and I, where I is the num-
ber of themes. The s-th segment contains a bag of words
denoted as {wm,s,1, wm,s,2, . . . , wm,s,Nm,s }, where wm,s,n is an in-
dex between 1 and V , where V is the vocabulary size. Nm,s

is the number of words in the s-th segment of the m-th lyric.
In addition, each segment has a single topic denoted as the
latent variable zm,s. The topic is an index between 1 and
J, where J is the number of topics. The storyline is rep-
resented as the sequence of a segment’s topic denoted as
zm = zm,1, zm,2, . . . , zm,Sm .

3.2 Base Model 1: Content Model

We use the CM [25] as a baseline model for the storyline
of lyrics because this model is the simplest topic transi-
tion model that satisfies our assumption that the topic se-
quence can be encoded as probabilistic latent state tran-
sition. As shown in Fig. 3 (a), we assume that the story-
line can be generated from a topic transition distribution
θz. For the s-th segment in the m-th lyric, each topic zm,s

is generated from the previous topic zm,s−1 via the transition
probability P(zm,s|θzm,s−1 ). This probability is calculated by
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J-dimensional multinomial distribution θz drawn from
Dirichlet distributions with symmetric hyperparameter α.
Then the word wm,s,n in each segment is generated
from each topic zm,s via topic-specific generative prob-
ability P(wm,s,n|φzm,s ). This probability is calculated by
V-dimensional multinomial distribution φz drawn from
Dirichlet distributions with symmetric hyperparameter β.

3.3 Base Model 2: Mixture of Segment Model

To investigate the effects of capturing topic transitions, we
also build a model that removes topic transitions from the
CM (Fig. 3 (b)). We refer to this model as the Mixture
of Segment Model (MSM). In the MSM, each segment’s
topic zm,s is generated via the probability without transition
P(zm,s|θ). This probability is calculated by J-dimensional
multinomial distribution θ drawn from Dirichlet distribu-
tions with symmetric hyperparameter α. In other words, the
MSM has only one probability distribution θ while the CM
has J probability distributions θz.

3.4 Proposed Model 1: Mixture of Unigram and Content
Model

To verify that both theme and topic transition are useful for
modeling the storyline, we propose a model that combines
the theme and the topic transition simultaneously, and we
compare this model to the baseline models. The idea behind
this combined modeling is that we can mix a theme-specific
model and the topic transition model (i.e., the CM) using
linear interpolation assuming that words in lyrics are depen-
dent on both the theme and the topic.

We use the Mixture of Unigram Model (MUM) [28] as
the theme-specific model because it is the simplest model
that satisfies our assumption; lyrics in a song are in a single
latent variables (i.e., the theme). The MUM assumes that
theme ym is drawn from an I-dimensional theme distribution
ψ and all words in the lyrics are drawn from V-dimensional
multinomial distribution φym as shown in Fig. 3 (c).

In the proposed MUM-CM, we define a binary variable
xm,s,n that uses either the MUM or the CM when the word
wm,s,n is generated. Here, if xm,s,n = 0, the word is drawn
from the MUM’s word distribution φy, and if xm,s,n = 1, the
word is drawn from the CM’s word distribution φz. The bi-
nary variable x is drawn from a Bernoulli distribution λm

drawn from a beta distribution with symmetric hyperparam-
eter η. In other words, the words depend on both theme and
topic, and the MUM and CM are defined independently in
this model.

Figure 3 (c) shows the plate notation of the MUM-CM.
The generation process in the MUM-CM is as follows.

1. Draw a theme distribution ψ ∼ Dir(ε)
2. For each theme y = 1, 2, . . . , I:

• Draw a distribution of theme words φy ∼ Dir(ζ)

3. For each topic z = 1, 2, . . . , J:

• Draw a topic transition distribution θz ∼ Dir(α)
• Draw a distribution of topic words φz ∼ Dir(β)

4. For each lyric m = 1, 2, . . . ,M:

• Draw a theme ym ∼ Multi(ψ)
• Draw a distribution of binary variable
λm ∼ Beta(η)
• For each segment s = 1, 2, . . . , Sm:

– Draw a topic zm,s ∼ Multi(θzm,s−1 )
– For the n-th word wm,s,n in segment s:

∗ Draw a binary variable
xm,s,n ∼ Bernoulli(λm)

∗ If xm,s,n = 0:

· Draw a word wm,s,n ∼ Multi(φym )

∗ If xm,s,n = 1:

· Draw a word wm,s,n ∼ Multi(φzm,s )

Here, α, β, ε, and ζ are the symmetric hyperparameters of
the Dirichlet distribution and η is the symmetric hyperpa-
rameter of the beta distribution. The generation probability
of the m-th lyric is calculated as follows:

P(m) = P(x=0|λm)
I∑

y=1

(
P(y|ψ)

Sm∏
s=1

Nm,s∏
n=1

P(wm,s,n|φy)
)

+ P(x=1|λm)
∑
zall

Sm∏
s=1

(
P(zs|θzs−1 )

Nm,s∏
n=1

P(wm,s,n|φzs )
)

(1)

where zall denotes all possible topic sequences. If s = 1, θz0

denotes the initial state probabilities. This equation repre-
sents that a word wm,s,n is generated from the MUM accord-
ing to P(x = 0|λm) or is generated from the CM according
to P(x = 1|λm).

We use collapsed Gibbs sampling for model inference
in the MUM-CM. For a lyric m, we present the conditional
probability of theme ym for sampling:

P(ym= i|y¬m,w, ε, ζ) ∝ P(ym= i|y¬m, ε)

·P(wm|w¬m, ym= i, y¬m, ζ) (2)

where y¬m denotes the topic set except the m-th lyric, w de-
notes the word set in the training corpus, wm denotes the
word set in the m-th lyric, and w¬m denotes the word set in
the training corpus except wm.

We sample topic zm,s for a segment s of lyric m accord-
ing to the following transition distribution:

P(zm,s = j|z¬(m,s),w, α, β) ∝ P(zm,s = j|z¬(m,s), α)

·P(wm,s|w¬(m,s), zm,s = j, z¬(m,s), β) (3)

where z¬(m,s) denotes the topic set except the s-th segment in
the m-th lyric, wm,s denotes the word set in the s-th segment
of the m-th lyric, and w¬(m,s) denotes the word set in the
training corpus except wm,s.

For the n-th word in the segment s in the m-th lyric,
we present the conditional probability of its binary variables
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Algorithm 1 Model inference for the MUM-CM
1: Initialize parameters in the MUM-CM
2: for each iteration do
3: for each lyrics m in the corpus do
4: sample ym according to (2)
5: for each segment s in m do
6: sample zm,s according to (3)
7: for each word w in s do
8: sample x according to (4)
9: end for

10: end for
11: end for
12: update hyperparameters by using fixed point iteration
13: end for

xm,s,n for sampling:

P(xm,s,n = k|x¬(m,s,n),w, η, ζ, β)

∝ P(xm,s,n = k|x¬(m,s,n), η)

·P(wm,s,n|w¬(m,s,n), xm,s,n = k, x¬(m,s,n), ζ, β) (4)

where x¬(m,s,n) denotes the binary variable set except xm,s,n.
Note that the value of k is always 0 or 1.

We estimate hyperparameters α, β, ε, ζ, and η using
fixed point iteration [29]. For each sampling iteration, the
latent variables x, y, and z are sampled. Then, new hy-
perparameters are estimated such that the joint probabili-
ties P(w, y|ε, ζ), P(w, z|α, β), and P(w, x|η) are maximized,
where y, z, and x denote the latent variable sets in the train-
ing corpus.

In summary, the model and parameter inference for the
MUM-CM is shown in Algorithm 1, and the update equa-
tions for Gibbs sampling are given in Appendix A.

3.5 Proposed Model 2: Mixture of Content Model

In the MUM-CM, we assume that theme and storyline
are generated independently. On the other hand, as men-
tioned in Sect. 1, lyricists often create storylines according
to themes. Therefore, here, we propose the Mixture of Con-
tent Model (MCM) to verify this intuition. In the MCM,
when a theme y is generated, a storyline is generated using
the theme-specific topic transition distribution θy,z.

Figure 3 (d) shows the plate notation of the MCM. The
MCM generation process is as follows.

1. Draw a theme distribution ψ ∼ Dir(ε)
2. For each topic z = 1, 2, . . . , J:

• Draw a word distribution φz ∼ Dir(β)
• For each theme y = 1, 2, . . . , I:

– Draw a topic distribution θy,z ∼ Dir(α)

3. For each lyric m = 1, 2, . . . ,M:

• Draw a theme ym ∼ Multi(ψ)
• For each segment s = 1, 2, . . . , Sm:

– Draw a topic zm,s ∼ Multi(θym,zm,s−1 )
– For n-th word wm,s,n in segment s:

Algorithm 2 Model inference for the MCM
1: Initialize parameters in the MCM
2: for each iteration do
3: for each lyrics m in the corpus do
4: sample ym according to (6)
5: sample zm according to (7) by FFBS
6: end for
7: update hyperparameters by using fixed point iteration
8: end for

∗ Draw a word wm,s,n ∼ Multi(φzm,s )

The generation probability of lyric m is calculated as fol-
lows:

P(m) =
I∑

y=1

(
P(y|ψ)

∑
zall

Sm∏
s=1

(
P(zs|θy,zs−1 )

Nm,s,n∏
n=1

P(wm,s,n|φzs )
))

(5)

where zall denotes all possible topic sequences. If z = 1, θy,z0

denotes the initial state probabilities. In this model, P(y|ψ)
represents the mixture ratio of the CMs.

We use collapsed Gibbs sampling for model inference
in the MCM. For the m-th lyric, we present the conditional
probability of theme ym for sampling:

P(ym = i|y¬m, z, α, ε) ∝ P(ym = i|y¬m, ε)

·P(zm|z¬m, ym = i, y¬m, α) (6)

where z denotes the topic set in the training corpus, zm de-
notes the topic sequence of lyric m (i.e., zm,1, zm,2, . . . , zm,Sm ),
and z¬m denotes the topic set in the training corpus except
zm.

In the MCM, topic sequence zm depends on theme ym,
as shown in Fig. 3 (d). Therefore, when a new theme y is
sampled, the MCM must resample all topic sequences in
lyric m simultaneously. To sample topic sequence zm, we
present the following conditional probability:

P(zm|z¬m, y,w, α, β) ∝ P(zm|z¬m, y, α)

·P(wm|w¬m, zm, z¬m, β) (7)

However, enumerating all possible topic sequences is in-
feasible; thus, we use a Forward Filtering-Backward Sam-
pling (FFBS) method [30] that can sample all latent states
in a first-order Markov sequence using dynamic program-
ming. In the FFBS method, the marginal probabilities of a
topic sequence are calculated in the forward filtering step.
Then, topics are sampled from the obtained probabilities in
the backward sampling step. The hyperparameters α, β, and
ε are estimated using fixed point iteration [29].

In summary, the model and parameter inference for the
MCM is shown in Algorithm 2, and the update equations for
Gibbs sampling are given in Appendix B.

4. Experiments

Here, we examine the effectiveness of the proposed models.
First, we verify that topic transitions are useful for model-
ing storyline by evaluating the word prediction performance
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Fig. 4 Log-likelihood on English test data under different segment topic
settings (the number of themes I is fixed at 30).

among different models. We then verify that the storyline
correlates with the theme performing a segment order pre-
diction task. Finally, we evaluate the proposed models qual-
itatively by exploring the trained topic transition diagrams.

In our experiments, we originally created two large
datasets that contain English and Japanese lyrics of exist-
ing songs. One issue that needed to be addressed prior to
conducting the experiments was that no existing lyric cor-
pora annotate musical structure (e.g., verse-bridge-chorus
tags). In this paper, we assume that segment boundaries are
indicated by empty lines inserted by lyricists. In addition,
we assume that lyrics with storylines are divided into 6 to
18 segments. The resulting datasets include 80777 lyrics in
the English dataset and 16563 lyrics in the Japanese dataset.
We randomly split each dataset into 60-20-20% divisions to
construct the training, development, and test data.

We trained English-only and Japanese-only models.
The collapsed Gibbs sampling ran for 1000 iterations, and
the hyperparameters were updated for each Gibbs iteration.
For training, we only used content words (nouns, verbs, and
adjectives) because we assume that the theme and storyline
can be represented using content words.

To extract content words, we use Stanford CoreNLP
for English words [31] and the MeCab part-of-speech parser
for Japanese words [32].

4.1 Word Prediction Task

To verify that the topic transition and theme are useful prop-
erties for storyline modeling, we performed a word predic-
tion task, which measures the test set generation probability.
We assume that a better prediction model can capture the
storyline of lyrics more effectively. In this experiment, we
fixed the number of themes to 30 and computed the test set
log-likelihood over the number of segment topics to com-
pare different models.

Figures 4 and 5 show the English and Japanese test set
log-likelihood under different segment topic settings. As

Fig. 5 Log-likelihood on Japanese test data under different segment topic
settings (the number of themes I is fixed at 30).

can be seen, the CM outperforms the MSM, which indicates
that typical storylines were effectively captured as the prob-
abilistic distribution of transition over latent topics of seg-
ments. Note that the proposed MUM-CM achieves the best
performance, which indicates that a better storyline model
can be constructed by assuming that the words in lyrics are
generated from both theme and topic. The MCM, however,
demonstrates only comparable performance to the CM de-
spite that the MCM has a richer parameter space of topic
transition distributions.

4.2 Segment Order Prediction Task

In this section, we verify that storyline correlates with
theme. Here, we use the order test metric [33], which is
used to measure the predictive power of the sequential struc-
ture [26], [27]. With the test order metric, the model pre-
dicts a reference segment order from all possible segment
orders. However, enumerating all possible orders is infea-
sible; thus, we use the approximation method proposed by
Zhai et al. [27]:

1. Select N permutations randomly from test data except
reference order A.

2. Calculate the N + 1 document generative probabilities
P(m) whose order is A or N permutations.

3. Choose the hypothesis order A′ whose generative prob-
ability is the best value in the N + 1 orders.

4. Compare the hypothesis order A′ with the reference or-
der A to calculate Kendall’s tau:

τ =
c+(A, A′) − c−(A, A′)

T (T − 1)/2
(8)

where c+(A, A′) denotes the number of correct pairwise or-
ders, c−(A, A′) denotes the number of incorrect pairwise or-
ders, and T denotes the number of segments in a lyric. Here,
N = 50. This metric ranges from +1 to −1, where +1 indi-
cates that the model selects the reference order and −1 indi-
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Table 1 Parameter tuning results with the development set.

Data Model I: # of themes J: # of topics
English Base Model 1: CM none 30
lyrics Proposed Model 1: MUM-CM 120 4

Proposed Model 2: MCM 70 11
Japanese Base Model 1: CM none 15

lyrics Proposed Model 1: MUM-CM 30 8
Proposed Model 2: MCM 50 7

Fig. 6 Average Kendall’s τ for English lyrics against the number of ran-
dom permutations.

cates that model selects the reverse order. In other words, a
higher value indicates that the sequential structure has been
modeled successfully.

To tune the best parameters (i.e., the number of themes
I and number of topics J), we use a grid search on the
development set. Table 1 shows the parameters for each
model that achieve the best segment order prediction task
performance.

As a lower bound baseline, we use a model that ran-
domly selects a hypothesis order A′ (i.e., this lower bound
is equivalent to the performance of Base Model 2 that does
not handle topic transition). To obtain an upper bound for
this task, nine Japanese evaluators selected the most plau-
sible order from six orders that include a reference order.
Here, N = 5 for the human assessments due to cognitive
limitations relative to the number of orders. In this man-
ual evaluation, each evaluator randomly selected unknown
lyrics. As a result, we obtained 93 orders.

Figures 6 and 7 show Kendall’s tau averaged over all
English and Japanese test data, respectively. The vertical
range shows 95% confidence intervals for the human as-
sessment results. The experimental results indicate that,
compared to the lower bound, the proposed models that
handle topic transition and theme (i.e., the MUM-CM and
MCM) have the predictive power of the sequential structure.
This result shows that topic transition and theme are use-
ful properties for storyline modeling. The proposed MCM
outperformed all other models on both test sets, while the
MUM-CM only demonstrated performance comparable to
that of the CM. We also conducted analysis of variance
(ANOVA) followed by post-hoc Tukey tests to investigate

Fig. 7 Average Kendall’s τ for Japanese lyrics against the number of ran-
dom permutations (the vertical range depicts the confidence intervals of the
human assessment results).

the differences among these models (p < 0.05), drawing the
conclusion that the difference between the MCM and the
other models is statistically significant. These results show
that storyline in lyrics correlates to theme. In contrast to the
word prediction task, the MUM-CM has a similar predictive
performance as the CM because the MUM-CM has only one
topic transition distribution to model the order of segments,
which is also the case for the CM.

For Japanese lyrics with N = 5, Fig. 7 shows that
Kendall’s tau for the human evaluation was 0.58 ± 0.11,
while the best performance of the model was 0.35. To inves-
tigate the cause of this difference, we asked the evaluators
to write comments on this task. We found that most eval-
uators selected a single order by considering the following
tendencies.

• Chorus segments tend to be the most representative,
uplifting, and thematic segments. For example, the
chorus often contains interlude words, such as “hey”
and “yo”, and frequently includes the lyrical message,
such as “I love you”. Moreover, the chorus is often the
first or last segment; therefore, evaluators tend to first
guess which segment is the chorus.
• Verse segments tend to repeat less frequently than cho-

ruses.

The human annotators were able to take these factors
into account whereas the proposed models cannot consider
verse-bridge-chorus structure. This issue could be addressed
by combining the storyline of lyrics with the musical struc-
ture. We believe this direction will open an intriguing new
field for future exploration.

4.3 Analysis of Trained Topic Transitions

Our experimental results indicate that topic transition and
theme are useful properties for modeling a storyline. Thus,
we are interested in understanding what kinds of themes and
topic transitions our model can acquire. Here, to interpret
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Table 2 Representative words of each topic for English lyrics in MCM@I = 70, J = 11. The topic
label indicates our arbitrary interpretation of the representative words.

z Label Representative words in each topic (top 40 words from P(w|φs))
1 Abbreviation ah, mi, dem, di, yuh, man, nah, nuh, gal, fus, work, inna, woman, pon, gim, fi, dat, seh, big, mek, weh, u, jump, wah, deh, yah,

wid, tek, jah, waan, wine, red, !!!, youth, Babylon, ghetto, neva, hurry, l, nuff
2 Spanish que, de, tu, el, te, lo, se, yo, un, e, si, por, con, como, amor, una, ti, le, quiero, para, sin, mas, esta, pa, pero, todo, al, solo, las,

cuando, hay, voy, corazon, che, soy, je, los, del, vida, tengo
3 Exciting like, hey, dance, uh, ya, right, body, party, put, shake, move, hand, hot, everybody, boy, beat, floor, c’mon, play, show, ’em, club,

bang, drop, huh, lady, bounce, clap, sexy, freak, check, pop, push, low, top, shawty, boom, step, hip, dj
4 Religious come, day, sing, god, song, lord, hear, Christmas, call, bring, child, new, heaven, beautiful, well, king, name, Jesus, pray, soul,

angel, wish, yes, help, year, bear, happy, people, joy, old, son, Mary, bell, peace, father, mother, ring, holy, praise, voice
5 Love love, feel, need, heart, hold, give, fall, night, dream, world, eye, light, tonight, shine, little, rain, fly, sun, touch, inside, fire, sky,

kiss, free, sweet, star, cry, burn, true, close, mine, arm, alive, set, tear, somebody, open, higher, deep, blue
6 Explicit nigga, shit, fuck, bitch, cause, money, niggaz, ass, hit, real, y’, wit, hoe, game, street, em, bout, fuckin, gettin, rap, gun, blow,

hood, kid, pay, damn, catch, block, tryin, aint, thug, motherfucker, dick, smoke, straight, house, g, talkin, dog, buy
7 Locomotion go, get, let, back, ta, take, keep, home, round, turn, run, rock, ride, long, stop, roll, ready, got, road, high, slow, far, music, train,

start, town, goin, please, drive, control, radio, fight, fast, car, city, ground, rollin, foot, comin, outta
8 Interlude oh, la, yeah, ooh, da, whoa, ba, ha, doo, woah, yea, ay, ho, ohh, oooh, mmm, ooo, woo, hoo, oo, dum, ohhh, oh-oh, ahh, ooooh,

oooo, wee, la., ohhhh, click, dee, fa, bop, shame, l.a., hmmm, ahhh, drip, trouble, mm
9 Feeling know, say, time, never, see, make, one, way, think, life, thing, try, find, leave, look, nothing, always, everything, believe, change,

lose, live, mind, much, something, wait, better, ’cause, break, wrong, lie, hard, end, word, stay, mean, seem, friend, someone, care
10 Love na, wan, gon, baby, girl, want, tell, good, bad, alright, talk, crazy, nobody, cuz, im, ai, babe, bye, dont, lovin, fine, feelin, worry,

pretty, phone, nothin, fun, thinkin, guy, cos, kind, spend, doin, next, number, sex, treat, cool, honey, cant
11 Life head, walk, face, stand, watch, die, dead, black, sleep, blood, door, wake, line, wall, kill, water, wind, room, white, sit, hide, grow,

bed, fear, lay, rise, hell, sea, meet, scream, pull, death, cut, window, begin, pass, fill, wear, skin, full

Table 3 Representative words of each topic for Japanese lyrics in MCM@I = 50, J = 7. The topic
label indicates our arbitrary interpretation of the representative words. English words are translated by
the authors and original Japanese words are given in parentheses.

z Label Representative words in each topic: top 40 words from P(w|φs)
1 English go, get, let, know, say, night, baby, time, good, way, feel, heart, take, day, dance, make, life, need, party, come, see, tell, dream,

everybody, rock, stop, keep, happy, have, give, tonight, please, world, mind, hand, shake, rain, jump, try, your
2 Scene town (machi), night (yoru), rain (ame), summer (natsu), come (kuru), window (mado), white (shiroi), snow (yuki), wait (matsu), room

(heya), morning (asa), get back (kaeru), season (kisetsu), fall (huru), spring (haru), winter (huyu), blow (huku), wave (nami), cold
(tumetai), hair (kami), shoulder (kata), memory (omoide), back (senaka), run (hashiru), long (nagai), last (saigo), shadow (kage), sleep
(nemuru), close (tojiru), finger (yubi), get wet (nureru), remember (omoidasu), quiet (shizuka), pass (sugiru), cheek (ho), fall (otiru),
breath (iki), open (akeru), car (kuruma)

3 Exciting go (iku), front (mae), no, sound (oto), dance (odoru), nothing (nai), fly (tobu), life ( jinsei), can run (hashireru), begin (hajimaru),
proceed (susumu), stand up (tatu), raise (ageru), freedom ( jiyu), era ( jidai), serious (maji), head (atama), body (karada), ahead (saki),
power (chikara), throw (suteru), fire (hi), carry (motu), high (hai), take out (dasu), decide (kimeru), ride (noru), speed up (tobasu),
Venus, Japan (nihon), maximum (saikou), rhythm (rizumu), non, up, rise (agaru), party (patatii), wall (kabe), companion (nakama), girl
(gaaru), battle (shobu)

4 Love love, love (ai), hug (dakishimeru, daku), kiss, feel (kanjiru), girl, pupil (hitomi), ardent (atsui), look on (mitsumeru), sweet, hold, lonely,
sweet (amai), kiss (kisu), pair ( futari), smile, stop (tomeru), miss, sorrowful (setsunai), moon, stop (tomaru), heart (haato), detach
(hanasu), overflow (afureru), moment (shunkan), tempestuous (hagesii), moonlight, shine, lovin, touch ( fureru), little, arm (ude), break
(kowareru), angel (tenshi), beating (kodo), mystery ( fushgi), destiny, miracle (kiseki), shinin

5 Clean sky (sora), dream (yume), wind (kaze), light (hikari), flower (hana), star (hoshi), disappear (kieru), world (sekai), sea (umi), future
(mirai), far (toi), voice (koe), moon (tsuki), shine (kagayaku), bloom (saku), flow (nagareru), sun (taiyo), place (basho), blue (aoi),
reach (todoku), dark (yami), illuminate (terasu), cloud (kumo), destiny (eien), unstable (yureru), wing (tsubasa), deep ( fukai), song
(uta), continue (tuduku), sing (utau), pass over (koeru), shine (hikaru), look up (miageru), bird (tori), finish (owaru), color (iro),
distance (toku), high (takai), rainbow (niji), be born (umareru)

6 Lyrical now (ima), mind (kokoro), human (hito), heart (mune), believe (shinjiru), word (kotoba), oneself ( jibun), live (ikiru), tear (namida),
forget (wasureru), love (aisuru), know (siru), hand (te), cry (naku), tomorrow (ashita), walk (aruku), change (kawaru), strong (tsuyoi),
feeling (kimochi), someday (itsuka), kind (yasasii), everything (subete), look (mieru), understand (wakaru), can be (nareru), smile
(egao), happy (siawase), can do (dekiru), every day (hibi), outside (soba), crucial (taisetsu), road (michi), eye (me), look for (sagasu),
convey (tutaeru), time ( jikan), take leave (hanareru), guard (mamoru), be able to say (ieru)

7 Life good (yoi), say (iu), like (suki), love (koi, daisuki), woman (onna), look (miru), man (otoko), laugh (warau), do (yaru), today (kyo), think
(omou), spirit (ki), face (kao), no good (dame), listen (kiku), phone (denwa), tonight (konya), friend (tomodachi), reach (tuku), daughter
(musume), bad (warui), meet (au), go (iku), appear (deru), adult (otona), together (issyo), good (umai), consider (kangaeru), die (sinu),
stop (yameru), everyday (mainichi), story (hanashi), talk (hanasu), cheerful (genki), drink (nomu), human (ningen), job (shigoto), early
(hayai)

the proposed MCM, we examine word probabilities P(w|φz)
and topic transition probability P(s|θy,z′ ) and then visual-
ize topic transition diagrams. To clarify our topic transition
analysis, we manually assigned labels to each topic by ob-

serving the word list whose generative probability P(w|φz)
is a large value. Tables 2 and 3 show the assigned la-
bels and representative words for the topics in the English
and Japanese models, respectively. For each topic, we list
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Fig. 8 Examples of English MCM (I = 70, J = 11) transitions between topics for each theme (see
Table 2 for word lists). Theme labels are our arbitrary interpretation of their topics and topic transitions.

Fig. 9 Examples of Japanese MCM (I = 50, J = 7) transitions between topics for each theme (see
Table 3 for word lists). Theme labels are our arbitrary interpretation of their topics and topic transitions.

the top 40 words in decreasing order of word probability
P(w|φz). Figures 8 and 9 show the transition diagrams for
some themes in the English and Japanese models, respec-
tively. Here, each arrow indicates higher transition proba-
bilities (P(s|θy,z′ ) > 0.20), and each square node indicates
the topic z. Note that the initial node 〈START〉 indicates the
initial state z = 0.

We found the following reasonable storylines with the
English model (Fig. 8).

• In theme y = 10, we see the transition 〈Life〉 →
〈Interlude〉 → 〈Feeling〉. The topic 〈Interlude〉
comprises words such as oh, la, and yeah and acts as a
bridge between the verse and the chorus.
• In theme y = 24, we see that the 〈 Explicit 〉 topic

tends to shift to 〈Exciting〉, which contains words such
as dance, sexy, and pop. This topic sequence appears
frequently in hip hop/rap songs.
• In theme y = 32, we see the transition 〈Life〉 →
〈Feeling〉 → 〈Love〉. We arbitrarily decided the theme
label of this topic transition as “Sweet Love”. Here,
the last topic 〈Love〉 tends to shift to the first topic
〈Life〉. This indicates that the model captures the rep-
etition structure (e.g., A-B-C-A-B-C, where each letter
represents a segment).

We also found the following reasonable storylines with the
Japanese model (Fig. 9).

• In theme y = 6, we observe the transition 〈Scene〉 →
〈Lyrical〉 → 〈Love〉, which is common in love songs.
• In theme y = 12, we see a transition among 〈Life〉,
〈English〉, and 〈Exciting〉, which often appears in
Japanese hip hop/rap songs.
• In theme y = 14, we see a transition between 〈Clean〉

and 〈Lyrical〉, which is commonly seen in hopeful
songs.

Although we selected these arbitrary diagrams to represent
a reasonable storyline, in fact, the self-transition diagrams
were trained using other themes. Note that the MCM learns
different topic transition distributions according to different
themes in an unsupervised manner. This shows that many
lyricists consider the topic order and theme as described in
textbooks [1], [2].

5. Conclusion and Future Work

This paper has addressed the issue of modeling the discourse
nature of lyrics and presented the first study aiming at cap-
turing the two common discourse-related notions: storylines
and themes. We assumed that a storyline is a chain of transi-
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tions over topics of segments and a song has at least one en-
tire theme. We then hypothesized that transitions over top-
ics of lyric segments can be captured by a probabilistic topic
model which incorporates a distribution over transitions of
latent topics and that such a distribution of topic transitions
is affected by the theme of lyrics.

Aiming to test those hypotheses, this study conducted
experiments on the word prediction and segment order pre-
diction tasks exploiting a large-scale corpus of popular mu-
sic lyrics for both English and Japanese. The findings we
gained from these experiments can be summarized into two
respects. First, the models with topic transitions signifi-
cantly outperformed the model without topic transitions in
word prediction. This result indicates that typical storylines
included in our lyrics datasets were effectively captured as a
probabilistic distribution of transitions over latent topics of
segments. Second, the model incorporating a latent theme
variable on top of topic transitions outperformed the models
without such variables in both word prediction and segment
order prediction. From this result, we can conclude that con-
sidering the notion of theme does contribute to the modeling
of storylines of lyrics.

This study has also shaped several future directions.
First, we believe that our model can be naturally ex-
tended by incorporate more linguistically rich features such
as tense/aspect, semantic classes of content words, sen-
timent polarity, etc. Second, it is also an intriguing di-
rection to adopt recently developed word/phrase embed-
dings [34], [35] to capture the semantics of lyrical phrases in
a further sophisticated manner. Third, verse-bridge-chorus
structure of a song is also worth exploring. Our error analy-
sis revealed that the human annotators seemed to be able to
identify verse-bridge-chorus structures and use them to pre-
dict segment orders. Modeling such lyrics-specific global
structure of discourse is an intriguing direction of our fu-
ture work. Finally, it is also important to direct our atten-
tion toward the integration of linguistic discourse structure
of lyrics and music structure of audio signals. In this di-
rection, we believe that recent advances in music structure
analysis [36], [37] can be an essential enabler.
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Appendix A: Equation for MUM-CM Inference

The update equations in Algorithm 1 can be rewritten as
(9), (10) and (11). Table A· 1 shows the notations in (9)
for collapsed Gibbs sampling of theme y in the MUM-
CM inference. Table A· 2 shows the notations in (10) for
collapsed Gibbs sampling of topic z in the MUM-CM in-
ference. Table A· 3 shows the notations in (11) for col-
lapsed Gibbs sampling of binary variable x in the MUM-CM

Table A· 1 Notations in (9) for MUM-CM

Notation Definition
Γ(·) Gamma function
ε, ζ Hyperparameter
w Word set in training corpus
y¬m Theme set except the m-th lyric
V Size of the vocabulary
Mi,¬m # of lyrics with theme label i except the m-th lyric
Nm # of words in the m-th lyric
Ni,¬m # of the word whose theme label is i except the m-th lyric
Nm,v # of a word v in the m-th lyric
Ni,v,¬m # of a word v whose theme label is i except the m-th lyric

Table A· 2 Notations in (10) for MUM-CM

Notation Definition
1(·) Indicator function
α, β Hyperparameter
w Word set in training corpus
z¬(m,s) Topic set except the s-th segment in the m-th

lyric
J # of topics
Szm,s−1→ j,¬(m,s) # of segments that trans topic zm,s−1 to j except

the s-th segment in the m-th lyric
Szm,s−1→∗,¬(m,s) # of segments with topic zm,s−1 except the s-th

segment in the m-th lyric
N(m,s) # of words in the s-th segment in the m-th lyric
N j,¬(m,s) # of words whose topic label is j except the s-th

segment in the m-th lyric
N(m,s),v # of a word v in the s-th segment in the m-th lyric
N j,v,¬(m,s) # of a word v whose topic label is j except the

s-th segment in the m-th lyric

Table A· 3 Notations in (11) for MUM-CM

Notation Definition
V Size of the vocabulary
η, ζ, β Hyperparameter
w Word set in training corpus
x¬(m,s,n) Binary variable set except the n-th binary

variable of the s-th segment in the m-th lyric
Nm,¬(m,s,n) # of words in the m-th lyric except the n-th

word of the s-th segment in the m-th lyric
Nm,k,¬(m,s,n) # of words in the m-th lyric with binary label

k except the n-th word of the s-th segment
in the m-th lyric

Nym ,¬(m,s,n) # of a word whose theme label is ym except
the n-th binary variable of the s-th segment
in the m-th lyric

Nym ,wm,s,n ,¬(m,s,n) # of a word wm,s,n with theme label ym ex-
cept the n-th binary variable of the s-th seg-
ment in the m-th lyric

Nzm,s ,¬(m,s,n) # of a word whose topic label is zm,s except
the n-th binary variable of the s-th segment
in the m-th lyric

Nzm,s ,wm,s,n ,¬(m,s,n) # of a word wm,s,n with topic label zm,s ex-
cept the n-th binary variable of the s-th seg-
ment in the m-th lyric

inference.

Appendix B: Equation for MCM Inference

The update equation in Algorithm 2 can be rewritten as (12).
Table A· 4 shows the notations in (12) for collapsed Gibbs

http://dx.doi.org/10.1145/1143844.1143859
http://dx.doi.org/10.3115/v1/p14-1004
http://dx.doi.org/10.3115/v1/p14-5010
http://dx.doi.org/10.1162/coli.2006.32.4.471
http://dx.doi.org/10.3115/v1/d14-1162
http://dx.doi.org/10.1109/tsa.2005.863204
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P(ym = i|y¬m,w, ε, ζ) ∝ (Mi,¬m + ε) · Γ(Ni,¬m + ζV)
Γ(Ni,¬m + Nm + ζV)

·
∏

v:Nm,v>0

Γ(Ni,v,¬m + Nm,v + ζ)
Γ(Ni,v,¬m + ζ)

(9)

P(zm,s = j|z¬(m,s),w, α, β) ∝ Szm,s−1→ j,¬(m,s) + α

Szm,s−1→∗,¬(m,s) + αJ
· S j→zm,s+1 ,¬(m,s) + 1(zm,s−1 = j = zm,s+1) + α

S j→∗,¬(m,s) + 1(zm,s−1 = j) + αJ

· Γ(N j,¬(m,s) + βV)

Γ(N j,¬(m,s) + N(m,s) + βV)
·

∏
v:N(m,s),v>0

Γ(N j,v,¬(m,s) + N(m,s),v + β)

Γ(N j,v,¬(m,s) + β)
(10)

P(xm,s,n = k|x¬(m,s,n),w, η, ζ, β) ∝ Nm,k,¬(m,s,n) + η

Nm,¬(m,s,n) + 2η
·
( Nym ,wm,s,n ,¬(m,s,n) + ζ

Nym ,¬(m,s,n) + ζV

)1−k ·
( Nzm,s ,wm,s,n ,¬(m,s,n) + β

Nzm,s ,¬(m,s,n) + βV

)k
(11)

P(ym = i|y¬m, z, α, ε) ∝ (Mi,¬m + ε) ·
Sm∏
s=1

(
Γ(Si,zm,s→∗,¬m + αJ)

Γ(Si,zm,s→∗,¬m + Sm,zm,s→∗ + αJ)
·

Sm∏
s′=1

Γ(Si,zm,s→zm,s′ ,¬m + Sm,zm,s→zm,s′ + α)

Γ(Si,zm,s→zm,s′ ,¬m + α)

)
(12)

Table A· 4 Notations in (12) for MCM

Notation Definition
α, ε Hyperparameter
z Topic set in training corpus
y¬m Theme set except the m-th lyric
J # of topics
Mi,¬m # of lyrics with theme label i except the m-th lyric
Sm,z→∗ # of segments with topic z in the m-th lyric
Sy,z→∗,¬m # of segments whose topic is z and theme is y except

the m-th lyric
Sm,z→z′ # of segments whose topic transitions z to z′ in the m-th

lyric
Sy,z→z′ ,¬m, # of segments whose theme is y and topic transitions z

to z′ in the m-th lyric except the m-th lyric

sampling of theme y in the MCM inference.
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