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PAPER

Domain Adaptation Based on Mixture of Latent Words Language
Models for Automatic Speech Recognition

Ryo MASUMURA†a), Taichi ASAMI†, Takanobu OBA†∗, Hirokazu MASATAKI†, Sumitaka SAKAUCHI†,
and Akinori ITO††, Members

SUMMARY This paper proposes a novel domain adaptation method
that can utilize out-of-domain text resources and partially domain matched
text resources in language modeling. A major problem in domain adap-
tation is that it is hard to obtain adequate adaptation effects from out-of-
domain text resources. To tackle the problem, our idea is to carry out model
merger in a latent variable space created from latent words language mod-
els (LWLMs). The latent variables in the LWLMs are represented as spe-
cific words selected from the observed word space, so LWLMs can share
a common latent variable space. It enables us to perform flexible mix-
ture modeling with consideration of the latent variable space. This paper
presents two types of mixture modeling, i.e., LWLM mixture models and
LWLM cross-mixture models. The LWLM mixture models can perform a
latent word space mixture modeling to mitigate domain mismatch problem.
Furthermore, in the LWLM cross-mixture models, LMs which individually
constructed from partially matched text resources are split into two element
models, each of which can be subjected to mixture modeling. For the ap-
proaches, this paper also describes methods to optimize mixture weights
using a validation data set. Experiments show that the mixture in latent
word space can achieve performance improvements for both target domain
and out-of-domain compared with that in observed word space.
key words: domain adaptation, mixture modeling, latent words language
models, latent variable space, automatic speech recognition

1. Introduction

Language models (LMs) are invaluable for natural lan-
guage processing tasks such as automatic speech recogni-
tion (ASR) and statistical machine translation [1], [2]. LM
performance strongly depends on the quantity and quality of
the training data sets. Superior performance is usually ob-
tained by using enormous domain-matched data sets to con-
struct LMs [3]. Unfortunately, in practical ASR tasks, large
amounts of domain-matched data sets are not available.

Therefore, LMs demand domain adaptation techniques
to allow the use of multiple out-of-domain text resources [4],
[5]. In language modeling, one of the most popular ap-
proaches to domain adaptation is based on mixture model-
ing [6], [7]. An adapted model can be constructed by com-
bining LMs that are individually constructed from out-of-
domain text resources with mixture weighting [8]. The mix-
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ture weights are optimized using a small amount of target
domain text.

Previously, observed word space mixture modeling,
i.e., n-gram mixture modeling, has been used in various
cases [9]–[11]. Also, mixture modeling of recurrent neural
network LMs (RNNLMs) was performed in the observed
word space [12]–[14]. However, mixtures in the observed
word space do not support flexible domain adaptation if
domain-related data sets are hardly obtained. In the ob-
served word space, a word directly represents a state in a
mixture. It can be considered that effective state sharing
is not available by merging LMs individually constructed
from out-of-domain text resources since words are not over-
lapped.

In order to conduct flexible domain adaptation using
the LMs constructed from out-of-domain text resources, this
paper develops methods in which model merging is con-
ducted in a latent variable space. In the latent variable space,
a word is mapped into a latent variable space, so it can be
expected to perform more flexible state sharing than is pos-
sible in the observed word space. To this end, this paper
introduces latent words language models (LWLMs) to the
mixture modeling [15]–[18]. The latent variables in usual
class based n-gram LMs are only model-dependent indices,
so each model has a different latent variable space [19], [20].
Therefore, conventional class-based n-gram mixture model-
ing have to be performed in the observed word space [21],
[22]. On the other hand, latent variables in LWLMs are rep-
resented as specific latent word, multiple LWLMs can share
the common latent variable space.

In addition, this paper also focuses on the fact that any
LWLM can be split into two elements, a transition probabil-
ity model and an emission probability model, and each of
which can be mixed independently. This concept of mix-
ture modeling yields flexibility in that both elements are the
intersections of different data sources. It is assumed that
each element model has a different role, i.e., the transition
probability model captures the sentence pattern in the la-
tent variable space, while the emission probability model
captures the lexical pattern in the observed word space. In
fact, most available out-of-domain text resources in practi-
cal ASR tasks will partially match either the sentence pat-
tern or the lexical pattern. It can be expected that a domain
matched model will become available by optimizing both
elements independently.

In this paper, two types of mixture modeling meth-
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ods using multiple LWLMs are proposed. One is LWLM
mixture models that can merge multiple LWLM in the la-
tent word space with mixture weights. The other is LWLM
cross-mixture models in which two elements in LWLMs are
independently combined with mixture weights. Although
the proposed models have complex model structure, they
can be implemented into ASR decoder using n-gram ap-
proximation method, which randomly generates a lot of text
data according to a stochastic process and a simple n-gram
model is constructed from the generated data [16], [18].

For domain adaptation, this paper also presents their
optimization method using a validation data set. In the ob-
served word space mixture, the maximum likelihood (ML)
criterion can be used because generative probabilities of
each word of the validation data set can be directly calcu-
lated [23]. Unfortunately, this advantage is offset by the fact
the latent word sequence of the validation data set cannot
be determined uniquely. In order to estimate optimal mix-
ture weights of the LWLM mixture models and the LWLM
cross-mixture models, we introduce Bayesian criterion. The
Bayesian criterion can be flexibly applied to various model
structures, and sampling techniques can be used. In this pa-
per, Gibbs sampling is introduced for estimating the latent
word sequence and model index sequence underlying the
validation data set [24].

In fact, this paper is an extended study of our pre-
vious work in which LWLM mixture models were only
presented [25]. In this paper, we additionally formulate
the LWLM cross-mixture modeling and its optimization
method, and clarify relationships to each mixture model.
Our evaluation examines two kinds of setups. The first ex-
periment employs in-domain training data set and out-of-
domain training data set for constructing a target domain
LM, and shows effectiveness of the LWLM-mixture mod-
els. The second experiment employs two types of par-
tially matching training data sets on the assumption of a
practical spontaneous speech recognition task, and shows
the LWLM-cross mixture model yields additional adapta-
tion effects which cannot be obtained by the LWLM-mixture
model.

The rest of this paper is organized as follows. Sec-
tion 2 overviews LWLMs and n-gram mixture models. Sec-
tion 3 describes definitions of LWLM mixture models and
LWLM cross-mixture models. In addition, optimization
methods for domain adaptation and implementation meth-
ods for ASR tasks are detailed. Sections 4 and 5 present
automatic speech recognition experiments. Section 6 con-
cludes this paper with a summary of key points.

2. Previous Work

2.1 Latent Words Language Models

LWLMs are generative models that employ a latent variable
called latent word [15]. An LWLM has a soft clustering
structure, and a latent word is a specific word that can be
selected from the entire vocabulary. Thus, the number of la-

Fig. 1 Model structure of LWLMs.

tent words equals the number of observed words, and mul-
tiple LWLMs can share a common latent variable space.

In the generative process of an LWLM, a latent word
ht is generated on the basis of a transition probability model
and its context lt = ht−n+1, · · · , ht−1. An observed word wt is
generated on the basis of an emission probability model and
a latent word ht. A graphic rendering of LWLM is shown in
Fig. 1. The gray circles denote observed words and the white
circles denote latent variables. The LWLM produces the
generative probability of the observed word sequence w =
w1, · · · , wT . The probability is approximately calculated by
the following point estimation:

P(w) �
T∏

t=1

∑

ht∈V
P(wt |ht,Θlw)P(ht |lt,Θlw), (1)

where Θlw indicates a model parameter of the LWLM,
and V is the vocabulary. The transition probability model
P(ht |lt,Θlw) is expressed as an n-gram model for latent
words; it can capture the sentence pattern on the basis of
a latent variable sequence. The emission probability model
P(wt |ht,Θlw) is expressed as a unigram model for each latent
word and can capture the lexical pattern. Usually a hierar-
chical Pitman-Yor prior is used as the transition probability
model, and a Dirichlet prior is used as the emission prob-
ability model. More details are provided in previous stud-
ies [15]–[18].

2.2 N-gram Mixture Models

N-gram mixture model is constructed by combining sev-
eral n-gram LMs trained using different sources. A graphic
rendering of an n-gram mixture model is shown in Fig. 2;
the model index is represented as zt ∈ {1, · · · ,Z}. Each
n-gram LM calculates the generative probability of word
wt given context information ut using n − 1 words be-
hind wt. As shown in Fig. 2, the observed word sequence
w = w1, · · · , wT is generated dependent on model index se-
quence z = z1, · · · , zT . The generative probability of the
observed word sequence w is defined as:

P(w) =
T∏

t=1

∑

zt∈{1,··· ,Z}
P(zt)P(wt |ut,Θ

zt
ng), (2)

where P(zt) is the mixture weight for the zt-th n-gram
model.
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Fig. 2 Model structure of n-gram mixture models.

In practice, direct implementation of the n-gram mix-
ture model to ASR is not ideal because it does not have
a back-off n-gram structure. Actually, the n-gram mixture
model can be approximately represented as a single back-
off n-gram structure [26].

For domain adaptation of n-gram mixture models, mix-
ture weights are optimized using a validation data set.
The expectation maximization algorithm, which is based
on maximum likelihood (ML) criterion, can be used for
the optimization [23]. Given a validation data set W =

w1, · · · , w|W|, the optimized mixture weight P̂(z) is esti-
mated in an iterative manner as:

P̂(z) =
1
|W|

|W|∑

t=1

P(wt |ut,Θ
z
ng)P(z)

∑
z′ ∈{1,··· ,Z} P(wt |ut,Θ

z′
ng)P(z′)

. (3)

After iterations, the optimized weight P̂(z) is used in Eq. (2).

3. Proposed Method

3.1 LWLM Mixture Models

This paper details LWLM mixture models. A graphic ren-
dering of LWLM mixture models is shown in Fig. 3. As
shown, LWLM mixture modeling can be considered to be
the union of Fig. 1 and Fig. 2. The gray circles denote ob-
served words and the white circles denote latent variables
and model indices.

The generative process starts with model index zt ∈
{1, · · · ,Z}, which corresponds to each LWLM index. Then,
latent word ht and observed word wt are generated based
on the basis of the selected LWLM’s stochastic process. In
LWLM mixture models, the generative probability of w is
defined as:

P(w) =
T∏

t=1

∑

ht∈V

∑

zt∈{1,··· ,Z}
P(wt |ht,Θ

zt

lw
)P(ht |lt,Θzt

lw
)P(zt), (4)

where Θzt

lw
is the zt-th model parameter of the pre-trained

LWLM, and P(zt) indicates the mixture weight for the zt-th
model. In this equation, P(zt) can be estimated from a vali-
dation data set. This equation is based on the characteristics
that LWLMs share a common latent variable space.

3.2 LWLM Cross-Mixture Models

This paper also proposes LWLM cross-mixture models. In

Fig. 3 Model structure of LWLM mixture models.

Fig. 4 Model structure of LWLM cross-mixture models.

fact, LWLMs are divided into two components, i.e., a tran-
sition probability model and an emission probability model.
Therefore, each component can be independently mixed.
The mixture of transition probability models is performed in
the latent variable space, and the mixture of emission prob-
ability models is performed in the observed word space. To
this end, two model indices are introduced with respect to
each component model. A graphic rendering of the LWLM
cross-mixture models is shown in Fig. 4.

Its generative process starts when the transition prob-
ability model index at ∈ {1, · · · ,Z} and the emission prob-
ability model index bt ∈ {1, · · · ,Z} are generated indepen-
dently. Then, latent word ht is generated on the basis of
the selected transition probability model and its context lt.
Observed word wt is generated on the basis of the selected
emission probability model and latent word ht. In a stan-
dard LWLM mixture model, ht and wt are generated using
the same LWLM, whereas they are generated using differ-
ent LWLMs in an LWLM cross-mixture model. In LWLM
cross-mixture models, the generative probability of w is de-
fined as:

P(w) =
T∏

t=1

∑

ht∈V

∑

at∈{1,··· ,Z}

∑

bt∈{1,··· ,Z}
P(wt |ht,Θ

bt

lw
)P(ht |lt,Θat

lw
)P(at)P(bt), (5)
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where Θat
LW and Θbt

LW are respectively the at-th parameter of
the transition probability model and the bt-th parameter of
the emission probability model in the pre-trained LWLMs.
P(at) and P(bt) are mixture weights and can be optimized
using a validation data set.

3.3 Optimization for Domain Adaptation

To optimize mixture weights using a validation data set for
domain adaptation, the ML criterion cannot be employed
because the latent word sequence is an underspecified vari-
able. If the ML criterion is used, all possible latent word
assignments have to be considered since LWLM has a soft
clustering structure. It is computationally and analytically
intractable to calculate the expectation value. Therefore,
this paper employs the Bayesian criterion and a sampling
based procedure that is compatible with LWLM training. In
the sampling based procedure, model index sequences of the
validation data set are estimated for determining the mixture
weights.

3.3.1 Optimization of LWLM Mixture Models

In order to optimize the LWLM mixture models, the opti-
mized mixture weight P̂(z) is estimated using a validation
data set W = w1, · · · , w|W|. In the Bayesian criterion, a
model index sequence of the validation data set Z and a
latent word sequenceH are estimated using the Gibbs sam-
pling. A conditional probability of possible values for latent
word ht ∈ V is given by:

P(ht |W,H−t,Z) ∼ P(wt |ht,Θ
zt

lw
)

t+n−1∏

j=t

P(h j|l j,Θ
zt

lw
),

(6)

where H−t represents all latent words except for ht. In a
similar way, a conditional probability of possible values for
model index zt ∈ {1, · · · ,Z} is given by:

P(zt |W,H ,Z−t) ∼ P(wt |ht,Θ
zt

lw
)P(ht |lt,Θzt

lw
)P(zt |Z−t),

(7)

where Z−t represents model index sequence except for zt.
Gibbs sampling can be used to sample new values for the
model index and the latent variable according to these two
distributions and place them at position t.

Once model index sequence is concluded, P(zt |Z) can
be calculated as:

P(zt |Z) =
c(zt) + β∑

z′ ∈{1,··· ,Z} c(z′) + βZ
, (8)

where c(zt) denotes the count of model index zt in Z. β is a
hyper parameter for Dirichlet distribution.

In a Bayesian criterion, optimized value P̂(z) is esti-
mated by Monte Carlo integration. Multiple model index
sequences sampled after the burn-in period are defined as
Z1, · · · ,ZS . P̂(z) is estimated as:

P̂(z) =
1
S

S∑

s=1

P(z|Zs). (9)

If β approaches 0, the Bayesian criterion is equivalent to the
ML criterion.

3.3.2 Optimization of LWLM Cross-Mixture Models

In LWLM cross-mixture models, optimized mixture weights
P̂(a) and P̂(b) are simultaneously estimated by defining both
model index sequences of a validation data set W. Gibbs
sampling can also be used to assign latent word sequenceH ,
transition probability model index sequence A, and emis-
sion probability model index sequence B to the validation
data setW. The conditional probability of possible values
for latent word ht ∈ V is given by:

P(ht |W,H−t,A,B) ∼ P(wt |ht,Θ
bt

lw
)

t+n−1∏

j=t

P(h j|l j,Θ
at

lw
).

(10)

In a similar way, the conditional probabilities of possible
values for model indices at ∈ {1, · · · ,Z} and bt ∈ {1, · · · ,Z}
are given by:

P(at |W,H ,A−t,B) ∼ P(ht |lt,Θat

lw
)P(at |A−t), (11)

P(bt |W,H ,A,B−t) ∼ P(wt |ht,Θ
bt

lw
)P(bt |B−t), (12)

whereA−t and B−t represent model index sequences except
for at and bt. P(at |A−t) and P(bt |B−t) are respectively esti-
mated from A−t and B−t. This sampling procedure is iter-
ated until convergence is achieved.

Once both assignments are defined, each probability
can be calculated.

P(at |A) =
c(at) + β∑

a′ ∈{1,··· ,Z} c(a′ ) + βZ
, (13)

P(bt |B) =
c(bt) + β∑

b′ ∈{1,··· ,Z} c(b′ ) + βZ
, (14)

where c(at) denotes the count of model index at in A, and
c(bt) denotes the count of model index bt in B, β is a hyper
parameter for Dirichlet distribution.

In a Bayesian criterion, optimized values P̂(a) and P̂(b)
are also estimated by Monte Carlo integration. Multiple
model index sequences sampled after the burn-in period are
defined as A1, · · · ,AS and B1, · · · ,BS . P̂(a) and P̂(b) are
estimated as:

P̂(a) =
1
S

S∑

s=1

P(a|As), (15)

P̂(b) =
1
S

S∑

s=1

P(b|Bs). (16)

3.4 Implementation for ASR

In order to implement the LWLM mixture model and the
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Algorithm 1 Random sampling based on LWLM mixture
model.
Input: Model parameters Θ1

lw
, · · · ,ΘM

lw
, number of sampled words T

Output: Sampled words w
1: l1 = <s>
2: for t = 1 to T do
3: zt ∼ P(zt)
4: ht ∼ P(ht |lt ,Θzt

lw
)

5: wt ∼ P(wt |ht ,Θ
zt
lw

)
6: end for
7: return w = w1, · · · , wT

LWLM cross-mixture model to ASR, a special technique is
needed as well as a standard LWLM. Therefore, this paper
introduces an n-gram approximation technique for both the
LWLM mixture model and the LWLM cross-mixture model.
The n-gram approximation is a method that approximates
target LM as a simple back-off n-gram structure, and of-
fers one-pass ASR decoding. The n-gram approximation of
LWLM mixture model has the following properties:

wlwm ∼ P(w|Θlwm), (17)

wlwmng ∼ P(w|Θlwmng), (18)

wlwm � wlwmng, (19)

where wlwm is an observed word sequence generated from
the LWLM mixture model, and wlwmng is an observed word
sequence generated from the approximated model with
back-off n-gram structure.

In a similar way, the n-gram approximation of LWLM
cross-mixture model has the following properties:

wlwcm ∼ P(w|Θlwcm), (20)

wlwcmng ∼ P(w|Θlwcmng), (21)

wlwcm � wlwcmng, (22)

where wlwcm is an observed word sequence generated from
the LWLM cross-mixture model, and wlwcmng is an observed
word sequence generated from approximated model with
back-off n-gram structure.

The random sampling of LWLM mixture model is
based on Algorithm 1. In addition, the random sampling
of LWLM cross-mixture model is based on Algorithm 2. In
line 1, l1 is initialized as a sentence head symbol <s>. With
T iterations, T latent words, and T observed words are gen-
erated. The T observed words are used only for back-off
n-gram model estimation.

4. Experiment 1

4.1 Setups

In the first experiment, a target domain data set and an out-
of-domain data set were prepared for constructing an LM. In
the experiment, the Corpus of Spontaneous Japanese (CSJ)
was divided into academic lectures and extemporaneous lec-
tures [27]. Target domain was set to the academic lectures;

Algorithm 2 Random sampling based on LWLM cross-
mixture model.
Input: Model parameters Θ1

lw
, · · · ,ΘM

lw
, number of sampled words T

Output: Sampled words w
1: l1 = <s>
2: for t = 1 to T do
3: at ∼ P(at)
4: bt ∼ P(bt)
5: ht ∼ P(ht |lt ,Θat

lw
)

6: wt ∼ P(wt |ht ,Θ
bt
lw

)
7: end for
8: return w = w1, · · · , wT

Table 1 Experimental data set in Experiment 1.

Domain # of words

Train A Academic lecture 3,468,133
Train B Extemporaneous lecture 3,847,816
Valid Academic lecture 28,046
Test A Academic lecture 27,907
Test B Extemporaneous lecture 18,251

a validation data set (Valid) was prepared for the target do-
main. Training data sets (Train A and B) and test data sets
(Test A and B) were prepared for both domains. Vocabulary
size for Train A was 40,725 and that for Train B was 64,543.
Details of the experimental data set are shown in Table 1.

For ASR evaluation, an acoustic model on the basis of
hidden Markov models with deep neural networks (DNN-
HMM) was prepared [28]. The DNN-HMM had eight hid-
den layers with 2048 nodes and was trained using the CSJ.
The speech recognition decoder was VoiceRex, a WFST-
based decoder [29], [30]. JTAG was used as the morpheme
analyzer to split sentences into words [31].

In the evaluation, we aimed to compare following two
settings. One setting was that single training data set is only
available. Another setting was that multiple training data
sets are available. For the former setting, the following base
LMs were individually constructed from each training data
set.

1. HPY3: Word-based 3-gram hierarchical Pitman-Yor
LM (HPYLM) constructed from a training data
set [32]. For the training, 200 iterations were used for
burn-in, and collected 10 samples. HPY3 constructed
from the training data set A is denoted as 1-A, and
HPY3 constructed from the training data set B is de-
noted as 1-B

2. LW3: Word-based 3-gram HPYLM constructed from
data generated on the basis of 3-gram LWLM. The gen-
erated data size was one billion words which was de-
termined in consideration of previous work [18]. We
pruned n-gram entries as to be comparable compu-
tation complexity to HPY3 using entropy based prun-
ing [33]. The LWLM was constructed from a train-
ing data set. For the training of LWLM, 500 iterations
were used for burn-in and collected a sample. LW3 con-
structed from the training data set A is denoted as 2-A,
and LW3 constructed from the training data set B is de-
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Table 3 Perplexity and word error rate [%] results in Experiment 1.

Valid (Target domain) Test A (Target domain) Test B (Out-of-domain)
PPL WER PPL WER PPL WER

1-A. Base model A HPY3 70.57 20.80 62.85 21.98 183.38 32.51
2-A. (Target domain training set) LW3 70.02 20.72 62.34 21.85 165.87 31.43
3-A. HPY3+LW3 65.30 19.27 58.25 21.09 156.45 30.26

1-B. Base model B HPY3 180.02 30.76 127.26 32.24 88.48 24.22
2-B. (Out-of-domain training set) LW3 174.84 30.25 122.44 31.45 90.71 24.30
3-B. HPY3+LW3 161.60 29.20 115.57 30.68 83.20 23.02

4. Adapted model HPYM3 71.68 18.78 64.19 20.34 178.71 26.56
5. ALWM3 72.83 18.56 64.57 20.22 178.48 26.38
6. LWM3 72.72 18.45 64.39 20.10 162.87 25.29
7. HPYM3+ALWM3 67.52 17.88 60.45 19.62 178.53 26.25
8. HPYM3+LWM3 67.38 17.64 60.19 19.36 164.46 25.34

Table 2 Out-of-vocabulary rate [%] in Experiment 1.

OOV rate
Vocabulary size Valid Test A Test B

Base model A 40,725 0.89 0.90 3.65
Base model B 64,543 3.59 3.56 1.11
Adapted model 81,856 0.67 0.50 0.94

noted as 2-B.
3. HPY3+LW3: Mixed model which combined HPY3 and
LW3 with a mixture weight. The mixture weight was
set as 0.5 that was an optimal value for the validation
set. The mixed model trained from training data set A
is denoted as 3-A, and the mixed model trained from
training data set B is denoted as 3-B.

Besides, for the latter setting, five adapted LMs which used
not only the training data set A but also the training data set
B were prepared.

4. HPYM3: HPYLM mixture model consisting of
HPYLMs (HPY3) individually constructed from each
training data.

5. ALWM3: HPYLM mixture model consisting of n-gram
approximated LWLMs (LW3) individually constructed
from each training data.

6. LWM3: Word-based 3-gram HPYLM constructed from
data generated on the basis of an LWLM mixture
model. The LWLM mixture model was constructed
from an LWLM trained from the training data set A
and an LWLM trained from the training data set B. For
the n-gram approximation, one billion words were gen-
erated as with LW3. We pruned n-gram entries as to
be comparable computation complexity to HPYM3 us-
ing entropy based pruning.

7. HPYM3+ALWM3: Mixed model of HPYM3 and ALWM3.
8. HPYM3+LWM3: Mixed model of HPYM3 and LWM3.

The vocabulary size for each adapted model was 81,558.
The mixture weights in the adapted models were optimized
for the validation data set. For the Monte Carlo integra-
tion, S was set to 10. Other hyper parameters were also
optimized using the validation data set. Table 2 shows out-
of-vocabulary (OOV) rate for both base LMs and adapted
LMs.

4.2 Results

Table 3 shows the perplexity (PPL) and word error rate
(WER) results for each condition. The difference of PPL
in base models and in adapted models cannot be compared
since each vocabulary size differs.

Lines 1-A to 3-A show the results which only used the
training data set A, and lines 1-B to 3-B show the results
which only used the training data set B. LW3 provides re-
sults comparable to HPY3 in a same domain, and performs
robustly in out-of-domain. The WER difference between
LW3 and HPY3 in test set B was statistically significant (p <
0.05). The highest performance was obtained by HPY3+LW3.
The WER differences between HPY3 and HPY3+LW3 in each
test set were statistically significant (p < 0.05). It can be
considered that the performance was improved because LW3
and HPY3 had different attributes, which observed words are
generated depending on latent words in LW3 while they are
generated depending on last observed words in HPY3.

Next, Lines 4-8 show the results of adapted LMs which
used both the training data set A and the training data set B.
The results show performance improvements were obtained
by using the out-of-domain training data compared with
only using the target domain training data. About the tar-
get domain, ALW3M and LWM3 provided comparable perfor-
mance to HPYM3. In addition, both of LWLM-based adapted
models acquired the improvement by combining mixture of
HPYLMs. It is considered to originate in having the char-
acter in which HPYM3 differ from LWM3. The highest perfor-
mance was obtained by HPYM3+LWM3. In terms of WER, sta-
tistically significant performance improvements (p < 0.01)
were achieved by HPYM3+LWM3 compared to HPYM3.

On the other hand, about the out-of-domain, LWM3
achieved higher performance than HPYM3 and ALWM3. The
WER difference between ALWM3 and LWM3 in test set B
was statistically significant (p < 0.01). This result shows
that mixture modeling in the latent variable space can per-
form more flexible adaptation than that in the observed word
space. Actually, in mixture modeling on a latent variable
space, the mixture weight for base model B is comparatively
high compared with that in an observed word space. The
mixture weight for base model B in ALWM3 was 0.09 while
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that in LWM3 was 0.13. In terms of WER, statistically sig-
nificant performance improvements (p < 0.01) were also
achieved by HPYM3+LWM3 compared to HPYM3. It turned out
that LWM3 can achieve improvement for both the target do-
main and the out-of-domain compared with HPYM3.

5. Experiment 2

5.1 Setups

In the second experiment, two types of partially matched
training data sets were prepared for constructing an LM. The
target domain was set to academic lecture speech; its style
is spontaneous speech and the topic is related to acoustics.
A validation data set (Valid) and a test data set (Test) for the
target domain were prepared from CSJ [27]. Each data set
had about 30K words.

Training data set A (Train A) consisted of transcrip-
tions of simulated lecture speeches that are included in CSJ.
The data size was about 4M words and the style matched
that of the target domain but the topic was not related to
the target domain. The vocabulary size was 64,761. On the
other hand, training data set B (Train B) consisted of Web
documents collected using the validation data set based on
relevant document retrieval techniques [34]. The data size
was about 11M words and the topic was related to the acous-
tics but the style was written text. The vocabulary size was
64,152. These setups seem to be reasonable for practical
spontaneous speech recognition tasks. Details of the exper-
imental data set are summarized in Table 4.

For evaluating ASR performance, a DNN-HMM
acoustic model was prepared [28]. The DNN-HMM had
8 hidden layers with 2048 nodes and 3072 outputs.
The speech recognition decoder was a WFST-based de-
coder [29].

Our experimental settings aimed to compare following
two settings. One setting was that single partially matched
training data set is only available. Another setting was that
multiple training data sets which complement each other are
available. For the former setting, four types of base LMs
were individually constructed from each training data set.

1. HPY3: Word-based 3-gram HPYLM constructed from
a training data set [32]. For the training, 200 iterations
were used for burn-in, and collected 10 samples. HPY3
constructed from the training data set A is denoted as
1-A, and HPY3 constructed from the training data set B
is denoted as 1-B.

2. RNN: Class-based RNNLM with 500 hidden nodes and
500 classes constructed from a training data set [12].

Table 4 Experimental data set in Experiment 2.

Style Topic # of words

Train A Spontaneous Various topics 3,833,883
Train B Written Acoustics 10,541,945
Valid Spontaneous Acoustics 28,547
Test Spontaneous Acoustics 28,504

RNN constructed from the training data set A is denoted
as 2-A, and RNN constructed from the training data set
B is denoted as 2-B.

3. LW3: Word-based 3-gram HPYLM constructed from
data generated on the basis of 3-gram LWLM. The gen-
erated data size was one billion words which was de-
termined in consideration of our previous work [18].
We pruned n-gram entries as to be comparable com-
putation complexity to HPY3 using entropy based prun-
ing [33]. The LWLM was constructed from a training
data set. For the training of LWLM, 500 iterations were
used for burn-in and collected 10 samples. LW3 con-
structed from the training data set A is denoted as 3-A,
and LW3 constructed from the training data set B is de-
noted as 3-B.

4. HPY3+LW3: Mixed model which combined HPY3 and
LW3 with a mixture weight. The mixture weight was
set as 0.5 that was an optimal value for the validation
set. The mixed model trained from training data set A
is denoted as 4-A, and the mixed model trained from
training data set B is denoted as 4-B.

Next, for the latter setting, following adapted LMs were con-
structed using the trained base LMs.

5. HPYM3: HPYLM mixture model constructed from
HPY3 trained from the training data set A and HPY3
trained from the training data set B. The mixture
weights were optimized using the validation data set.
It was converted into a back-off n-gram structure and
implemented in a WFST-based one-pass decoder.

6. RNNM: RNN mixture model constructed from RNN

trained from the training data set A and RNN trained
from the training data set B. The mixture weights were
optimized using the validation data set. RNNM cannot be
converted into WFST format, so single use of RNNMwas
only tested in perplexity evaluation. 1000-best rescor-
ing was used when RNNMwas combined with other LM.

7. LWM3: Word-based 3-gram HPYLM constructed from
data generated on the basis of an LWLM mixture
model. The LWLM mixture model was constructed
from an LWLM trained from the training data set A
and an LWLM trained from the training data set B. For
the n-gram approximation, one billion words were gen-
erated as with LW3. We pruned n-gram entries as to
be comparable computation complexity to HPYM3 us-
ing entropy based pruning. The mixture weights were
optimized using the validation data set.

8. LWCM3: Word-based 3-gram HPYLM constructed from
data generated on the basis of an LWLM cross-mixture
model. The LWLM cross-mixture model was con-
structed from an LWLM trained from the training data
set A and an LWLM trained from the training data set
B. For the n-gram approximation, one billion words
were generated as with LW3 and LWM3. We pruned n-
gram entries as to be comparable computation com-
plexity to HPYM3 using entropy based pruning. The
mixture weights were optimized using the validation
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Table 6 Perplexity and word error rate [%] results in Experiment 2.

Valid (Target domain) Test (Target domain)
PPL WER PPL WER

1-A. Base model A HPY3 247.73 31.42 186.11 35.94
2-A. (Training set A) RNN 244.73 - 184.16 -
3-A. LW3 239.91 31.09 179.83 35.45
4-A. HPY3+LW3 223.68 29.86 169.93 34.16

1-B. Base model B HPY3 235.91 30.68 273.09 37.33
2-B. (Training set B) RNN 275.23 - 326.31 -
3-B. LW3 207.91 30.05 240.08 36.47
4-B. HPY3+LW3 200.90 28.82 232.93 34.88

5. Adapted model HPYM3 130.30 25.24 119.22 30.33
6. RNNM 126.35 - 118.45 -
7. LWM3 121.60 24.47 113.76 29.84
8. LWCM3 133.85 25.50 123.55 30.48
9. HPYM3+RNNM3 114.15 24.32 106.49 29.40
10. LWM3+LWCM3 116.54 24.06 108.44 29.37
11. HPYM3+LWM3 115.72 24.27 109.26 29.55
12. HPYM3+LWM3+LWCM3 111.90 23.88 105.74 29.20
13. HPYM3+LWM3+LWCM3+RNNM 105.81 23.42 100.82 28.64

Table 5 Out-of-vocabulary rate [%] in Experiment 2.

OOV rate (%)
Vocabulary size Valid Test

Base model A 64,761 3.59 3.55
Base model B 64,152 1.77 1.61
Adapted model 100,677 0.83 0.68

data set.

The vocabulary size for each adapted model was 100,677.
Furthermore, combined models of the adapted models were
also constructed. For the Monte Carlo integration, S was set
to 10. In these settings, other hyper parameters were opti-
mized using the validation data set. Table 5 demonstrates
OOV rate for both base LMs and adapted LMs.

5.2 Results

Table 6 shows the PPL and WER results for each condition.
The difference of PPL in base models and in adapted models
cannot be compared since each vocabulary size differs.

Base LMs constructed from training data set A are
shown in lines 1-A to 4-A, and those constructed from train-
ing data set B are shown in lines 1-B to 4-B. The validation
set was linguistically more complicated than the test set so
low perplexity could be achieved in the test set. On the other
hand, the test set was acoustically more complicated than
the validation set, so WERs on the test set were higher than
those of the validation set. In addition, training data set B
was collected using the validation data set, so perplexity re-
sults for the validation set were relatively low compared to
the test set. Among the base LMs, LW3 provided better re-
sults than RNN and HPY3, and the highest result was achieved
by LW3+HPY3 for both the base model A and the base model
B. These results are in agreement with experiment 1 and
previous papers that state that LWLMs offer robust perfor-
mance in multiple domains [16]–[18]. In both validation set
and test set, the WER differences between LW3+HPY3 and
HPY3 for both training data sets were statistically significant

(p < 0.01).
Adapted LMs constructed from the base LMs are

shown in lines 5 to 13. They show that each adapted
LM was superior to the base LMs in terms of WER, so
domain adaptation based on mixture modeling seem to
be effective. LWCM3 was relatively weaker than LWM3 al-
though LWM3 did achieve some improvement over HPYM3.
It can be considered that the cross-mixture structure, which
makes component parameters partially exchangeable be-
tween the base LMs, adversely impacts mixture modeling.
In fact, individual LWLMs were trained by a sampling tech-
nique, so latent word space were not universal between
LWLMs. It can be expected that LWCM3 is well constructed
by increasing number of samples in LWLM training. On
the other hand, the highest performance was achieved by
LWM3+LWCM3 that combines an LWLM mixture model and
an LWLM cross-mixture model although the WER differ-
ences between LWM3+LWCM3 to LWM3 were statistically no
significant (p > 0.05). This is because an LWLM cross-
mixture model has different characteristics than those of
a standard LWLM mixture model. Thus, it seems that
an LWLM cross-mixture model can mitigate domain mis-
matching between the target domain and each training data
set. In both validation set and test set, the WER differences
between LWM3+LWCM3 and HPYM3 were statistically signifi-
cant (p < 0.05). LWM3+LWCM3 demonstrated higher perfor-
mance than state-of-the-art RNNM in terms of PPL.

In addition, HPYM3+LWM3 outperformed HPYM3 and
LWM3. It is considered to originate in having different char-
acters in which observed words are generated depending on
latent words in LWM3 while they are generated depending on
last observed words in HPYM3. Among WFST-based one-
pass decoding results, the highest performance was obtained
by HPYM3+LWM3+LWCM3. The WER differences between
HPYM3+LWM3+LWCM3 to HPYM3 were statistically significant
(p < 0.01). In all results, HPYM3+LWM3+LWCM3+RNNM that
fused HPYM3+LWM3+LWCM3 with RNNM in two-pass decoding
presented the best performance. In terms of WER, statis-



MASUMURA et al.: DOMAIN ADAPTATION BASED ON MIXTURE OF LATENT WORDS LANGUAGE MODELS FOR AUTOMATIC SPEECH RECOGNITION
1589

tically significant performance improvements (p < 0.05)
were achieved by HPYM3+LWM3+LWCM3+RNNM compared to
HPYM3+RNNM in validation set and test set. This indicates
that LWM3+LWCM3 could improve the state-of-the-art domain
adapted systems that combines n-gram language modeling
and RNN language modeling.

6. Conclusions

In this paper, LWLM mixture models and LWLM cross-
mixture models were reported to enhance domain adapta-
tion using out-of-domain text resources. Latent variables
in LWLMs are represented as specific words that can be
selected from the observed word space, so we can realize
mixture modeling with consideration of the latent variable
space. The LWLM mixture models can perform latent word
space mixture that can mitigate a domain mismatch between
a target domain and training data sets. Besides, the LWLM
cross mixture models that construct a mixture model for
each component in LWLMs can utilize partially matched
text resources. The proposed models can be optimized using
a small amount of target domain data as well as n-gram mix-
ture modeling. Detailed experiments showed that LWLM
mixture modeling outperformed n-gram mixture modeling.
In addition, combination of the LWLM cross-mixture model
and the LWLM mixture model yielded performance im-
provements, while using an LWLM cross-mixture model by
itself offers little benefit.
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