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Fast Fog Detection for De-Fogging of Road Driving Images

Kyeongmin JEONG†, Kwangyeon CHOI†, Donghwan KIM†, Nonmembers, and Byung Cheol SONG†a), Member

SUMMARY Advanced driver assistance system (ADAS) can recognize
traffic signals, vehicles, pedestrians, and so on all over the vehicle. How-
ever, because the ADAS is based on images taken in an outdoor environ-
ment, it is susceptible to ambient weather such as fog. So, preprocessing
such as de-fog and de-hazing techniques is required to prevent degradation
of object recognition performance due to decreased visibility. But, if such
a fog removal technique is applied in an environment where there is little
or no fog, the visual quality may be deteriorated due to excessive contrast
improvement. And in foggy road environments, typical fog removal algo-
rithms suffer from color distortion. In this paper, we propose a temporal
filter-based fog detection algorithm to selectively apply de-fogging method
only in the presence of fog. We also propose a method to avoid color dis-
tortion by detecting the sky region and applying different methods to the
sky region and the non-sky region. Experimental results show that in the
actual images, the proposed algorithm shows an average of more than 97%
fog detection accuracy, and improves subjective image quality of existing
de-fogging algorithms. In addition, the proposed algorithm shows very fast
computation time of less than 0.1ms per frame.
key words: fog, haze, detection, road, driving, de-hazing

1. Introduction

The advanced driver assistance systems (ADAS) are need-
ing more and more image processing and computer vision
algorithms. For instance, computer vision algorithms to
detect nearby vehicles, pedestrians, and signs already be-
came an important technology for protecting the safety of
the driver and the surrounding pedestrians.

On the other hand, since such a technology usually
adopts images taken in outdoors such as a road driving en-
vironment, its detection performance is susceptible to the
surrounding environment. In bad weather conditions such as
fog, rain, and snow, the image quality is deteriorated, and the
performance of conventional object recognition algorithms
is normally degraded. Thus, various fog removal algorithms
have been proposed to solve this problem [1]–[7].

However, if the conventional de-fogging algorithm
such as [6] is applied to a foggy image obtained under a road
driving environment, the contrast of the image is excessively
improved and the adverse effect of darkening the image oc-
curs as in Fig. 1. Also, we can observe color distortion in
the wide sky area. If the de-fogging algorithm is applied to
a fogless image, as shown in Fig. 2, the color distortion can
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Fig. 1 Examples of excessive contrast enhancement. (a) Input fog im-
ages and (b) defogging results of (a) with Berman’s method [6].

Fig. 2 Examples of color distortion. (a) Fog-free images (b) defogging
results of (a).

be often observed.
In order to mitigate or solve the problems, fog detec-

tion may be considered as a pre-processing prior to fog re-
moval step. Recently, various fog detection algorithms have
been proposed [8]–[16]. Conventional fog detection algo-
rithms require camera environment information or require
prior learning. On the other hand, most existing fog de-
tection algorithms are not suitable for real-time applications
because they have considerable computation time. In ad-
dition, since those algorithms are targeting general images,
their accuracy can deteriorate in the road images.

In this paper, we propose a fast and accurate single-
image-based fog detection algorithm for road driving im-
ages that works without any learning process. We extract
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features for fog detection every frame and apply a tempo-
ral filter to the extracted features to achieve fairly stable and
accurate fog detection.

We also propose a metric to measure the degree of fog
in order to avoid excessive contrast enhancement during fog
removal. Finally, after the fog detection, the sky and non-
sky regions are divided and different fog removal techniques
are applied to the two regions so as to prevent the color dis-
tortion in the sky region. On the other hand, the proposed al-
gorithm is suitable for real-time de-fogging system because
it has a very small amount of computation compared to the
conventional methods.

The organization of this paper is as follows: Section 2
describes conventional fog detection and fog removal algo-
rithms. Section 3 describes the proposed fog detection al-
gorithm in detail. Section 4 evaluates the proposed method.
Section 5 concludes this paper.

2. Related Works

Conventional fog detection algorithms define fog when hor-
izontal visibility is below a certain distance. It is called ‘vis-
ibility distance.’ Busch et al. presented a new technique to
estimate the visibility distance in a foggy condition, which
is based on a psychovisual model and on contrast estimation
using wavelet transform [9]. Caraffa et al. [10] calculated a
slightly more accurate meteorological visibility. The meteo-
rological visibility is calculated from Eq. (1) from Duntainy
attenuation law according to the International Commission
on Illumination (CIE) that the contrast of the object should
be higher than 5%.

dmet =
− ln(0.05)
β

(1)

where dmet indicates meteorological visibility.
Hautiere et al. and Mao et al. have detected fog based

on the Koschmieder’s law model [11], [12]. Hautiere et al.’s
method estimated the depth by modeling the environment
in which the camera is installed [11]. Mao et al. estimated
the fog factor and detected fog using the property that the
difference between the maximum value and the minimum
value of the RGB color channel is larger as the fog becomes
darker [12]. Ancuti et al. proposed a semi-inverse method to
detect fog-containing regions [13]. In Liu et al.’s algorithm,
the histogram of each channel is analyzed in the HSV color
model and determined a proper threshold value to detect
the fog [14]. Bronte et al. detected fog by using a property
that fog weakens the edge strength [15]. Alami et al. used
the correlation between saturation and RGB color channel
in the HSV color model [16]. Pavlic et al. trained features
based on the power spectrum of the image through SVM [8].
The above-mentioned fog detection algorithms utilize pre-
training information as well as self-information of input im-
ages, and have limitations that sometimes require specific
hardware. Furthermore, as the pre-processing of the real-
time fog removal system they show heavy computational
time of more than several tens of ms per frame on a gen-

eral PC environment.
Usually, de-fogging procedure will be followed after

fog detection. A lot of de-fogging algorithms are based on
the following Koschmieder law model. On RGB color for-
mat, a foggy image can be modelled by Eq. (2).

Ic(x) = t(x)Jc(x) + (1 − t(x))Ac, c ∈ {R,G, B} (2)

where x indicates a pixel location, and Ac stands for atmo-
spheric light value, and t(x) means transmission value. Also,
Ic(x) and Jc(x) indicate a foggy pixel value and its corre-
sponding fog-free pixel value, respectively. The light scat-
tering by the fog particles becomes stronger as the distance
between them increases. So transmission values are mod-
eled such that the weight decreases as the distance increases
(see Eq. (3)).

t(x) = e−βd(x) (3)

where β and d(x) denote scattering coefficient and scene
depth at x, respectively. The latest de-fogging algorithms
try to estimate the atmospheric light values and transmission
values from only a single image.

He et al. proposed a simple but effective ‘dark chan-
nel prior’ to remove fog from a single input image [4]. It is
based on a key observation that most local patches in out-
door fog-free images contain some pixels whose intensity
is very low in at least one color channel. Using this, their
method could recover high quality fog-free images. Kim
et al. estimated the transmission value by defining a cost
function that divides a foggy image into patches of a certain
size and maximizes the contrast of each patch [5]. The at-
mospheric light value is obtained by dividing the image into
four equal parts, finding the area with the minimum vari-
ance value, and then finding the largest RGB value in the
area. Berman et al. [6] used the property that it is possible to
approximate an image with RGB values with distinct color
values in a fog-free image. In the foggy images, pixels with
distinct color values form a so-called fog line around the at-
mospheric light, which is used to estimate the transmission
value.

3. Proposed Algorithm

Figure 3 describes the overview of a de-fogging scheme in-
cluding the proposed fog detection algorithm. The first step
is to detect fog efficiently. It is necessary to examine the
regions over a certain distance. In the general road driv-
ing image(s), the upper part is usually the sky area and the
lower part is normally the road area. If so called ‘vanish-
ing point’ is assumed to be known, the actual distance be-
comes closer the further from the vanishing point. So, in
order to detect fog, we set the region of interest (ROI) over
a certain distance centered on the vanishing point. In this
paper, we find the driving lanes in the input image and draw
their extension lines, and decide the point where the two
extension lines cross as the vanishing point. That is, the
vanishing point was manually determined for the ideal set-
ting. On the other hand, the location of the vanishing point
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Fig. 3 The overview of a de-fogging scheme including the proposed fog
detection algorithm.

in road driving images is rarely changed. Considering the
above-mentioned characteristics, we did not decide vanish-
ing point every frame and decided at 5 second interval man-
ually. Of course, automatic detection algorithm like [17] can
be adopted to detect such vanishing points. Then, the ratio
of saturation (S) and value (V) in the HSV color model do-
main is calculated within the set ROI. This feature is mainly
used for fog detection. On the other hand, sudden change
of road environment may make some computed S/V ratios
outliers. Using the property that fog does not disappear sud-
denly or does not appear, we greatly reduce outliers by ap-
plying temporal filtering to S/V ratios.

Second, the fog density is estimated using the S/V ra-
tios. According to the estimated fog density, the strength
of fog removal is adjusted to achieve effective fog removal
without artifacts.

Third, since the road driving image includes a lot of
sky areas, it is generally brighter than the natural image.
So, when the de-fogging algorithm based on contrast en-
hancement is directly applied to the road driving image, the
brightness of the specific area can be greatly deteriorated.
Therefore, each image or frame is divided into the sky and
non-sky regions, and those regions are processed indepen-
dently. In case of road images, the sky is generally very
bright or has blue color, so its B-channel values on the RGB
space tend to be large. So we can detect the sky area by
comparing the B channel values with a specific threshold.

Next, the conventional gamma correction is applied to a
generally meaningless divided sky area. On the other hand,
non-sky areas include roads and vehicles that are a major
area of interest, so a specific fog removal algorithm is ap-
plied.

Finally, a single image is created by blending the

Fig. 4 Vanishing point detected manually and region of interest for fog
detection.

Fig. 5 Examples of V/S ratios. (a) Fog-free image R( fi) = 1.02 (b) foggy
image R( fi) = 13.32.

gamma-corrected sky area and the fog-removed non-sky
area. Here, a typical alpha blending technique is applied
so that the boundary between the regions is not visible.

The following subsections describe each step in detail.

3.1 Fog Detection with Temporal Filtering

Assume that a vanishing point is already estimated by a cer-
tain method, and an ROI of a specific distance or more is
pre-set. For example, for an input image with a resolution of
1280x720, the size of the ROI can be set to 720x80 around
the vanishing point detected manually as shown in Fig. 4.
The yellow line is the extension of the lane, the red point is
the vanishing point, and the red box is the ROI.

If the color inside the ROI is not clear, S value of the
HSV color model tends to be small. Also, because a foggy
ROI has relatively light gray, it tends to have a large V value.
For these reasons, V/S in the foggy ROI will be large. Thus,
we can define the ratio of S and V as a feature to judge the
presence of fog like Eq. (4).

R( fi) = V( fi)/S ( fi) (4)

where fi indicates the ROI of the i-th frame. In Eq. (4), V( fi)
and S ( fi) stand for the average V and S values. Figure 5
shows an example.

However, a certain frame in a video sequence may
not show the above-mentioned characteristic due to various
causes. Fortunately, without loss of generality, fog does not
appear or disappear suddenly. So, we adopt this property via
temporal averaging as shown in Eq. (5).



476
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Fig. 6 The histograms of V/S ratios. (a) Fog-free video (b) foggy video

Rj =
1
W

j∑
i= j−W+1

R( fi) (5)

where Rj indicates the temporal averaging result for the j-th
frame. W stands for the temporal window size.

Finally, Rj is compared with a threshold for fog detec-
tion. If Rj is greater than the threshold, the j-th frame is
a foggy frame. Otherwise, it is a fog-free frame. In this
paper, the threshold was empirically set to 3.5. The experi-
mental proof for determining the stable threshold is given as
follows:

For this experiment, we acquired a total of 3,000
frames, which are different from the test frames in Sect. 4.
Half of the video frames is fog-free, and the rest are foggy
images. First, to investigate the effect of temporal filter win-
dow (W) on the performance, we performed the following
experiment for several W values of 15 frames, 30 frames, 60
frames, and 120 frames. Figure 6 shows the histograms for
the computed Rj values. The V/S ratio tends to be very small
when there is no fog, and it becomes increasing for foggy
images. Based on the observation in Fig. 6, we could set the
threshold for fog detection to 3.5 experimentally without re-
spect to W.

3.2 Calculation of Fog Removal Strength Offset

In general, the fog concentration or density affects the de-

Table 1 Averages of V/S

Fig. 7 Graph of transmission offset. (a) Rj and strength (b) Rj and α.

gree of light scattering caused by fog particles. Accordingly,
the V/S ratio may change depending on the fog density. To
demonstrate this phenomenon experimentally, foggy images
corresponding to all the fog-free images of Sect. 4 were syn-
thesized according to visibility distance by using SiVICTM
software [18], [19]. Table 1 shows the average V/S ratios for
all the test images according to visibility distances. Here,
‘Org’ indicates a fog-free case. Note that the V/S ratios are
very large in the synthesized foggy images. The lower the
visibility distance, the higher the V/S ratio. As a result, since
the fog density is proportional to the V/S ratio, it can be es-
timated from V/S ratio derived by Eq. (5).

On the other hand, the de-fogging strength in the fol-
lowing fog removal step needs to be adjusted according to
the fog density. Note that conventional de-fogging algo-
rithms work according to the transmission value, i.e., the
depth information as in Eq. (1) and Eq. (2). So, by adjust-
ing the transmission value of the ROI depending on the fog
density, the fog removal strength can be further controlled.
In this paper, we define the fog density-dependent offset ex-
perimentally, and apply it to the transmission value. Details
of the offset determination process is as follows:

For the experiment to measure fog density according to
the Rj value, ten men in their 20s were employed as the sub-
jects. For this experiment, 3,000 test images used in the pre-
vious subsection were adopted again. For 5 ≤ Rj ≤ 20, the
subjects feel that the fog density which the experimenters
perceive is proportional to Rj. However, when the Rj was
more than 20, they thought that the fog density does not in-
crease any more. Further, when Rj was 5 or less, it was
judged that there was little fog. As a result, the fog den-
sity that a person feels according to Rj can be modeled like
Fig. 7 (a).

Based on this model, transmission values can be ad-
justed via offsets to control the following fog removal
strength as shown in Eq. (6).

t′(x) = t(x) + α (6)

Note that α can be easily modeled by reversing Fig. 7 (a)
(see Fig. 7 (b)). The offset α can be defined by Eq. (7).
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α =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.1

λ exp(−(Rj − 5)2/2σt
2)

0.0755

Rj < 5
5 < Rj ≤ 20
Rj > 20

(7)

where λ is a constant to decide the maximum offset and
σt indicates a variance for transmission offset control. In
this paper, λ and σt were empirically set to 0.1 and 20, re-
spectively. Those values were equivalently applied to all the
frames.

3.3 Sky Detection and Region-Adaptive De-Fogging

Generally, the flat sky area in road images tends to be
strongly contrast-enhanced because its transmission value is
very small. As a result, color distortion or noise boosting
often occurs in the sky region as shown in Fig. 1.

To prevent this phenomenon(s), each image is parti-
tioned into the sky region and the non-sky region, and two
different fog removal techniques are separately applied. In
the day-time road images, the sky region is generally very
bright or blue. Therefore, as shown in Eq. (8), the sky re-
gion is detected on a pixel basis by comparing the B channel
value with a specific threshold θB on the RGB color space.

IS KY (x) =

{
Ic(x) , IB(x) ≤ θB (c ∈ {R,G, B})

0 , IB(x) > θB
(8)

where IS KY (x), Ic(x), and IB(x) indicate the sky region, the
input color image, and the input B channel image, respec-
tively. In this paper, θB was empirically set to 150. On the
other hand, the sky region in the road images is generally
located above the vanishing point. Using this characteristic
together, the sky regions (white) such as Fig. 8 (b) are de-
tected. Since the sky region has meaningless information
from the perspective of the ADAS system, JS KY (x) is gen-
erated by only applying the gamma correction, which is the
most basic contrast enhancement technique.

On the other hand, by applying the normal de-fogging
algorithm to the non-sky region together with the offset
value in Sect. 3.2, a fog removed non-sky image JNon-SKY(x)
is generated like Eq. (9).

Fig. 8 (a) Input images (b) their sky regions (white)

JNon-SKY(x) =
1

t′(x)
{(Ic(x) − IS KY (x)) − Ac} + Ac (9)

Finally, we employ the alpha blending technique as
shown in Eq. (10) so as to naturally join the sky and non-
sky regions. Through the Gaussian filtering, the sky area
and the non-sky area are connected more naturally.

J(x) = IMAP(x) · JS KY (x) + (1 − IMAP(x)) · JNon-SKY(x)

(10)

where IMAP(x) indicates the sky binary map such as
Fig. 8 (b).

4. Experiment and Results

For the following experiments, the test videos consist of 10
sets of fog-free videos and 15 sets of foggy videos, all of
which have a 720p@30Hz resolution. Also, all video sets
are composed of 1,500 frames each. Fog-free videos were
obtained through Youtube, and foggy videos were taken us-
ing Apple’s iPhone 6 by ourselves. The vanishing point for
the ROI setting was set manually for all the video sequences.
The proposed fog detection algorithm written in C has a very
fast processing speed of 0.07ms per frame on a PC platform
having Intel Core i7 CPU and RAM of 32GB. Note that our
algorithm operates only on CPU.

First, the proposed fog detection algorithm was com-
pared with the Mao et al.’s method [12]. For performance
comparison, we implemented Mao et al.’s method directly
using C. Next, in order to examine applicability of the pro-
posed method, the fog removal results using several de-
fogging methods were compared in terms of subjective im-
age quality.

4.1 Evaluation of Fog Detection Performance

Detection accuracy of the proposed fog detection algorithm
was examined according to W. The results are shown in
Table 2. For the fog free images as well as the foggy im-
ages, the proposed detection algorithm showed an accuracy
of more than 97%.

Next, we compared the proposed method with one of
the latest single image-based fog detection methods, Mao
et al. [12]. When the parameters given in [12] are used as

Table 2 Accuracy of fog detection
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Fig. 9 Examples of test foggy images. (a) Test image 1 (R j = 15.9) (b)
test image 2 (R j = 30.3)

they are, the Mao method shows low detection rate for fog-
free images. This is because the Mao et al.’s method defaults
to the parameter tuned to the composite images. So we tuned
the parameters of the Mao et al.’s method to match the nat-
ural foggy images and compared the results. Table 2 shows
that the proposed detection algorithm is still better than Mao
et al.’s method. Mao et al.’s method has been developed to
calculate the fog strength of natural images based on a typi-
cal fog model. So, if the sky area occupies a large part of a
given image like a road driving image, it is judged that there
is a fog even though it is a clear day. On the other hand,
since the proposed algorithm estimates the fog strength only
for the ROI centered at the vanishing point, it provides rel-
atively more accurate results. In addition, because the pro-
posed algorithm utilizes temporal filtering, it is more robust
to outliers.

According to our implementation results, when the in-
put image size is 1280x720, Mao et al.’s method recorded
an average operation time per frame of 4.5ms. On the other
hand, since the proposed algorithm processes only the ROI
region in the center of the input image of the same size, it has
an average operation speed of 0.07ms per frame. In other
words, the proposed algorithm is about 64 times faster than
Mao et al.’s method. Note that the processing times is pro-
portional to the image size.

4.2 Qualitative Evaluation of Defogging with Strength
Offset

In this section, when the proposed fog detection algorithm
is applied the conventional de-fogging algorithms with the
strength offset control, the results are evaluated in terms of
subjective image quality. Note that when there is no fog
as a result of the fog detection, the de-fogging step is not
applied. Also, for foggy images, refer to the fog strength
control technique in Sect. 3.2.

In this experiment, the results for two test images with
different fog densities of Fig. 9 are shown as an example.
The α values in Fig. 9 were 0.0862 on the left image and
0.0449 on the right image. As de-fogging algorithms, Kim’s
method, He’s method, and Berman’s method were consid-
ered. First, Fig. 10 compares the proposed scheme with
Kim’s de-fogging method alone. We can observe that the
proposed scheme provides a brighter result as shown in
Fig. 10 (b) or (d) because of defogging strength.

Fig. 10 Results when Kim’s method was used. (a) Kim’s method alone
for test image 1 (b) the proposed scheme for test image 1 (c) Kim’s method
alone for test image 2 (d) the proposed scheme for test image 2.

Fig. 11 Results when He’s method was used. (a) He’s algorithm alone
for test image 1 (b) the proposed scheme for test image 1 (c) He’s algorithm
alone for test image 2 (d) the proposed scheme for test image 2.
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Fig. 12 Results when Berman’s method was used. (a) Berman’s algo-
rithm alone for test image 1 (b) the proposed scheme for test image 1 (c)
Berman’s algorithm alone for test image 2 (d) the proposed scheme for test
image 2.

Fig. 13 Results when Berman’s method was applied to Fig. 9 (a). (a)
Berman’s algorithm alone for test image 1 (b) the proposed algorithm with-
out sky detection (c) the proposed algorithm with sky detection.

Figure 11 shows the result of applying the proposed
scheme to He’s algorithm. We can find that the proposed
scheme prevents excessive contrast enhancement and im-
proves the image quality by adjusting the brightness. Sim-
ilarly, Fig. 12 shows a case where the proposed scheme is
applied to Berman’s de-fogging algorithm. We can observe
similar result to Fig. 11.

4.3 Qualitative Evaluation of Defogging with Sky Detec-
tion

This subsection evaluates the effect of detection of the sky
area and the extra processing on the performance of the pro-
posed algorithm. Here, the Berman’s method is again used
for fog removal. When de-fogging is performed without
sky detection, the sky area is distorted as in Fig. 13 (b). On

Fig. 14 Effect of sky detection on the overall visual quality. (a) Input
images (test images 3-to-6 from the top) (b) the proposed algorithm without
sky detection (c) the proposed algorithm with sky detection.

Table 3 Comparison of V/S

the other hand, when a separate process is performed for
the detected sky area, better visual quality is achieved as
in Fig. 13 (c). Also, Fig. 14 proves effect of sky detection
on the overall visual quality of the proposed algorithm for
four different images. In addition, Table 3 shows that R( fi)
dramatically decreases after the proposed fog detection and
removal system is applied.

5. Conclusion

In this paper, we propose a novel fog detection algorithm for
road driving images. First, a region over a certain distance
centered on the vanishing point is set as the ROI. Next, we
calculate the average saturation (S) and value (V) ratio in the
ROI in the HSV color domain. At this time, temporal filter-
ing is performed on a pre-determined temporal window to
minimize the influence of outliers. Finally, fog detection is
accomplished by comparing the result with a predetermined
threshold. Experimental results of actual photographed im-
ages confirmed an accuracy of 97% or more on average.
Also, the proposed algorithm shows very fast processing
time of about 0.07ms per frame enough to achieve real-time
processing, and seldom provides burden to the overall de-
fogging system. In addition, we presented a simple method
to adjust excessive contrast enhancement during the follow-
ing de-fogging step, and a region-adaptive de-fogging strat-
egy to avoid too dark output. And, we showed reliable re-
sults of the proposed scheme. Thus, the proposed scheme
will be a good de-hazing solution of commercial ADAS sys-
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tems.
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