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PAPER

An Active Transfer Learning Framework for Protein-Protein
Interaction Extraction

Lishuang LI†a), Xinyu HE†b), Jieqiong ZHENG†c), Degen HUANG†d), Nonmembers, and Fuji REN††, Member

SUMMARY Protein-Protein Interaction Extraction (PPIE) from biomed-
ical literatures is an important task in biomedical text mining and has
achieved great success on public datasets. However, in real-world applica-
tions, the existing PPI extraction methods are limited to label effort. There-
fore, transfer learning method is applied to reduce the cost of manual la-
beling. Current transfer learning methods suffer from negative transfer and
lower performance. To tackle this problem, an improved TrAdaBoost algo-
rithm is proposed, that is, relative distribution is introduced to initialize the
weights of TrAdaBoost to overcome the negative transfer caused by domain
differences. To make further improvement on the performance of transfer
learning, an approach combining active learning with the improved TrAd-
aBoost is presented. The experimental results on publicly available PPI
corpora show that our method outperforms TrAdaBoost and SVM when the
labeled data is insufficient,and on document classification corpora, it also il-
lustrates that the proposed approaches can achieve better performance than
TrAdaBoost and TPTSVM in final, which verifies the effectiveness of our
methods.
key words: protein-protein interaction, TrAdaBoost, actively transfer
learning, relative distribution

1. Introduction

With the rapid development of information digitalization
and biomedicine, biomedical literatures are expanding at an
exponential rate, which makes manually detecting the re-
quired information difficult. As one of the most important
biomedical text mining branch, Protein-Protein Interactions
Extraction (PPIE) plays an important role in establishing
protein knowledge network and constructing ontology.

Current methods for PPIE fall into three main cate-
gories: word co-occurrence, pattern matching and statistical
machine learning [1], [2]. Compared with other methods,
machine learning methods are more robust. So far there
have been many attempts to develop machine learning tech-
niques to extract protein-protein interaction pairs. These
techniques include feature vectors-based, kernel-based [1]
and combination methods [2]. For example, Zhang [1] pre-
sented a weighted multiple kernels learning-based approach,
which included feature-based, tree, graph and POS path ker-
nels and achieved 64.41% F-score on AIMed, 65.84% F-
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score on BioInfer, 74.38% F-score on HPRD50, 75.73% F-
score on IEPA and 83.01% F-score on LLL. Li [2] com-
bined feature-based kernel, tree kernel with semantic kernel
which obtained an F-score of 69.40% on AIMed. In recent
years, some researchers have utilized word embeddings and
deep learning for PPIE, For example, Li [3] proposed an ap-
proach capturing external information from the web-based
data which involved distributed representation, vector clus-
tering and Brown clusters word representation techniques
and achieved F-scores of 69.0%, 74.1%, 78.0%, 76.3% and
87.8% on AIMed, BioInfer, HPRD50, IEPA and LLL re-
spectively.

Although many PPI extraction systems have achieved
good results on five public datasets, i.e. Aimed, BioInfer,
HPRD50, IEPA and LLL, most of them were evaluated
on the test corpus which has the same distributions with
the training corpus, and thus when other domains data are
tested, the performance will greatly decrease due to the dis-
tribution change. For example, the result is usually not satis-
fied when the PPI extraction model trained from drosophila
data is evaluated on human data, and since no single corpus
is large enough to saturate data of all species, which often
requires large and expensive cost. Therefore, how to make
full use of the knowledge of other domain with similar data
distribution is still a challenge.

One of the current methods to alleviate the above prob-
lem is transfer learning, which has been obtained better re-
sults in web text data mining [4], document classification
[5], [6]. The main idea of transfer learning is to utilize the
knowledge from other domain(s) to help learn the current
domain. For example, to improve the performance of PPI
extraction on different distribution corpora, Miwa [7] used
one of the entire corpora as the target corpus and adjusted
the weights of the remaining corpora (source corpora) with
inductive transfer learning method SVM CW on five public
biomedical corpora. The experiment was conducted on the
target corpus which is still large and the situation that target
data deficiency was not analyzed in this paper. In biomedi-
cal field, the labeling cost by experts is huge, therefore, it is
necessary to improve the performance of the machine learn-
ing method when the target data are not enough.

To solve the low performance problem of machine
learning when target corpus is insufficient, Dai [8] decreased
the negative effects of source domain and boosted the accu-
racy on the target domain by Boosting, and achieved better
performance on the document classification corpora. How-
ever, the knowledge transferred from other domains may re-
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duce the learning accuracy due to implicit domain differ-
ences, this phenomenon is called negative transfer which is
one of the main problems in this area. Despite the fact that
how to avoid negative transfer is a very important issue, lit-
tle research work has been published on this topic. Rosen-
stein et al. [9] empirically showed that if two tasks were too
dissimilar, then brute-force transfer might hurt the perfor-
mance of the target task. Some works have been exploited
to analyze relatedness among tasks and task clustering tech-
niques, such as [10], they propose a data generating mech-
anism, which might help provide guidance on how to avoid
negative transfer automatically.

Active learning is another approach to solve the label
effort problem. Its basic idea is to select optimal samples
by reducing the expected error of the learner, which mainly
focuses on selecting a few suitable examples to label by ex-
perts. Thus, different active learners have different selection
criteria. For example, uncertainty sampling is the simplest
measure to select the example on which the current learner
has lower certainty [11]. The Query-by-Committee method
selects the examples that cause maximal disagreement to
achieve better accuracy [12]. However, the obvious issue in
this area is the cost associated with the answer from domain
experts.

In this paper, to reduce the negative transfer and im-
prove the accuracy, we propose a new actively transfer
framework ActTrAdaBoost to extract PPIs. Firstly, an im-
proved TrAdaboost algorithm (RDTrAdaboost) is proposed
to avoid negative transfer by adjusting the weights of the
source datasets instances. In RDTrAdaboost algorithm, the
relative distribution [13] is introduced to avoid negative im-
pacts caused by domain difference. Secondly, we combine
RDTrAdaboost algorithm with active learning to improve
the performance by adding data labeled by experts. The re-
sults show that our method performs better than TrAdaBoost
on PPI public corpora.

2. Methodology

A workflow to describe our method is shown in Fig. 1.
The input of our method contains three annotated corpora:
AIMed, HPRD50 and IEPA. Pre-processing is operated us-
ing the OpenNLP tools. RDTrAdaboost is the improved
TrAdaboost, which will be illustrated in Sect. “2.2 Im-
proved TrAdaBoost”. Feature extractor will be described in
Sect. “2.1 Feature extractor” and Sect. “2.3 Actively trans-
fer learning” will describe more details of ActTrAdaBoost.
The output is the classification results of protein pairs, treat-
ing the positive instances as the interacting pairs while the
negative instances as the non-interacting pairs.

2.1 Feature Extractor

We select five features as our baseline features and they are
described as follows:

Words from protein names: all the words in two protein
names are included.

Fig. 1 Workflow ofActTrAdaBoost

Words surrounding two protein names: these features
include n words on the left side of the first protein name
and n words on the right side of the second protein name
respectively. n is set to 5 in our experiments. If there is no
word surrounding two protein names, “NULL” will be used.

Words between two protein names: these features in-
clude all words that are located between two protein names.
If no word appears between two protein names, the feature
will be “NULL”.

Interaction term: a sentence is considered containing
PPI information only if it includes at least one interaction
word or keyword (such as “regulate”, “interact”, “modu-
late”, etc.). If there is one keyword between or among the
surrounding words of two protein names, the keyword is set
as the keyword feature; if there is no keyword, the keyword
feature will be set to “NULL”.

Distance feature: from the corpus, we find that the pro-
tein pair is more likely to have interaction relation if the
distance (the number of words) between the two proteins is
short. The distance feature can be divided into two classes:

• The number of the non-proteins words between two
proteins (Word-Num).
If Word-Num≤3, the feature value will be set to “1”;
if 3<Word-Num≤6, it will be set to “2”; if 6<Word-
Num≤9, it will be set to “3”; else, it will be set to “4”.
• The number of the protein names between two proteins.

If no other proteins appear between the two proteins,
the feature value will be set to “0”; otherwise, it is the
number of other proteins.

2.2 Improved TrAdaBoost

In this section, our RDTrAdaBoost (Relative Distribu-
tion TrAdaBoost) algorithm is presented to improve TrAd-
aBoost. A formal description of TrAdaBoost is given in
Fig. 2.

Some definitions are given as follows :

Definition 2.1 (symbols):
X: input space; Y = {-1, +1}: output space; c(x): the label of
x, and c(x)∈Y.
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Fig. 2 Algorithm description of TrAdaBoost

Definition 2.2 (Dataset):

DS = {xsi , ys,i}ns

i=1,DTTest = {xTi }
nTest

i=1 ,DTTrain = {xTi , yTi }nTrain

i=1 ,

DT = {DTTest ,DTTrain },T = D′S ∪DTTrain
where D′S ⊆ DS ,

where DS means the source dataset, DT represents
the target dataset, DTTrain is the target training dataset, DTTest

means the target test dataset, T refers to the combined train-
ing data, D′S means the weighted sampling of DS , nS and nT

represent the size of the source dataset and the target dataset
respectively, nTrain and nTest represent the size of the tar-
get training dataset and target test dataset respectively and
yS i ,yTi ∈{-1,+1}.

Leveraging that TrAdaBoost sets the source do-
main data with the same initial weight, our RDTrAdaBoost
algorithm tries to initialize weights with relative distribution
which is defined as (1),

δ(x) =
PT (x)
PS (x)

, (1)

where PT (x) and PS (x) represent the occurrence frequency
of instance x in the target and source dataset respectively.

The rationality of our method is proved by the follow-
ing theoretical analysis. The instance based transfer learning
method has hypothesis as follows:

a) P(YS

∣∣∣XS )=P(YT

∣∣∣XT )

b) XS≈XT

c) P(XS ),P(XY ),

where P(YS

∣∣∣XS ) and P(YT

∣∣∣XT ) refer to the conditional dis-
tribution of the source and the target domain respectively.
XS and XT represent the feature space of source dataset and
target dataset respectively. P(XS ) and P(XY ) represent the
marginal distribution of source and target domain. The
hypothesis demonstrates that when the source dataset and
target dataset have the same conditional distribution, their
marginal distribution is usually different. In this research,
the distributions of source dataset and target dataset meet
Eqs. (a)–(c).

The goal of transfer learning is to make the observed
value from target dataset DT close to the objective value.
Therefore, we define a loss function l(x,y,θ), which is used
to calculated the cost between the observed value and the
objective value. In this function, x represents the input in-
stances, y refers to the predicted result (0 or 1), θ is a variable
parameter that is used to adjust the loss function l. To min-
imize the loss function, Zadrozny [14] made derivation of
l(x,y,θ) as (2):

θ∗=argminE(x,y)∼PT [l(x, y, θ)]

=argminE(x,y)∼PT [
PS (x, y)
PS (x, y)

l(x, y, θ)]

=argmin
∫

y

∫
x

PT(x, y)
(

[ PS (x,y)
PS (x,y) l(x, y, θ)]

)
dxdy

=argmin
∫

y

∫
x

PS(x, y)
(

[ PT (x,y)
PS (x,y) l(x, y, θ)]

)
dxdy

=argminE(x,y)∼PS [
PT (x, y)
PS (x, y)

l(x, y, θ)]

=argminE(x,y)∼PS [
PT (x)PT (y|x)
PS (x)PS (y|x)

l(x, y, θ)]

=argminE(x,y)∼PS [
PT (x)
PS (x)

l(x, y, θ)]

(2)

To make the problem general, we introduce the penalty
parameter. In addition, the PT (x)

PS (x) in (2) is same to δ(xi) ac-
cording to (1), therefore, the optimization problem can be
written as (3):

θ∗ = argmin
ns∑
i=1

δ(xi)l(xS i , yS i , θ) + λΩ(θ), (3)

where λ is regularization coefficient, and Ω(θ) is regular-
ization term. As the value of loss function l(x,y,θ) is fixed,
therefore, the purpose of Eq. (3) is solving the minimum of
δ(xi). Therefore, we can see that the improved loss functions
in the target domain are smaller than the original, the same
procedure may be easily adapted in the source domain:
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minE(x,y)∼PT [l(x, y, θ)] ≤ E(x,y)∼PT [l(x, y, θ)] (4)

minE(x,y)∼PS [l(x, y, θ)] ≤ E(x,y)∼PS [l(x, y, θ)] (5)

In final, the initial weight vector of our RDTrAdaBoost is
defined as (6), which replaces the original initial weight vec-
tor in Fig. 2:

W1 = (W1
1, . . . . . . ,W

1
nS+nT

),

w1
i =

{
δ(x)/nS, i = 1, . . . , nS

1/nT, i = nS + 1, . . . , nS + nT
(6)

In Formula (6), n represents nS, which means the size of the
source dataset; m refers to nT, which is the size of the target
dataset. When “i=1,. . . .,nS”, the weight vector is expressed
as “w1

i = δ(x)/nS”; When “i=nS+1,. . . .,nS+nT”, the weight
vector is expressed as “w1

i = 1/nT”, δ(x) is defined as For-
mula (1), which means the relative distribution.

2.3 Actively Transfer Learning

Our actively transfer learning (ActTrAdaBoost) framework
is introduced in this Section. Firstly, select an example
which has the lowest confidence given by SVM. Secondly,
predict the selected example x by the transfer classifier.
Eventually, determine whether the example is labeled by ex-
perts or transfer classifier via decision function. Decision
function F(x) is defined as (7):

F(x) = [P(Tr(x) = y|x) > R] • [L > N], (7)

where Tr represents the improved transfer classifier (RD-
TrAdaBoost), P(Tr(x)=y

∣∣∣x) is the classification confidence
of x given by the transfer learning classifier, R refers to
the threshold value of P(Tr(x)=y

∣∣∣x) represents the size of
training dataset, L represents the size of training dataset. N
stands for the maximum number of examples labeled by ex-
perts. Formula (7) provides two conditions for the selection.
We choose the active learning method when P(Tr(x)=y

∣∣∣x)<R

Fig. 3 Algorithm description of actively transfer learning

or L<N is true, namely, if the classification confidence of
the transfer classifier is low or the size of the target train-
ing dataset is small, the selected example should be la-
beled by the experts. Otherwise, the transfer classifier is
selected. The main process of ActTrAdaBoost is summa-
rized in Fig. 3.

3. Experiments

3.1 Data Set

Our method is evaluated on three public biomedical cor-
pora: AIMed [15], HPRD50 [16] and IEPA [17]. AIMed
is from Medline database, which has 1000 pairs of posi-
tive instances, 3500 pairs of negative instances. IEPA is
from PubMed, which has 336 pairs of positive instances,
336 pairs of negative instances. HPRD50 has 163 pairs of
positive instances, 270 pairs of negative instances. They
are generally used in the assessment of PPIE methods with
slightly different annotating policies.

3.2 Evaluation Measures

We evaluate our method by F-score, which is the harmonic
mean of Precision and Recall. The definition of Precision
(P), Recall (R) and F-score (F) are shown in (8), (9), (10)
respectively, where TP is short for true positives, FP repre-
sents false positives, and FN stands for false negatives.

P = TP/(TP + FP) (8)

R = TP/(TP + FN) (9)

F − score = 2 ∗ P ∗ R/(P + R) (10)

3.3 KL Distance

In order to characterize the distribution differences among
the corpora, KL distance is introduced, which is defined as
(11):

D(P||Q) =
∑
x∈X

P(x)log
P(x)

Q(x)
(11)

where P(x) is the word frequency that x appears in dataset P.
Similarly, we can get Q(x), D(P

∣∣∣∣∣∣Q) stands for KL distance.
Generally, KL distance is asymmetric because the distance
from P to Q is usually not equal to Q to P. Table 1 shows the
KL distances. The comparison of KL distance is described
as (12):

Table 1 Results of keywords extraction

Theoretical
distribution Q

Actual
distribution
P(AIMed)

Actual
distribution
P(HPRD50)

Actual
distribution
P(IEPA)

AIMed 0 6.94E6 7.08E6
HPRD50 1.15E7 0 1.45E7
IEPA 9.72E6 1.36E7 0
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D(PIEPA||QAimed) < D(PAimed||QHprd50) <

D(PAimed||QIEPA) < D(PIEPA||QHprd50)
(12)

3.4 Experiment Setting

To verify the effectiveness of the presented method, we se-
lect a tiny amount of the target training data (20% of data
from the training set). In addition, the target corpora should
have different distributions with the source corpora while the
domains should be similar. Therefore, four groups of PPIE
experiments based on different target and source datasets
are designed. In the experiments, IEPA and AIMed are se-
lected as the target corpora and the rest as the source cor-
pora respectively. All the results are measured by 5-fold
cross-validation. The baseline employs SVM with a linear
kernel. In the experiments, to simulate the environment of
less training data mentioned in introduction, we randomly
choose 20% data from the target dataset for training and
the rest 80% for testing based on SVM and RDTrAdaBoost.
As for ActTrAdaBoost, the 20% of data are set to be un-
labeled initially, the decision function will determine how
to label the unlabeled examples. The experimental purpose
is to verify the effectiveness of our method solving labeled
data deficient problems. Therefore, we focus on compar-
ing the results when the proportion of examples labeled by
experts in target dataset is 2% and the entire trend of the
curves. Most related works with PPI adopted 5-fold (80%
data is used for training) or 10-fold cross-validation (90%
data is used for training). The objective of our experiment is
to alleviate data insufficient problem which is different from
other PPI literature, so these related works are not compared
in experiments.

3.5 AIMed as Target Corpus

In this section, we compare our algorithms, i.e. the im-
proved TrAdaBoost (RDTrAdaBoost) and ActTrAdaBoost,
with the original TrAdaBoost and SVM when AIMed is se-
lected as target domain.

Figure 4 shows that, when IEPA is selected as the
source domain, the performances of TrAdaBoost, RDTrAd-
aBoost and ActTrAdaBoost are much better than SVM. It
reveals that transfer learning is better than SVM on AIMed.
Our method has no significant advantages compared with
original TrAdaBoost on this corpus because the KL distance
from IEPA to AIMed is small due to the lower domain dif-
ferences.

When HPRD50 is selected as the source domain, we
can observe from Fig. 5 that our RDTrAdaBoost and Act-
TrAdaBoost both outperform TrAdaBoost and SVM. The
results suggest that initializing weights with relative distri-
bution can contribute to accelerate the convergence. Even-
tually, three transfer learning methods all achieve reason-
able results, which indicates that the negative transfer does
not occur in the experiment. In addition, we compare our
transfer learning methods with TrAdaBoost when data are
insufficient, for example when the proportion of examples

Fig. 4 IEPA as source domain, the F-scores of different methods on
AIMed

Fig. 5 HPRD50 as source domain, the F-scores of different methods on
AIMed

Fig. 6 AIMed as source domain, the F-scores of different methods on
IEPA

labeled by experts in target dataset is 2%, ActTrAdaBoost
outperforms TrAdaBoost by 1.75% in Fig. 4, by 4.41% in
Fig. 5.

3.6 IEPA as Target Corpus

Figure 6 and Fig. 7 compare the performance of our method
with TrAdaBoost and SVM when IEPA is selected as target
domain.

Figure 6 shows that, when IEPA is selected as the
source domain, the performance of our RDTrAdaBoost
and ActTrAdaBoost both outperform TrAdaBoost. Espe-
cially, ActTrAdaBoost outperforms TrAdaBoost by 26.69%
F-score when the proportion of examples labeled by experts
in target dataset is 2%. It can be concluded that the transfer
performance can be greatly improved by adjusting the initial
weights of TrAdaBoost.

In Fig. 7, the performance of TrAdaBoost is worse
than SVM when the labeled proportion is 4%, which in-
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Fig. 7 HPRD50 as source domain, the F-scores of different methods on
IEPA

dicates that the negative transfer occurrs on IEPA. We can
also see from the formula (12), the KL distance from IEPA
to Hprd50 is the largest which means the higher risk of
distribution differences. When the train data are insuf-
ficient (2%∼6%), it can be observed that our RDTrAd-
aBoost and ActTrAdaBoost significantly outperform TrAd-
aBoost. Especially, ActTrAdaBoost outperforms TrAd-
aBoost by 29.9% when the proportion of examples labeled
by experts in target dataset is 2%, which further illustrates
our transfer learning method can reduce the impact of the
data deficiency, avoiding the negative transfer problem.

Additionally, in Fig. 6 and Fig. 7, ActTrAdaBoost out-
performs RDTrAdaBoost when the proportion of examples
labeled by experts in target dataset is 4% and 6%, which
shows that actively transfer learning is effective. It indicates
that adding the examples labeled by experts is effective for
improving the extraction accuracy. With the increase of la-
beled data, the advantage of ActTrAdaBoost and RDTrAd-
aBoost is not obvious, and the F-scores of ActTrAdaBoost
are close to RDTrAdaBoost in final. In conclusion, RD-
TrAdaBoost effectively solves the negative transfer problem
in transfer learning. ActTrAdaBoost can reduce the num-
ber of examples labeled by experts and improve the perfor-
mance of transfer learning.

3.7 Comparisons between Our Method and Other Works

We also conduct experiments on document classification
corpora and evaluate our method by Accuracy which is de-
fined as (13):

Accuracy =
True

True + False
(13)

Figure 8 shows the comparison between our method and
other state-of-the-art works on the document classification
corpora. TPTSVM [18] combined transfer learning with
semi-supervised learning which leveraged a large amount
of unlabeled data for document classification. We can see
that our method performs much better than TrAdaBoost,
TPTSVM achieves the best performance when the labeled
examples are not sufficient. However, ActTrAdaBoost out-
performs TPTSVM when the number of instances is greater
than 200. Figure 9 gives the accuracy curves of three al-
gorithms with different numbers of iterations when the size

Fig. 8 The accuracy of different methods on document classification cor-
pora

Fig. 9 Learning curves on document classification corpora

of the target training set is 400. From the curves, we can
see that our ActTrAdaBoost overcomes the negative trans-
fer and helps to improve the transfer learning and achieves
the best performance.

4. Discussion

In this work, the improved TrAdaBoost and actively trans-
fer learning methods are proposed, and our methods achieve
better performance than the existing methods. Experimen-
tal result shows that our methods can improve the transfer
learning performance in PPIE task. And the reasons are an-
alyzed as follows:

Effective RDTrAdaBoost: when the distribution from
the target domain is essentially different from the source do-
main, and the KL distance between the source dataset and
target dataset is large, TrAdaBoost tends to negative trans-
fer. For example, in Fig. 7, the F-score of TrAdaBoost is
lower than SVM when the proportion of the training data is
4%. This indicates that when the KL distance between the
source dataset and target dataset is large, the source training
data may contain noisy data. However, our RDTrAdaBoost
can resolve the problem and we have proved it in Sect. 2.
Initializing the weights by the relative distribution can in-
crease the weights of the source domain instances with sim-
ilar distribution to the target domain. As a result, the impact
of domain differences on transfer learning will be reduced,
therefore, RDTrAdaBoost can avoid the negative transfer. In
addition, Experimental results also illustrate that RDTrAd-
aBoost can speed up the convergence and avoid negative
transfer. Therefore the performance will be improved.

Effective ActTrAdaBoost: we propose a new actively
transfer learning framework which combines active learning
with the improved TrAdaBoost, namely ActTrAdaBoost.
According to the defined transfer confidence measure, the
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instance is either labeled by the transfer classifier or directly
labeled by the domain experts if needed. Therefore, the per-
formance will be improved by leveraging experts labelling
in active learning andor adding new data to enrich training
data byin transfer classifier, ActTrAdaBoost can obtain bet-
ter performance. The experimental results show that, when
data are insufficient, the proposed ActTrAdaBoost and RD-
TrAdaBoost methods perform much better than the baseline
SVM and original TrAdaBoost. In addition, ActTrAdaBoost
outperforms TrAdaBoost when labelling cost is the same.
For example, in Fig. 6 and Fig. 7, ActTrAdaBoost achieves
the best results with the same labeling cost. We can see that
ActTrAdaBoost is more effective than TrAdaBoost and bet-
ter than RDTrAdaBoost in most cases.

5. Conclusion and Feature work

In this paper, we present an actively transfer learning frame-
work to solve the negative transfer and lower performance
problem in transfer learning. Experimental results show that
the proposed ActTrAdaBoost and RDTrAdaBoost methods
perform much better than the baseline SVM and original
TrAdaBoost. In PPIE transfer learning task, our ActTrAd-
aBoost method shows better performance. Our actively
transfer learning framework, not only achieves better perfor-
mance with small amount of labeled data, but also provides
the maximal use of the labeling process.

In recent years, deep learning has been successful in
academia and industry, which is considered to be one of the
most potential technologies of depth analysis of large data.
Recent research has shown that deep learning can extract
compact, hierarchical, abstract data representation, and has
the ability to transfer and reuse across domains. Therefore,
deep learning has important research value in transfer learn-
ing, and we will focus on studying new transfer learning
algorithm integrating deep learning in the feature.
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