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PAPER

On the Properties and Applications of Inconsistent Neighborhood in
Neighborhood Rough Set Models

Shujiao LIAO†,††a), Qingxin ZHU†b), Nonmembers, and Rui LIANG†c), Student Member

SUMMARY Rough set theory is an important branch of data mining
and granular computing, among which neighborhood rough set is presented
to deal with numerical data and hybrid data. In this paper, we propose a new
concept called inconsistent neighborhood, which extracts inconsistent ob-
jects from a traditional neighborhood. Firstly, a series of interesting prop-
erties are obtained for inconsistent neighborhoods. Specially, some prop-
erties generate new solutions to compute the quantities in neighborhood
rough set. Then, a fast forward attribute reduction algorithm is proposed
by applying the obtained properties. Experiments undertaken on twelve
UCI datasets show that the proposed algorithm can get the same attribute
reduction results as the existing algorithms in neighborhood rough set do-
main, and it runs much faster than the existing ones. This validates that
employing inconsistent neighborhoods is advantageous in the applications
of neighborhood rough set. The study would provide a new insight into
neighborhood rough set theory.
key words: inconsistent neighborhood, neighborhood rough set, proper-
ties, attribute reduction, fast forward algorithm, run-time

1. Introduction

Rough set theory, as an important branch of data mining
and granular computing, is an effective tool to address the
uncertainty and granulation of data [1]–[3]. Up to now, ex-
cept classical rough set [4], a number of extended models of
rough set have been developed, such as decision-theoretic
rough set [5], [6], dominance-based rough set [7], multi-
granulation rough set [8], [9] and fuzzy rough set [1], [10].
Although each kind of rough set model has its own charac-
teristic, there are some common concepts among these mod-
els, such as lower and upper approximations, positive region
and boundary region. In particular, attribute reduction, also
called attribute selection or feature selection, is one of key
issues in the rough set domain. It refers to selecting a suit-
able attribute subset, also called a reduct, to reduce the data
dimensionality and meanwhile to keep the ability of original
decision system [11]–[13].

Most of rough set models are only applicable for nom-
inal data, whereas numerical data and hybrid data exist
widely in real applications [14]. To deal with the two kinds
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of data, some discretization methods were employed in data
preprocessing to transform numerical attributes into nomi-
nal attributes [15], [16], but information loss may occur in
the process. To address this issue, neighborhood rough set
was proposed by Hu [17], [18], which has been verified to
be a powerful mechanism to handle numerical data and hy-
brid data. In fact, before that, Lin [19] had regarded the
equivalence classes in classical rough set as neighborhoods.
Neighborhood rough set can be seen as a generalization of
this idea, in which neighborhoods are generated by using a
certain criterion (usually a specific distance function).

Neighborhoods play a crucial role in neighborhood
rough set models. For an object, its neighborhoods often
contain not only the objects with the same class as it but
also those with different classes from it, which can be called
consistent objects and inconsistent objects respectively. In
this paper, we extract the inconsistent objects from neigh-
borhoods and introduce a new concept called inconsistent
neighborhood. For a given object, its inconsistent neighbor-
hoods include only the objects whose classes differ from it.
Obviously, an inconsistent neighborhood is the subset of the
corresponding neighborhood. By using inconsistent neigh-
borhoods, the consistent objects in the neighborhoods need
not be considered again.

In the study, firstly the properties of inconsistent neigh-
borhood are discussed thoroughly, and a typical example
is presented to illustrate the obtained properties. The the-
oretical analyses reveal that the introduction of inconsistent
neighborhood gives some new formulations for existing fun-
damental notions in neighborhood rough set, and at the same
time provides some new solutions for computing the quanti-
ties in neighborhood rough set. These new solutions are usu-
ally more direct and more quick to obtain the results than the
previous solutions that use neighborhoods. Then, a fast for-
ward attribute reduction algorithm is designed through em-
ploying the properties of inconsistent neighborhood, and ex-
periments are undertaken upon twelve datasets from the UCI
(University of California - Irvine) library [20]. Experimen-
tal results indicate that the proposed algorithm can obtain
the same reducts as the existing algorithms based on neigh-
borhoods in the domain of neighborhood rough set, and it
is significantly more efficient than the existing ones. Hence,
to some extent using inconsistent neighborhoods is advan-
tageous over using traditional neighborhoods in the applica-
tions. This work would offer a new view on the theory of
neighborhood rough set.

The rest of the paper is organized as follows. In Sect. 2,
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we mainly review the fundamental concepts and properties
in traditional neighborhood rough set models. In Sect. 3, we
introduce the concept of inconsistent neighborhood and dis-
cuss relevant properties thoroughly. In Sect. 4, we propose
the fast forward attribute reduction algorithm by using the
properties of inconsistent neighborhood. Experimental re-
sults are analyzed in Sect. 5. Finally, we conclude the paper
in Sect. 6.

2. Key Concepts and Properties in Traditional Neigh-
borhood Rough Set Models

In this section, we review and analyze the key concepts and
properties in rough sets, especially neighborhood rough set.
Some examples are given to illustrate these concepts and
properties.

Decision system, which was formally defined in [21], is
a fundamental concept in data mining and machine learning.

Definition 2.1: A decision system S is the 5-tuple:

S = (U,C,D,V = {Va|a ∈ C ∪ D}, I = {Ia|a ∈ C ∪ D}),
where U is a finite set of objects called the universe, C is the
set of condition attributes, D is the set of decision attributes
with only discrete values, Va is the set of values for each
a ∈ C ∪ D, and Ia : U → Va is an information function for
each a ∈ C ∪ D.

In most applications, D = {d}, namely |D| = 1. If |D| >
1, we can construct |D| decision systems, with each having
only one decision attribute. Moreover, the decision attribute
values are often called decisions for brevity.

In neighborhood rough set models, the decision sys-
tem is also called neighborhood decision system, and the
attribute values of numerical condition attributes are often
normalized to facilitate the data processing. An example
of neighborhood decision system is listed in Table 1, where
C = {a1, a2, a3, a4}, a1, a2 are numerical attributes, and a3,
a4 are nominal attributes. The values of numerical attributes
have been normalized, while those of nominal attributes re-
main unchanged. The normalization approach is to employ
the linear function y = (x − min)/(max − min), where x is
the initial value, y is the normalized value, and min and max
are the minimal value and the maximal value in the attribute
domain, respectively.

Table 1 An example of neighborhood decision system.

Objects a1 a2 a3 a4 Classes
x1 0.8235 0.9762 H F 1
x2 0.0392 0 H S 1
x3 0.7451 0.0655 A S 1
x4 0.9216 0.4643 H F 2
x5 0.5294 0.1548 A S 2
x6 0.0392 0.1667 H S 2
x7 0.8628 0.3571 R F 3
x8 0.1765 0.381 R F 3
x9 0.7451 0.3869 R F 3

Neighborhood granule, also called neighborhood for
short, plays an important role in neighborhood rough set
models. We revise its original definition in [17] to obtain
a new definition which is more explicit for hybrid decision
systems.

Definition 2.2: Let S = (U,C,D,V, I) be a neighborhood
decision system, xi ∈ U, B ⊆ C and δ > 0. The neighbor-
hood of xi with respect to attribute subset B and neighbor-
hood radius δ is defined as:

δB(xi) = {x j ∈ U |(∀a ∈ Bo, v(x j, a) = v(xi, a))

∧ (ΔBu (xi, x j) ≤ δ)}, (1)

where v(x, a) denotes the value of object x on attribute a, ∧
is “and” operator, Δ is a distance function, and Bo, Bu are
the subsets of B which contain all nominal attributes and all
numerical attributes in B respectively, namely Bo ∪ Bu = B
and Bo ∩ Bu = ∅.
Assuming that x1, x2 ∈ U and Bu = (a1, a2, . . . , aK), then a
frequently-used metric, named Minkowsky distance [22], is
formulated as

Δp(x1, x2) = (
K∑

i=1

|v(x1, ai) − v(x2, ai)|p)1/p.

In this paper we use Euclidean distance Δ2, which is

Δ2(x1, x2) =

√√√ K∑
i=1

|v(x1, ai) − v(x2, ai)|2. (2)

Let δ = 0.15, we compute the neighborhood δB(x) for any
attribute subset B of the decision system shown in Table 1.
Some exemplary results are given in Table 2, where B takes
values listed as column headers.

Obviously, for any object, its neighborhoods change
with attributes B and radius δ. Two types of monotonicity
were obtained for neighborhoods in [17].

Proposition 2.3: (Type-1 monotonicity). Let S = (U,C,
D,V, I) be a neighborhood decision system, B1 ⊆ B2 ⊆ C.
We have ∀x ∈ U, δB1 (x) ⊇ δB2 (x).

Proposition 2.4: (Type-2 monotonicity). Let S = (U,C,
D,V, I) be a neighborhood decision system, B ⊆ C, δ1 ≤ δ2.
We have ∀x ∈ U, δ1(x) ⊆ δ2(x), where δi(x) denotes the
neighborhood of x with respect to attributes B and radius δi.

Lower and upper approximations, positive region and
boundary region are fundamental issues in rough set the-
ory. They were defined in neighborhood rough set context
in [17].

Definition 2.5: Let S = (U,C,D,V, I) be a neighborhood
decision system, and X1, X2, . . . , XK be the object subsets
with decisions 1 through K. The lower and upper approxi-
mations of decision D with respect to B ⊆ C are defined as

NBD =
K⋃

i=1

NB(Xi),NBD =
K⋃

i=1

NB(Xi), (3)
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Table 2 Neighborhoods of objects on some attribute subsets with δ = 0.15.

x {a1} {a2} {a3} {a1, a2} {a1, a3} {a2, a3} {a1, a2, a3}
x1 {x1, x3, x4, x7, x9} {x1} {x1, x2, x4, x6} {x1} {x1, x4} {x1} {x1}
x2 {x2, x6, x8} {x2, x3} {x1, x2, x4, x6} {x2} {x2, x6} {x2} {x2}
x3 {x1, x3, x7, x9} {x2, x3, x5, x6} {x3, x5} {x3} {x3} {x3, x5} {x3}
x4 {x1, x4, x7} {x4, x7, x8, x9} {x1, x2, x4, x6} {x4, x7} {x1, x4} {x4} {x4}
x5 {x5} {x3, x5, x6} {x3, x5} {x5} {x5} {x3, x5} {x5}
x6 {x2, x6, x8} {x3, x5, x6} {x1, x2, x4, x6} {x6} {x2, x6} {x6} {x6}
x7 {x1, x3, x4, x7, x9} {x4, x7, x8, x9} {x7, x8, x9} {x7, x9} {x7, x9} {x7, x8, x9} {x7, x9}
x8 {x2, x6, x8} {x4, x7, x8, x9} {x7, x8, x9} {x8} {x8} {x7, x8, x9} {x8}
x9 {x1, x3, x7, x9} {x4, x7, x8, x9} {x7, x8, x9} {x7, x9} {x7, x9} {x7, x8, x9} {x7, x9}

where

NB(X) = {x ∈ U |δB(x) ⊆ X},
NB(X) = {x ∈ U |δB(x) ∩ X � ∅} (4)

are the lower and upper approximations of object subset X.
The boundary region of decision D with respect to attributes
B is defined as

BNB(D) = NBD − NBD.

The lower approximation NBD is also called positive region
and is denoted by POS B(D). If not specified, the lower and
upper approximations refer to those of object subsets in the
following. The relations between above concepts were given
in [17], which are (1) NBD = U; (2) POS B(D)

⋂
BNB(D) =

∅; (3) POS B(D)
⋃

BNB(D) = U. From the relations, it is
known that

BNB(D) = U − POS B(D). (5)

Reduct, as an important concept in rough sets, is an at-
tribute subset that has the same approximating power as the
whole set of attributes. The definition of decision-relative
reduct was given in [23].

Definition 2.6: Let S = (U,C,D,V, I) be a decision sys-
tem. Any B ⊆ C is a decision-relative reduct if:
(1) POS B(D) = POS C(D);
(2) ∀a ∈ B, POS B−{a}(D) ⊂ POS B(D).

3. Inconsistent Neighborhood and Relevant Properties

In this section, we introduce the concept of inconsistent
neighborhood, and discuss the relevant properties thor-
oughly. A representative example is given to illustrate the
obtained properties.

We start from introducing consistent objects and incon-
sistent objects in the neighborhoods.

Definition 3.1: Let S = (U,C,D,V, I) be a neighborhood
decision system, B ⊆ C and x ∈ U. For any y ∈ δB(x), if
D(y) = D(x), y is called a consistent object in δB(x); other-
wise, y is called an inconsistent object in δB(x).

For example, it is known from Table 2 that in δa1 (x1), x3

is a consistent object, while x4, x7 and x9 are all inconsis-
tent objects. Inconsistent neighborhood, which refers to the
set of inconsistent objects in a neighborhood, is defined as

follows.

Definition 3.2: Let S = (U,C,D,V, I) be a neighborhood
decision system. Given xi ∈ U, B ⊆ C and δ > 0, the incon-
sistent neighborhood of xi with respect to attribute subset B
and neighborhood radius δ is defined as

inB(xi) = {x j ∈ U |x j ∈ δB(xi),D(x j) � D(xi)}. (6)

Naturally, according to Definition 2.2, Eq. (6) is equivalent
to

inB(xi) = {x j ∈ U |(∀a ∈ Bo, v(x j, a) = v(xi, a))

∧ (ΔBu (xi, x j) ≤ δ),D(x j) � D(xi)}, (7)

where Bo and Bu have been introduced in Definition 2.2.
Hence, the inconsistent neighborhoods can be calculated on
basis of neighborhoods, or by using Eq. (7) directly.

In the following, we will explore the properties of in-
consistent neighborhood. It is notable that, in [24] the set of
inconsistent objects, namely inconsistent neighborhood in
this paper, has been used to find a test-cost-sensitive reduct
in error-range-based covering rough set model. Since the
data model has changed in this paper, the properties of in-
consistent neighborhood need to be restudied. Moreover, as
will be shown below, the properties are discussed more thor-
oughly in our work, and some of them are relatively different
from those in [24].

Proposition 3.3: Let S = (U,C,D,V, I) be a neighborhood
decision system. Given any x, xi, x j ∈ U and B ⊆ C, we
have
(1) in∅(x) = {y ∈ U |D(y) � D(x)};
(2) inB(x) ⊂ δB(x);
(3) x j ∈ inB(xi)⇔ xi ∈ inB(x j);
(4) x ∈ POS B(D)⇔ inB(x) = ∅.
Proof 3.4: (1)–(3) can be known immediately from Defi-
nition 3.2 and Eq. (7).
(4) Let X1, X2, . . . , XK be the object subsets with decisions 1
through K. x ∈ POS B(D) ⇔ ∃Xi(1 ≤ i ≤ K), δB(x) ⊆ Xi ⇔
∀y ∈ δB(x), D(y) = D(x)⇔ inB(x) = ∅.

Note that, according to the essence of lower and upper
approximations of object subsets, we can rewrite Eq. (4) as
follows:

NB(X) = {x ∈ X|δB(x) ⊆ X},
NB(X) = X ∪ {x � X|δB(x) ∩ X � ∅}. (8)
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Compared with Eq. (4), Eq. (8) is more explicit, and the
computational efficiency of lower and upper approximations
can be improved by using it. Further, according to Defini-
tion 3.2, Eq. (8) can be rewritten in a new form by using
inconsistent neighborhoods.

Proposition 3.5: Let S = (U,C,D,V, I) be a neighborhood
decision system, B ⊆ C. For any X ⊆ U, we have

NB(X) = {x ∈ X|inB(x) = ∅},
NB(X) = X ∪ {x � X|inB(x) ∩ X � ∅}. (9)

Moreover, based on Proposition 3.3 and Eq. (5), we can ob-
tain the following formulations for the positive region and
the boundary region.

Proposition 3.6: Let S = (U,C,D,V, I) be a neighborhood
decision system, B ⊆ C. We have

POS B(D) = {x ∈ U |inB(x) = ∅},
BNB(D) = {x ∈ U |inB(x) � ∅}. (10)

According to Definition 2.6 and Proposition 3.3, we obtain
the following proposition, which can be used as an alterna-
tive definition of reduct.

Proposition 3.7: Let S = (U,C,D,V, I) be a neighborhood
decision system. Any B ⊆ C is a decision-relative reduct if:
(1) ∀x ∈ POS C(D), inB(x) = ∅;
(2) ∀a ∈ B, ∃x ∈ POS C(D), s.t. inB−{a}(x) � ∅.

In fact, POS C(D) = U in most cases, then we have

Proposition 3.8: Let S = (U,C,D,V, I) be a neighborhood
decision system. Any B ⊆ C is a decision-relative reduct if:
(1) ∀x ∈ U, inB(x) = ∅;
(2) ∀a ∈ B, ∃x ∈ U, s.t. inB−{a}(x) � ∅.

In general, Propositions 3.5–3.8 give new formulations for
the lower and upper approximations, positive region, bound-
ary region and reduct through employing inconsistent neigh-
borhoods.

Interestingly, according to Proposition 3.5, we find that
there are close relations between the lower approximations
and the upper approximations among different classes. The
relations are displayed in the following two propositions.

Proposition 3.9: Let S = (U,C,D,V, I) be a neighborhood
decision system, B ⊆ C, and let X1, X2, . . . , XK be the object
subsets with decisions 1 through K. We have

NB(Xk) = U −
K⋃

i=1,i�k

NB(Xi). (11)

Proof 3.10: We can get

K⋃
i=1,i�k

NB(Xi)

=

K⋃
i=1,i�k

(Xi ∪ {x � Xi|inB(x) ∩ Xi � ∅})

= (
K⋃

i=1,i�k

Xi)
⋃

(
K⋃

i=1,i�k

{x � Xi|inB(x) ∩ Xi � ∅})

= (
K⋃

i=1,i�k

Xi)
⋃

(
K⋃

i=1,i�k

{x ∈ Xk |inB(x) ∩ Xi � ∅})

= (
K⋃

i=1,i�k

Xi)
⋃
{x ∈ Xk |inB(x)

⋂
(

K⋃
i=1,i�k

Xi) � ∅}

= (
K⋃

i=1,i�k

Xi)
⋃
{x ∈ Xk |inB(x) � ∅}.

Since {X1, X2, . . . , XK} is a partition of U, and NB(Xk) = {x ∈
Xk |inB(x) = ∅}, we have

NB(Xk)
⋃

(
K⋃

i=1,i�k

NB(Xi)) = U,

NB(Xk)
⋂

(
K⋃

i=1,i�k

NB(Xi)) = ∅.

So NB(Xk) = U −⋃K
i=1,i�k NB(Xi).

Proposition 3.11: Let S = (U,C,D,V, I) be a neighbor-
hood decision system, B ⊆ C, and let X1, X2, . . . , XK be the
object subsets with decisions 1 through K. We have

NB(Xk) ⊆ U −
K⋃

i=1,i�k

NB(Xi). (12)

Proof 3.12: Since NB(Xk) = Xk ∪ {x � Xk |inB(x)∩ Xk � ∅},

U −
K⋃

i=1,i�k

NB(Xi)

= U −
K⋃

i=1,i�k

{x ∈ Xi|inB(x) = ∅}

= Xk

⋃
(

K⋃
i=1,i�k

{x ∈ Xi|inB(x) � ∅})

= Xk ∪ {x � Xk |inB(x) � ∅},
and {x � Xk |inB(x) ∩ Xk � ∅} ⊆ {x � Xk |inB(x) � ∅}, we have
NB(Xk) ⊆ U −⋃K

i=1,i�k NB(Xi).

Similarly with neighborhoods, there are two types of
monotonicity for inconsistent neighborhoods according to
Propositions 2.3–2.4 and Definition 3.2.

Proposition 3.13: (Type-1 monotonicity). Let S = (U,C,
D,V, I) be a neighborhood decision system, B1 ⊆ B2 ⊆ C.
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We have ∀x ∈ U, inB1 (x) ⊇ inB2 (x).

Proposition 3.14: (Type-2 monotonicity). Let S = (U,C,
D,V, I) be a neighborhood decision system, B ⊆ C, δ1 ≤ δ2.
We have ∀x ∈ U, in1(x) ⊆ in2(x), where ini(x) denotes the
inconsistent neighborhood of x with respect to attributes B
and radius δi.

Furthermore, we can obtain the following two corollaries.

Corollary 3.15: Let S = (U,C,D,V, I) be a neighborhood
decision system, B ⊆ C. Assuming that Bi ⊆ B (1 ≤ i ≤ L,
L is a finite positive integer), then for any x ∈ U, we have

inB(x) ⊆
L⋂

i=1

inBi (x) ⊆
L⋃

i=1

inBi (x).

Proof 3.16: Based on Proposition 3.13, for any x ∈ U and
any Bi, we have inB(x) ⊆ inBi (x), so inB(x) ⊆ ⋂L

i=1 inBi (x) ⊆⋃L
i=1 inBi (x).

Corollary 3.17: Let S = (U,C,D,V, I) be a neighborhood
decision system, and B = {a1, a2, · · · , an} ⊆ C. Assuming
that {Bi}1≤i≤L(2 ≤ L ≤ n) are disjoint subsets of B which
satisfy

⋃L
i=1 Bi = B, then for any x ∈ U, we have

inB(x) ⊆
L⋂

i=1

inBi (x),

where “=” holds when at most one Bi contains numerical
attributes.

Proof 3.18: Based on Corollary 3.15, we can obtain im-
mediately inB(x) ⊆ ⋂L

i=1 inBi (x),∀x ∈ U. Now under three
cases as follows, we prove that inB(x) =

⋂L
i=1 inBi (x),∀x ∈

U holds when at most one Bi contains numerical attributes:
(1) None of Bi(i = 1, 2, · · · , L) contains numerical attributes,
namely all attributes in B are nominal. According to Eq. (7),
in this case the comparisons of attribute values are indepen-
dent between different attributes in both B and each Bi, thus
we can obtain inB(x) =

⋂L
i=1 inBi (x), ∀x ∈ U.

(2) Only one Bi contains numerical attributes. Similarly
with (1), the comparisons of attribute values are indepen-
dent between different nominal attributes in both B and each
nominal Bi. As for numerical attributes, their attribute val-
ues are used together to compute Euclidean distance based
on Eq. (2) in both B and its sole numerical subset, thus we
can also obtain inB(x) =

⋂L
i=1 inBi (x), ∀x ∈ U.

(3) More than one Bi contains numerical attributes. With-
out loss of generality, consider the simplest case where
B1 = {a1, a2, · · · , a j}, B2 = {a j+1, a j+2, · · · , an}, and ai,
ak (1 ≤ i ≤ j, j + 1 ≤ k ≤ n) are numerical at-
tributes, namely B is composed of two disjoint subsets,
each with exactly one numerical attribute. According to
Eqs. (2) and (7), ∀y ∈ inB1 (x) ∩ inB2 (x) means |v(y, ai) −
v(x, ai)| ≤ δ and |v(y, ak) − v(x, ak)| ≤ δ, while ∀y ∈
inB(x) means

√|v(y, ai) − v(x, ai)|2 + |v(y, ak) − v(x, ak)|2 ≤
δ. Since (|v(y, ai)−v(x, ai)| ≤ δ)∧(|v(y, ak)−v(x, ak)| ≤ δ)�√|v(y, ai) − v(x, ai)|2 + |v(y, ak) − v(x, ak)|2 ≤ δ, inB(x) ⊇

inB1 (x) ∩ inB2 (x),∀x ∈ U may not hold in this case. Simi-
larly, we can deduce that inB(x) ⊇ ⋂L

i=1 inBi (x),∀x ∈ U may
not hold for other cases where more than one Bi contains
numerical attributes. Hence, inB(x) =

⋂L
i=1 inBi (x),∀x ∈ U

may not hold when more than one Bi contains numerical
attributes.
To sum up, inB(x) =

⋂L
i=1 inBi (x),∀x ∈ U holds when at

most one Bi contains numerical attributes.

As mentioned earlier, compared with the existing work
in [24], the properties of inconsistent neighborhood are ex-
plored more thoroughly in our work, and a series of new
properties are obtained. Moreover, since the data environ-
ment has changed, the obtained properties may be greatly
different between the existing work and our work. For
example, under the condition of Corollary 3.17, inB(x) =⋂L

i=1 inBi (x),∀x ∈ U holds when at most one Bi contains
numerical attributes in our work, but it always holds in the
existing work.

We give the following example to illustrate the con-
cepts and properties discussed above.

Example 3.19: A neighborhood decision system is indi-
cated by Table 1, from which it is known that U =

{x1, x2, x3, x4, x5, x6, x7, x8, x9}, C = {a1, a2, a3, a4} and
U/D = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8, x9}}. In other words,
the objects in the universe are grouped into three subsets
according to the decision attribute. Let X1 = {x1, x2, x3},
X2 = {x4, x5, x6} and X3 = {x7, x8, x9}, and let δ = 0.15.

We can obtain the inconsistent neighborhood inB(x) for
any attribute subset B. Some exemplary results are shown
in Table 3, where B takes values listed as column head-
ers. Combined Table 3 and Proposition 3.8, it is known that
{a1, a2, a3} is a reduct for the decision system.

According to Proposition 3.6, we can obtain the pos-
itive regions POS B(D) and the boundary regions BNB(D)
on the exemplary attribute subsets by using the inconsistent
neighborhoods shown in Table 3. Some results are listed in
Table 4.

The lower and upper approximations of the three object
subsets X1, X2, X3 can be computed by combining Table 3
with Proposition 3.5. Some results are given in Table 5.

Finally, we give some examples for Corollary 3.17. It
is known from Table 1 that, a1, a2 are numerical attributes
while a3 is a nominal attribute. And it can be found from
Table 3 that, ∀xi ∈ U, in{a1,a3}(xi) = in{a1}(xi) ∩ in{a3}(xi),
in{a2,a3}(xi) = in{a2}(xi) ∩ in{a3}(xi), while in{a1,a2}(x7) ⊂
in{a1}(x7) ∩ in{a2}(x7). Corollary 3.17 can be validated on
these examples.

The properties of inconsistent neighborhood can be
verified from the results of Example 3.19 (Except those
mentioned in Example 3.19, the verification of other proper-
ties is omitted to save the space). More importantly, through
comparing Table 3 with Table 2, it is found that the incon-
sistent neighborhoods are usually much narrower than the
corresponding neighborhoods, so the subsequent computa-
tions using inconsistent neighborhoods are often faster than
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Table 3 Inconsistent neighborhoods of objects on some attribute subsets with δ = 0.15.

x {a1} {a2} {a3} {a1, a2} {a1, a3} {a2, a3} {a1, a2, a3}
x1 {x4, x7, x9} ∅ {x4, x6} ∅ {x4} ∅ ∅
x2 {x6, x8} ∅ {x4, x6} ∅ {x6} ∅ ∅
x3 {x7, x9} {x5, x6} {x5} ∅ ∅ {x5} ∅
x4 {x1, x7} {x7, x8, x9} {x1, x2} {x7} {x1} ∅ ∅
x5 ∅ {x3} {x3} ∅ ∅ {x3} ∅
x6 {x2, x8} {x3} {x1, x2} ∅ {x2} ∅ ∅
x7 {x1, x3, x4} {x4} ∅ ∅ ∅ ∅ ∅
x8 {x2, x6} {x4} ∅ ∅ ∅ ∅ ∅
x9 {x1, x3} {x4} ∅ ∅ ∅ ∅ ∅

Table 4 Positive regions and boundary regions of decision D on some attribute subsets.

{a1} {a2} {a3} {a1, a2} {a1, a2, a3}
POS B(D) {x5} {x1, x2} {x7, x8, x9} {x1, x2, x3, x5, x6, x7, x8, x9} U
BNB(D) {x1, x2, x3, x4, x6, x7, x8, x9} {x3, x4, x5, x6, x7, x8, x9} {x1, x2, x3, x4, x5, x6} {x4} ∅

Table 5 Lower and upper approximations of three object subsets on some attribute subsets.

X {a1} {a2} {a3} {a1, a2} {a1, a2, a3}
X1 ∅ {x1, x2} ∅ {x1, x2, x3} {x1, x2, x3}

NB(X) X2 {x5} ∅ ∅ {x5, x6} {x4, x5, x6}
X3 ∅ ∅ {x7, x8, x9} {x7, x8, x9} {x7, x8, x9}
X1 {x1, x2, x3, x4, x6, x7, x8, x9} {x1, x2, x3, x5, x6} {x1, x2, x3, x4, x5, x6} {x1, x2, x3} {x1, x2, x3}

NB(X) X2 {x1, x2, x4, x5, x6, x7, x8} {x3, x4, x5, x6, x7, x8, x9} {x1, x2, x3, x4, x5, x6} {x4, x5, x6} {x4, x5, x6}
X3 {x1, x2, x3, x4, x6, x7, x8, x9} {x4, x7, x8, x9} {x7, x8, x9} {x4, x7, x8, x9} {x7, x8, x9}

those using neighborhoods. Combined the obtained proper-
ties with Example 3.19, it can be known that some new and
efficient solutions are provided for computing the quantities
(i.e., the reduct, positive region, boundary region, lower and
upper approximations) in neighborhood rough set models.
The new solutions are summarized as follows:
(1) In previous methods, reducts cannot be known until pos-
itive regions or related values such as dependency degrees
have been computed [17]. Now the reducts can be captured
according to the situation of inconsistent neighborhoods di-
rectly, which will accelerate the process of attribute reduc-
tion.
(2) In existing work, positive regions and boundary regions
cannot be obtained until the lower and upper approximations
of object subsets have been calculated [17]. Now they can
be gained immediately by using the inconsistent neighbor-
hoods.
(3) In previous methods, lower and upper approximations of
object subsets are computed by using traditional neighbor-
hoods according to Eq. (4). The new computation method,
which uses inconsistent neighborhoods according to Eq. (9),
is usually more efficient than before.

In summary, the introduction of inconsistent neighbor-
hood gives some new formulations and some efficient solu-
tions for the theory of neighborhood rough set.

4. Algorithm

To evaluate the effectiveness of using inconsistent neigh-
borhoods in neighborhood rough set domain, we design a
fast forward attribute reduction algorithm by employing the
properties of inconsistent neighborhood in this section. The
algorithm framework is shown in Algorithm 1.

Algorithm 1 A fast forward attribute reduction algorithm
Input: The neighborhood decision system S = (U,C,D,V, I) and the
neighborhood radius δ.
Output: A reduct R.

1: R = ∅; //R is the set of selected attributes
2: S = U; //S is the set of objects out of the positive region
3: Compute in∅(x) for any x ∈ U;
4: while (S � ∅) do
5: for (each ai ∈ C − R) do
6: IPRi = ∅; //IPRi is the increment of positive region induced by

ai

7: for (each x j ∈ S ) do
8: inR∪{ai}(x j) = ∅;
9: for (each xk ∈ inR(x j)) do

10: if (((ai is nominal)
∧

(v(xk , ai) == v(x j, ai)))
∨

((ai is nu-
merical)

∧
(ΔRu∪{ai}(xk, x j) ≤ δ))) then

11: inR∪{ai}(x j) = inR∪{ai}(x j)
⋃{xk}; //Ru is the subset of R

containing all numerical attributes of R
12: end if
13: end for
14: if (inR∪{ai}(x j) = ∅) then
15: IPRi = IPRi ∪ {x j};
16: end if
17: end for
18: end for
19: Find al such that |IPRl | = maxi |IPRi |; //|IPRi | is used as the signifi-

cance of attribute ai

20: if (|IPRl | > 0) then
21: R = R ∪ {al};
22: S = S − IPRl;
23: else
24: break;
25: end if
26: end while
27: return R;
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In the attribute reduction algorithm, we first compute
the initial inconsistent neighborhood in∅(x) for any object
x in the universe. Then, the attributes are added into the
reduct R one by one according to their significances until
none of the significances is more than zero or no object lies
outside the positive region. For each unselected attribute
ai ∈ C − R, its significance is measured with |IPRi|, namely
the size of the incremental positive region induced by ai, and
is computed through using the inconsistent neighborhoods.

We mainly use three techniques to accelerate the reduc-
tion process in Algorithm 1. The first two ones are shown
in lines 9–13. Firstly, since inR∪{ai}(x) ⊆ inR(x) according to
Proposition 3.13, we only need to judge whether the objects
in inR(x), instead of all objects in U, belong to inR∪{ai}(x).
Secondly, by using the obtained initial inconsistent neigh-
borhoods, in the while-loop the computation of inconsistent
neighborhoods needs not use the decision attributes. Finally,
by using S = S − IPRl in line 22, as the attribute reduction
goes on, the objects out of the positive region get fewer and
fewer, and at the same time their inconsistent neighborhoods
get smaller and smaller until be equal to ∅. In general, the
computation will be reduced significantly at the sequential
rounds of the while-loop, and the reduction procedure will
be sped up greatly.

Now the time complexity of the algorithm is analyzed,
in which the computation of inconsistent neighborhoods is
crucial. By using sorting technique, the time complexity is
O(n) for computing the initial inconsistent neighborhoods,
where n is the number of objects. As for the computation
of inconsistent neighborhoods at each round of the while-
loop, since it needs not use the decision attributes, its time
complexity is equal to that for computing traditional neigh-
borhoods, which is O(nlogn) [17]. Given a decision system
with N attributes, n objects and m classes, then the initial
inconsistent neighborhoods averagely contain n × m−1

m ob-
jects. Assuming that there are k attributes included in the
reduct, and selecting an attribute averagely leads to n/k ob-
jects added into the positive region, then the total computa-
tional time of the algorithm is
(N × nlogn+ (N − 1)× nlogn× k−1

k + · · ·+ (N − k)× nlogn×
1
k )× m−1

m < (m−1)Nnlogn
mk (k+k−1+ · · ·+1) = (m−1)(k+1)

2m Nnlogn.
In fact, by using the three accelerating techniques, the run-
time of the algorithm is often much less than that in the
above equation.

5. Experiments

In this section, we test the performance of the proposed fast
forward attribute reduction algorithm by comparing it with
the state-of-art attribute reduction algorithms in neighbor-
hood rough set domain. It is worth noticing that, Hu et al.
have proposed a naive forward attribute reduction algorithm
(Algorithm 1 in [17]) and a fast forward attribute reduction
algorithm (Algorithm 2 in [17]) on the basis of traditional
neighborhoods, and have verified that the two algorithms
can obtain the same reducts while the latter runs much
faster than the former. Therefore, we only need to com-

Table 6 Dataset information.

Name Domain Objects Nominal Numerical Classes
Credit finance 690 9 6 2

Cylinder physics 430 16 20 2
German finance 1000 13 7 2

Heart clinic 303 8 5 5
Hypothyroid clinic 3163 18 6 2

Diabetes clinic 768 0 8 2
Image graphics 210 0 19 7

Ionosphere physics 351 0 34 2
Sonar physics 208 0 60 2
Wdbc clinic 569 0 30 2
Wine agriculture 178 0 13 3
Wpbc clinic 198 0 33 2

pare our algorithm with the existing fast algorithm. Twelve
UCI datasets are used in the experiments, among which five
datasets are hybrid and other seven ones are numerical. The
basic information of these datasets is listed in Table 6. Be-
fore the experiments, the values of numerical attributes are
normalized into [0, 1], and those of nominal attributes re-
main unchanged.

For each dataset, we run the proposed reduction algo-
rithm and Hu’s fast reduction algorithm by taking values for
the neighborhood radius δ from 0.005 to 1 with step-size
0.005. As shown in Table 7, we list a group of exemplary
attribute reduction results for each dataset. Interestingly, we
find from the experiments that, for each dataset and each δ
value, the obtained reducts are identical to each other be-
tween the two algorithms. It is notable that, as pointed out
in [17], for CART and SVM classifiers, the classification
accuracies of the data reduced with Hu’s attribute reduction
algorithms are not less than or even more than those of the
raw data within a certian range of δ value. Hence, the two
classifiers can get the same good classification performance
on the data reduced by using our attribute reduction algo-
rithm.

Then, we compare the run-time between the pro-
posed reduction algorithm and Hu’s fast reduction algo-
rithm. Some representative results are shown in Figs. 1–4,
in which the unit of run-time is millisecond (ms). The rea-
son why the values of the neighborhood radius δ are not
the same for all datasets is that (the reason is found from
the experiments), for most numerical datasets [0.1, 0.3] is a
candidate interval for δ in terms of good classification per-
formance, while for hybrid datasets the candidate intervals
are often smaller. It is immediately known from the figures
that, the proposed algorithm runs much more quickly than
Hu’s fast algorithm on each dataset. Naturally, the algorithm
is also much more efficient than Hu’s naive reduction algo-
rithm.

In general, the proposed fast forward attribute reduc-
tion algorithm can obtain the same reducts as the existing
attribute reduction algorithms in neighborhood rough set
models, while it runs much faster than the existing algo-
rithms. This verifies that using inconsistent neighborhoods
is advantageous over using traditional neighborhoods in the
applications of neighborhood rough set theory.
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Table 7 Some exemplary reducts obtained by two attribute reduction algorithms.

Dataset δ Hu’s fast algorithm The proposed algorithm
Credit 0.015 2,3,8,11,14,15 2,3,8,11,14,15

Cylinder 0.2 3,20,21,22,24,25,26,27,28,31,33,36 3,20,21,22,24,25,26,27,28,31,33,36
German 0.09 2,5,8,11,13,16,18 2,5,8,11,13,16,18

Heart 0.03 1,4,5,8,10 1,4,5,8,10
Hypothyroid 0.03 1,15,17,19,21 1,15,17,19,21

Diabetes 0.06 1,2,3,4,5,6,8 1,2,3,4,5,6,8
Image 0.2 1,2,3,5,7,11,13,14,15,17,18 1,2,3,5,7,11,13,14,15,17,18

Ionosphere 0.2 1,3,4,5,7,8,12,14,19,25,30,34 1,3,4,5,7,8,12,14,19,25,30,34
Sonar 0.2 1,10,17,21,23,28,35,58 1,10,17,21,23,28,35,58
Wdbc 0.2 1,2,5,6,7,8,9,12,16,18,19,22,23,25,27,28,29,30 1,2,5,6,7,8,9,12,16,18,19,22,23,25,27,28,29,30
Wine 0.2 1,2,5,7,8,10,13 1,2,5,7,8,10,13
Wpbc 0.2 1,2,3,6,10,11,12,13,29,32,33 1,2,3,6,10,11,12,13,29,32,33

Fig. 1 Comparisons of run-time on datasets: (a) Credit, (b) Cylinder, (c) German.

Fig. 2 Comparisons of run-time on datasets: (a) Heart, (b) Hypothyroid, (c) Diabetes.

Fig. 3 Comparisons of run-time on datasets: (a) Image, (b) Ionosphere, (c) Sonar.

6. Conclusions

Traditional neighborhood rough set models employed
neighborhoods to construct the theoretical and algorithmic
framework. In this paper, we extracted inconsistent objects

from traditional neighborhoods to get a new concept called
inconsistent neighborhood. Firstly, a number of interesting
properties were obtained, which provide some new formu-
lations and some efficient solutions for the theory of neigh-
borhood rough set. Then, the obtained properties were used
to design a forward attribute reduction algorithm, which has
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Fig. 4 Comparisons of run-time on datasets: (a) Wdbc, (b) Wine, (c) Wpbc.

been validated to be much more efficient than the existing at-
tribute reduction algorithms in the domain of neighborhood
rough set. This demonstrates the advantage of using incon-
sistent neighborhoods in the applications. The introduction
of inconsistent neighborhood concept would provide a new
insight into the theory of neighborhood rough set.

To facilitate the comparison between inconsistent
neighborhood and traditional neighborhood, the framework
of the proposed attribute reduction algorithm is similar with
that of Hu’s fast reduction algorithm mentioned above.
However, if all objects in the universe are unclassifiable by
using a single conditional attribute, the reduct obtained by
this kind of algorithm will be an empty set. We will study
this problem in our future work.
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