
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018
2315

PAPER

Deep Reinforcement Learning with Sarsa and Q-Learning:
A Hybrid Approach

Zhi-xiong XU†a), Lei CAO†b), Xi-liang CHEN†c), Nonmembers, Chen-xi LI†d), Student Member,
Yong-liang ZHANG†e), and Jun LAI†f), Nonmembers

SUMMARY The commonly used Deep Q Networks is known to over-
estimate action values under certain conditions. It’s also proved that overes-
timations do harm to performance, which might cause instability and diver-
gence of learning. In this paper, we present the Deep Sarsa and Q Networks
(DSQN) algorithm, which can considered as an enhancement to the Deep Q
Networks algorithm. First, DSQN algorithm takes advantage of the experi-
ence replay and target network techniques in Deep Q Networks to improve
the stability of neural networks. Second, double estimator is utilized for Q-
learning to reduce overestimations. Especially, we introduce Sarsa learning
to Deep Q Networks for removing overestimations further. Finally, DSQN
algorithm is evaluated on cart-pole balancing, mountain car and lunarlan-
der control task from the OpenAI Gym. The empirical evaluation results
show that the proposed method leads to reduced overestimations, more sta-
ble learning process and improved performance.
key words: deep reinforcement learning, Deep Q Network, overestimation,
double estimator, Sarsa

1. Introduction

The reinforcement learning [1] mainly aims to learn a good
policy for Markov decision problem, by maximizing a cu-
mulative future reward. Q-learning [2] is one of the most
popular reinforcement learning algorithms, which is also
called off-policy TD learning. However, it sometimes over-
estimates the action values because Q-learning uses the
maximum action value as an approximation for the maxi-
mum expected action value, which might lead to the poor
performance.

Previously, it was proved by Thrun and Schwartz [3]
that in Q-learning if the action values contain random er-
rors uniformly distributed in an interval [−ε, ε], then each
target will be overestimated up to γ · ε · m−1

m+1 , where m rep-
resents the number of actions, γ represents discount factor
in reinforcement learning. Besides, they also noted that
the overestimation in Q-learning even lead to sub-optimal
policies when using function approximation. And Van
Hasselt [4] proposed Double Q-learning, which alternately

Manuscript received September 4, 2017.
Manuscript revised March 1, 2018.
Manuscript publicized May 22, 2018.
†The authors are with Institute of Command Information Sys-

tem, PLA University of Science and Technology, Nanjing, 100190
China.

a) E-mail: xu.nj@foxmail.com
b) E-mail: caolei.nj@foxmail.com
c) E-mail: 383618393@qq.com
d) E-mail: streamorning@qq.com
e) E-mail: zhangylnj@126.com
f) E-mail: 2568754202@qq.com

DOI: 10.1587/transinf.2017EDP7278

approximates the maximum action value by introducing a
double estimator approach to determine the value of the next
state, which was shown to have a better performance than
Q-learning in a roulette game and a maze problem. Re-
cently, Minh [5], [6] combined Q-learning algorithm with
a flexible deep neural network into deep Q-learning algo-
rithm, which we called DQN algorithm, it was tested on
many Atari games [7], and the experimental result showed
that DQN algorithm has reached human-level performance
on almost all games. However, van Hasselt [8] proved that
even in deterministic environment like Atari games, which
prevents the harmful effects of noise, DQN sometimes sub-
stantially overestimates the values of the actions, and pro-
posed a Double DQN algorithm (DDQN) to reduce over-
estimations of DQN, DDQN indeed obtains more accurate
value estimates and lead to higher scores on several Atari
games. Besides, Anschel [9] presented the AVERAGED
TARGET DQN (ADQN) algorithm, using a weighted av-
erage over past learned networks to reduce overestima-
tions, which leads to more stable learning process and im-
proved performance on a toy Gridworld problem, as well
as on several of the Atari games from the Arcade Learning
Environment.

The reasons why the overestimations is introduced
even in deterministic problem lie in that Q-learning is off-
policy algorithm, which uses the maximum action value as
an approximation for the maximum expected action value.
As a consequence, we introduce an on-policy reinforcement
learning—Sarsa learning, which successfully avoids overes-
timations problem. Rummery and Niranjan [10] proposed a
model-based algorithm called the improved Q-learning al-
gorithm, later called Sarsa learning algorithm. It is a kind
of online strategy Q-learning algorithm. Compared with Q-
learning, which uses the maximum action-state value for it-
eration, whereas Sarsa learning use the actual action-state
value for iteration, and strictly updates the value function
according to the experience gained by executing a strat-
egy [11], [12]. It is validated that Sarsa learning algorithm is
better than Q-learning algorithm in some of the applications
of learning control problem.

We use the architecture of double Q-learning to con-
struct a new algorithm call DSQN (Deep Sarsa and Q
Networks), which combines DQN and Sarsa learning as
a hybrid approach. First, the proposed DSQN algorithm
does not simply add DQN and Sarsa together, but rather a
mixture of probabilities. Second, the probability setting is

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

2316
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018

not simply set manually, but automatically set by utilizing
the characteristics of the convergence of two algorithms and
the actual number of training on different tasks. Finally, this
paper is a combination of two different method for approx-
imating Q values in DQN and Sarsa, but applies a common
deep neural network, and the error return to update the same
network, not two separate systems.

This algorithm not only yields more accurate value es-
timates, but also accelerate learning process, because in very
first episode the agents’ knowledge is little, Q-learning is
“looking into the future” during Q-value assignment and
searching the best possible path, whereas Sarsa learning is
assigning Q-values based on much more immediate infor-
mation, what is the reward from what agent just did. As a
consequence, Q-learning agent will find a sub-optimal pol-
icy faster, but will slowly changes when it towards the op-
timal policy, while Sarsa learning will find a better policy
after a few steps more, when agent has found a little knowl-
edge about environment.

Section 2 reviews existing deep reinforcement learn-
ing algorithms. Section 3 introduces a new algorithm called
DSQN to solve overestimations problem, meanwhile, accel-
erate learning process. Section 4 carries out experiments to
prove the correctness and rationality of DSQN algorithm.
Section 5 summaries the results and presents conclusions
and future directions.

2. Deep Reinforcement Learning

Assuming that the task is a Markov Decision Process speci-
fied by the tuple (S , A,T, γ,D,R). S and A are respectively
the sets of states and actions. is a transition function, which
returns the probability of state transition. γ, the discount
factor, exponentially decreases the value of a future reward.
D is the distribution of start states. R is a reward function,
which means the reward given by environment. As shown
in Fig. 1.

To solve Markov Decision Process (MDP) problem, re-
inforcement learning agent estimates for the optimal value
of each action in a state, which is defined as the expected
sum of future rewards when agent follows the optimal pol-
icy and takes a certain action. The policy π defined in rein-
forcement learning outputs a distribution over actions given
a state. Under a given policy π and time t, the Q-value of a
certain action at in a state st is

Fig. 1 The model of reinforcement learning

Qπ(st, at) ≡ E[R1+γR2+. . . |S 0= st, A0=at, π] (1)

where γ ∈ [0, 1] is a discount factor that weighs the impor-
tance of immediate and later rewards, Rt refers to the re-
ward given by the environment at the time t. We assume the
optimal value is Q∗(s, a) = maxπ Qπ(s, a), by selecting the
highest-valued action in every state, agent will easily obtain
an optimal policy.

2.1 Deep Q Networks

Estimates for the optimal action values can be learned using
Q-learning [2], a form of temporal difference learning [13].
In classical Q-learning [14], the update rule for Q-value is

Qt+1(s, a)

← Qt(s, a)+α(r(s, a)+γmax
a′

Qt(s′, a′)−Qt(s, a)) (2)

where state s′ is the resulting state after the agent applies
action a in the state s, the function r(s, a) means that the
reward given by the environment, γ is the discount factor
and α is a time varying learning rate.

The Q-learning update rule can be directly imple-
mented in a multi-layered neural network, the table of state
action pairs is replaced by parameterized neural networks,
as a result, the original TD error is modified as a new loss
function [15] (Eq. (3)), and the gradient descent takes the
form of Eq. (4):

L(θt) = E(s,a)∼D[(yQ
t − Q(s, a; θt))

2] (3)

θt+1 ← θt+ηE(s,a)∼D[(yQ
t −Q(s, a; θt))∇θQ(s, a; θt)] (4)

Where η is a scalar learning rate, yQ
t is the target value with

θ− = θt, and D is an experience buffer which contains one
tuple of experience D = {st, at}.

The DQN algorithm proposed by Mnih et al introduces
two important technologies to improve the learning perfor-
mance, the one is target network, and its parameters θ− will
be copied from online networks, θ−t = θt, only every τ steps.
Then

YDQN
t ≡ rt+1 + γmax

a
Q(st+1, a; θ−t) (5)

The other one is experience replay [16], agents’ ex-
perience are stored in the form of {st, at, st+1, rt} and sam-
pled uniformly to update the network. These two tech-
nologies dramatically improve the performance of the DQN
algorithm.

2.2 Double Q-Learning

In classical Q-learning and DQN, the algorithm itself always
uses the maximum values both to select and to evaluate an
action. This might result in overoptimistic value estimates.
To avoid overestimations, Hasselt et al decouple the selec-
tion from the evaluation, propose Double Q-learning [17].

In Double Q-learning, double estimator is applied to
Q-learning to approximate the maximum expected action

XU et al.: DEEP REINFORCEMENT LEARNING WITH SARSA AND Q-LEARNING: A HYBRID APPROACH
2317

value. By assigning experience randomly to train one of two
value functions, the algorithm trains two sets of weights, θ
and θ′. When updating value function, the one set of weights
is used to choose action, and the other one is used to evaluate
the action. The original target in Q-learning is

YQ
t = rt+1 + γQ(st+1, arg max

a
Q(st+1, a; θt); θt) (6)

The target in Double Q-learning can be rewritten as:

YDoubleQ
t = rt+1+γQ(st+1, arg max

a
Q(st+1, a; θt); θ

′
t) (7)

Double Q-learning stores two value functions: QA and
QB, each value function is updated with a value form the
other value function for the next state.

2.3 Double Deep Q Networks

By combining Double Q-learning and DQN, Hasselt et al
proposed a new algorithm called Double DQN, and use on-
line network to evaluate the greedy policy, while using tar-
get network to estimate its value, since the target network
in the DQN architecture provides a natural candidate for the
second value function, without introducing additional net-
works. With the idea of Double Q-learning, the resulting
algorithm’s target is replaced by

YDoubleDQN
t ≡ rt+1 + γQ(st+1, arg max

a
Q(st+1, a; θt), θ

−
t)

(8)

While its update is same as for DQN.
Compare to Double DQN, one of the weights of two

network θt′ are replaced with the weights of the target net-
work θ−t , whose update stays unchanged from DQN, and re-
mains a periodic copy of the online network.

The goal of the structure of Double DQN is to make
full use of the benefit of the Double Q-learning, while taking
perfectly advantage of the feature of the DQN.

3. Deep Sarsa and Q Networks

The idea of Deep Sarsa and Q Network (DSQN) algorithm
is to reduce overestimations by combining Q-learning with
Sarsa algorithm on the basis of the structure of Double
DQN, which helps minimize the impact of overestimations,
the reasons why we keep Q-learning lies in that in the initial
learning stage, agents know little about environment, and
the max operator in Q-learning helps agent to learn a sub-
optimal policy quickly. With the progress of the learning
process, we use Sarsa algorithm with greater probability, it’s
advantageous for agent to change the sub-optimal policy to-
wards optimal policy and break the local optimum, which
we called it “the plight of learning”.

3.1 Sarsa Learning

In Sarsa learning, agent starts in state st, execute action at,

Table 1 Sarsa algorithm

then get reward rt, so agent transfers to the state st+1, before
updating Q(st, at), agent have carried out another action at+1

and got reward rt+1. In contrast, in Q-learning, agent starts
in state st, execute action at, then get reward rt, then check
in state st+1 and take action a, which a = arg max

a
Q(st+1, a),

then update Q(st, at). So the difference between this two
algorithm is the way the future rewards are found. In the Q-
learning, the future rewards is the maximum expected value
of which agent is most likely to take the most advantageous
action, whereas in SARSA, it is the actual reward for exe-
cuting real action.

As in all on-policy methods, Sarsa continually esti-
mate Q(s, a) for the behavior policy π, and at the same time
change π toward greediness with respect to Q(s, a) [18]. The
general form of the Sarsa algorithm is given in Table 1.

Besides, The DSN (Deep Sarsa Networks) algo-
rithm [19], [20], which combines on-policy Sarsa and deep
neural network, is also proved have better performance in
some aspects than DQN.

3.2 Deep Sarsa and Q Networks Algorithm

The full algorithm for training DSQN is presented in Ta-
ble 2. The agent selects and executes actions according to
the ε-greedy policy based on Q value. The DSQN algorithm
modifies standard Q-learning in three ways to improve the
stability of our algorithm and reduce overestimations as far
as possible.

First, DSQN uses two technologies known as experi-
ence replay [21] and target network [22], [23]. Experience
replay technique store the tuples of experience at each time-
step, in the form of {st, at, st+1, rt}, in a data set Ω, pooled
over many episodes into a replay memory.

By utilizing experience replay the behavior distribu-
tion is averaged over many of its previous states, smoothing
out learning and avoiding oscillations or divergence in the
parameters. Besides, we use a separate network as target
network for generating the target in the Q-learning update.

2318
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018

Table 2 DSQN algorithm

Every C steps, we copy the weights of online network to ob-
tain the weights of target network. This modification helps
make the neural network more stable compared to standard
online Q-learning.

Second, DSQN utilizes the double estimator approach
in Double Q-learning, which determines the value of the
next state, to reduce overestimations. Although not fully de-
coupled, the target network architecture provides a natural
candidate for the second value function, without having to
introduce additional networks. DSQN evaluate the greedy
policy according to the online network, but using the target
network to estimate its value.

Finally, DSQN algorithm introduces a novel reinforce-
ment learning, Sarsa learning, to reduce overestimations fur-
ther, since Sarsa learning finds the future rewards by follow-
ing certain strategies rather than taking the most advanta-
geous action at that time. Not considering the so-called op-
timal and follow certain strategy sometimes is a good thing.
Besides, we still adopt the Q-learning, because while meet-
ing high-dimensional state input, we need to use Q-learning
to help to obtain a sub-optimal policy.

As a consequence, The DSQN algorithm utilizes the
probability δ to mix Q-learning and Sarsa learning together.
More precisely, the DSQN algorithm uses Q-learning with
greater probability in the initial stage and utilizes Sarsa
learning more likely in the late stage.

4. Experiments

We choose several classic control task in OpenAI Gym [24]
to evaluate the performance of the DSQN algorithm and
some assumptions made in previous section. First, we will
compare DSQN algorithm with DQN, DSN and DDQN on
cart-pole balancing problem, which is the most commonly
used control problem for RL algorithms. Next, we will show
experiments on a mountain car problem where exists a lo-
cally optimal solution. Finally, we also test our algorithm
on a Box2D game—LunarLander, which is a more complex
task than the above classic control problems.

As to the experimental setup, four algorithms all em-
ployed 4-layer networks with 100, 100 nodes in hidden
layer, the number of input neurons is the state dimension
of task, the number of output neurons is the action dimen-
sion. Networks were trained using the Adaptive Moment
Estimation (ADAM) optimizer [25] with momentum 0.95
and a network learning rate of 10−5. Gradients were clipped
at 10 scaled as they approached parameter bounds. We set
the discount factor γ = 0.99, the batch size to 32, updated
the target network parameters each C = 300, used a replay
memory of ten thousands most recent transitions, and in the
ε-greedy method, we set ε = 0.1.

For DSQN algorithm, the probability δ in Table 2 de-
cides whether to use Q-learning or Sarsa during learning
process. The initial value of probability δ is δini. We set
δini = 0.99, so the DSQN algorithm would use Q-learning
with greater probability in the initial stage. For probability
δ, each step is decremented by Δδ until it is equal to δ f in,

where Δδ = δini − δini − δ f in

N
, N refers to the total training

steps. We set δ f in = 0.01, so the DSQN algorithm would
utilize Sarsa learning more likely in the late stage.

4.1 Cart-Pole Balancing

The cart-pole balancing task in dynamic and control theory
has been originally described by Stephenson [26]. The ob-
servation of the cart-pole balancing consists the cart position
x, pole angle θ, the cart velocity, and the pole velocity. Be-
sides, the action consists the horizontal force applied to the
cart body. The system is controlled by applying a force of
+1 or −1 to the cart. The pendulum starts upright, and the
goal is to prevent it from falling over. A reward of +1 is pro-
vided for every timestep when the pole remains upright. The
episode ends when |x| > 2.4 or |θ| > 0.2. We set a threshold
Δ = 300 for cart-pole balancing, which means if the pendu-
lum keeps not falling over for 300 continuous timesteps, the
task will be terminated automatically.

We independently executed each method 10 times

XU et al.: DEEP REINFORCEMENT LEARNING WITH SARSA AND Q-LEARNING: A HYBRID APPROACH
2319

Fig. 2 The average score of cart-pole balancing task

Fig. 3 The comparison of mean Q value estimation

respectively. The learned policy will be tested 30 episodes
respectively without exploration by every 10 training
episodes to calculate average score and Q value of multiple
runs.

Figure 2 shows that average scores of four algorithms
on the cart-pole balancing task.

Figure 3 shows that mean Q value estimation over all
state for four algorithms on the cart-pole balancing task, the
average Q value of the four algorithm after converged are
10.41, 9.11, 10.0, 9.04 respectively. The standard deviation
of Q value are 0.30, 0.21, 0.22, 0.05 respectively. From
the standard deviation, we can see that DSQN has the most
stable value estimate, and according to the average value,
the Q value of DSQN is also the most conservative in four
algorithms.

4.2 Mountain Car

The well-known classic mountain car control task is de-
scribed by Moore [27]. A car is on a one-dimensional track,
positioned between two “mountains”. Our final goal is to
drive up the mountain on the right; of course, the car’s en-
gine is not strong enough to scale the mountain in a single
pass. Therefore, the only way to succeed is to drive back and
forth to build up momentum. The observation of mountain
car is given by the horizontal position x and the horizontal
velocity v of the car. In this experiment, the reward is given
by r(s, a) := −1 for every timestep when the car remains
between two “mountains”, the episode ends when the car
reaches a target height of 0.6.

We independently executed each method 10 times re-
spectively. The learned policy will be tested 30 episodes

Fig. 4 The average score of mountain car task

Fig. 5 The mean Q value estimation of four algorithms

respectively without exploration by every 100 training
episodes to calculate average score and Q value of multiple
runs.

Figure 4 presents a visual comparison on the mountain
car task.

Figure 5 shows the mean Q value estimation of four
algorithm respectively. The average Q value of the four al-
gorithm after converged are −41.9, −51.2, −46.3, −55.8 re-
spectively. The standard deviation of Q value are 7.2, 6.6,
4.7, 2.6 respectively. The standard deviation means that
DSQN has the most stable value estimate, and the Q value
is also the most conservative in four algorithms.

4.3 LunarLander

Lunar Lander is an arcade game released by Atari, which
uses a vector monitor to display vector graphics. The game
is a variant on the Lunar Lander concept, which dates back
to 1969. In Box2D games, Landing pad is always at coor-
dinates (0, 0). Coordinates are the first two numbers in state
vector. Reward for moving from the top of the screen to
landing pad and zero speed is about 100 to 140 points. If
lander moves away from landing pad, it loses reward back.
Episode finishes if the lander crashes or comes to rest, re-
ceiving additional −100 or +100 points. Each leg ground
contact is +10. Firing main engine is −0.3 points each
frame. Solved is 200 points. Landing outside landing pad
is possible. Fuel is infinite, so an agent can learn to fly and

2320
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018

Fig. 6 The average score of LunarLander task

Fig. 7 The mean Q value estimation of four algorithms

then land on its first attempt. Four discrete actions available:
do nothing, fire left orientation engine, fire main engine, fire
right orientation engine.

We independently executed each method 10 times re-
spectively. The learned policy will be tested 30 episodes
respectively without exploration by every 100 training
episodes to calculate average score and Q value of multiple
runs.

Figure 6 presents the average score of four algorithms
on LunarLander task,

Figure 7 shows the mean value estimates of different
algorithms on LunarLander task respectively. The stan-
dard deviation of Q value are 8.0, 6.6, 6.5, 6.2 respectively,
DSQN has the most stable value estimate. The average Q
value of the four algorithm after converged are 63.8, 54.7,
54.2, 47.5 respectively, we can see that the Q value from
DSQN is also the most conservative in four algorithms.

4.4 Comparison and Discussion

Table 3 presents the average score and standard deviation
of four algorithms after converged. A detailed compari-
son shows that there are several games in which DSQN
greatly improves upon DQN, DSN and DDQN. Notewor-
thy examples include CartPole-v0 (Performance has been
improved by 31.6%, 6.5%, 9.2% and standard deviation has
been reduced by 75.9%, 45.6%, 51.9%), MountainCar-v0
(Performance has been improved by 30.2%, 22.4%, 11.0%

Table 3 The average score and standard deviation of DQN, DSN,
DDQN and DSQN

and standard deviation has been reduced by 25.7%, 20.0%,
17.3%), and LunarLander-v2 (Performance has been im-
proved by 30.1%, 19.3%, 20% and standard deviation has
been reduced by 35.3%, 16.9%, 4.8%).

5. Conclusions and Future Directions

In this work, we propose the DSQN algorithm, an effi-
cient overestimation avoidance and performance improve-
ment technique for deep reinforcement learning. We uti-
lize the experience replay and target network to reinforce
the stability of network, besides, double estimator in double
Q-learning is used to reduce overestimations, more impor-
tantly, we introduce a new reinforcement learning algorithm,
Sarsa learning, not just to help DQN to solve overestima-
tions, but also to jump out of local optimum towards global
optimum. Using the classic control task in OpenAI Gym,
we have shown that DSQN indeed has improvements in the
learned policies over DQN, DSN and DDQN, the learning
process is also more stable.

About future work, on the one hand, we will study
the parameter probability δ further to see whether it can be
learned as a function of the reward, or the function of the
rate of change in reward. On the other hand, how to spread
DSQN algorithm to continuous action space task is a critical
work, which should be explored as soon as possible.

Acknowledgments

This work was supported by the National Natural Sci-
ence Fund Projects (61203192), and was also supported
by the Natural Science Fund Project in Jiangsu province
(BK2011124).

References

[1] R.S. Sutton and A.G. Barto, Introduction to Reinforcement Learn-
ing, Decision Theory Models for Applications in Artificial Intelli-
gence: Concepts and Solutions, pp.90–127, 2011.

[2] C.H.C.J. Watkins, “Learning from delayed rewards,” Robotics &
Autonomous Systems, vol.15, no.4, pp.233–235, 1989.

[3] S. Thrun and A. Schwartz, “Issues in using function approxima-
tion for reinforcement learning,” Proc. Fourth Connectionist Models
Summer School, vol.14, no.3, pp.65–90, 1993.

[4] H.V. Hasselt, “Double Q-learning,” Advances in Neural Information

XU et al.: DEEP REINFORCEMENT LEARNING WITH SARSA AND Q-LEARNING: A HYBRID APPROACH
2321

Processing Systems 23, Proceedings of A Meeting Held 6-9 Dec.
2010, Conference on Neural Information Processing Systems 2010,
Vancouver, British Columbia, Canada, OAI, pp.2613–2621, 2010.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing Atari with deep
reinforcement learning,” arXiv preprint arXiv:1312.5602v1 [cs.LG],
2013.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G.
Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D.
Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” vol.518, no.7540,
pp.529–533, 2015.

[7] M.G. Bellemare, Y. Naddaf, J. Veness, et al., “The arcade learning
environment: an evaluation platform for general agents,” Journal of
Artificial Intelligence Research, vol.47, no.1, pp.253–279, 2013.

[8] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement learn-
ing with double Q-learning,” arXiv preprint arXiv:1509.06461v1
[cs.LG], 2015.

[9] O. Anschel, N. Baram, and N. Shimkin, “Deep reinforcement learn-
ing with averaged target DQN,” 30th Conference on Neural Infor-
mation Processing Systems, pp.78–99, 2016.

[10] G.A. Rummery and M. Niranjan, Online Q-learning using connec-
tionist systems, Cambridge University, pp.23–86, 1994.

[11] R.S. Sutton, “Dyna, an integrated architecture for learning, planning,
and reacting,” AAAI Spring Symposium, pp.151–155, 1991.

[12] J. Peng and R.J. Williams, “Efficient learning and planning within
the Dyna framework,” Adaptive Behaviore, vol.78, no.4, pp.437–
549, 1993.

[13] R.S. Sutton, “Learning to predict by the methods of temporal differ-
ences[J],” Machine learning, vol.3, no.1, pp.9–44, 1988.

[14] C.J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol.8,
no.3-4, pp.279–292, 1992.

[15] M. Riedmiller, “Neural fitted q iteration – first experiences with
a data efficient neural reinforcement learning method,” Machine
Learning: Ecml 2005, European Conference on Machine Learning,
Porto, Portugal, pp.317–328, 2005.

[16] L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Machine Learning, vol.8, no.3,
pp.293–321, 1992.

[17] H. van Hasselt, “Double Q-learning,” Advances in Neural Informa-
tion Processing Systems, vol.23, no.7, pp.2613–2621, 2010.

[18] R.S. Sutton and A.G. Barto, “Reinforcement learning: an introduc-
tion[J],” IEEE Trans. Neural Netw., vol.9, no.5, p.1054, 1998.

[19] D. Zhao, H. Wang, K. Shao, et al., “Deep reinforcement learning
with experience replay based on SARSA,” IEEE Computational In-
telligence, 2017.

[20] W. Hu, “Double Sarsa and double expected Sarsa with shallow and
deep learning,” vol.04, no.4, pp.159–176, 2016.

[21] L.-J. Lin, “Reinforcement learning for robots using neural net-
works,” Technical report, DTIC Document, vol.8, no.4, pp.12–45,
1993.

[22] J.L. McClelland, B.L. Mcnaughton, and R.C. O’Reilly, “Why there
are complementary learning systems in the hippocampus and neo-
cortex: insights from the successes and failures of connectionist
models of learning and memory,” Psychological Review, vol.102,
no.3, p.419, 1995.

[23] J. O’Neill, B. Pleydell-Bouverie, D. Dupret, and J. Csicsvari, “Play
it again: reactivation of waking experience and memory,” Trends in
Neurosciences, vol.33, no.5, pp.220–229, 2010.

[24] I. Zamora, N.G. Lopez, V.M. Vilches, et al., “Extending the OpenAI
Gym for robotics: a toolkit for reinforcement learning using ROS
and Gazebo,” vol.9, no.11, pp.89–115, 2016.

[25] D.P. Kingma and J. Ba, “Adam: A Method for StochasticOptimiza-
tion,” Computer Science, vol.89, no.5, pp.45–145, 2014.

[26] A. Stephenson, “LXXI. On induced stability,” Philosophical Maga-
zine, vol.17, no.101, pp.765–766, 1968.

[27] A. Moore, “Efficient memory-based learning for robot control,”

Technical report, University of Cambridge, Computer Laboratory,
vol.63, no.9, pp.62–167, 1990.

[28] G. Dejong and M.W. Spong, “Swinging up the Acrobot: an ex-
ample of intelligent control,” IEEE American Control Conference,
pp.2158–2162, 1994.

Zhixiong Xu received the B.E. from PLA
University of Science and Technology in 2015.
He is currently studying in PLA University of
Science and Technology for M.S. degree. His
research interests include machine learning and
intelligent decision making.

Lei Cao received the B.S. and M.S. degrees
in China University of Science and Technology
and PLA University of Science and Technology
in 1987 and 1990, respectively. He is currently a
professor at the PLA University of Science and
Technology. His research interests include ma-
chine learning, command information system,
and intelligent decision making.

Xiliang Chen received the B.S. and M.S.
degrees in PLA University of Science and Tech-
nology in 2007 and 2009, respectively. He is
currently teaching in PLA University of Science
and Technology and also studying for Ph.D. de-
gree. His research interests include reinforce-
ment learning and intelligent decision making.

Chenxi Li received the B.S. and M.S. de-
grees in Northwestern Polytechnical University
and PLA University of Science and Technol-
ogy in 2011 and 2014, respectively. He is cur-
rently studying in PLA University of Science
and Technology for Ph.D. degree. His research
interests include reinforcement learning and in-
telligent decision making.

http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1007/bf00115009
http://dx.doi.org/10.1023/a:1022676722315
http://dx.doi.org/10.1007/11564096_32
http://dx.doi.org/10.1007/bf00992699
http://dx.doi.org/10.1109/tnn.1998.712192
http://dx.doi.org/10.1037//0033-295x.102.3.419
http://dx.doi.org/10.1016/j.tins.2010.01.006
http://dx.doi.org/10.1080/14786440508636652
http://dx.doi.org/10.1109/acc.1994.752458

2322
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018

Yongliang Zhang received the B.S. and
M.S. degrees in Nanjing artillery in 2003 and
2006, respectively. Besides, he received Ph.D.
degree from Nanjing Army Command College
in 2011. He is currently teaching at the PLA
University of Science and Technology. His
research interests include intelligent decision
making, command and control.

Jun Lai received the B.S. and M.S. degrees
in PLA University of Science and Technology in
2001 and 2005, respectively. He is currently an
associate professor the PLA University of Sci-
ence and Technology. His research interests in-
clude deep learning, command and control.

