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SUMMARY The power consumption of server platforms has been in-
creasing as the amount of hardware resources equipped on them is in-
creased. Especially, the capacity of DRAM continues to grow, and it is
not rare that DRAM consumes higher power than processors on modern
servers. Therefore, a reduction in the DRAM energy consumption is a crit-
ical challenge to reduce the system-level energy consumption. Although it
is well known that improving row buffer locality (RBL) and bank-level par-
allelism (BLP) is effective to reduce the DRAM energy consumption, our
preliminary evaluation on a real server demonstrates that RBL is generally
low across 15 multithreaded benchmarks. In this paper, we investigate the
memory access patterns of these benchmarks using a simulator and observe
that cache line-grained channel interleaving schemes, which are widely ap-
plied to modern servers including multiple memory channels, hurt the RBL
each of the benchmarks potentially possesses. In order to address this prob-
lem, we focus on a row-grained channel interleaving scheme and compare
it with three cache line-grained schemes. Our evaluation shows that it re-
duces the DRAM energy consumption by 16.7%, 12.3%, and 5.5% on av-
erage (up to 34.7%, 28.2%, and 12.0%) compared to the other schemes,
respectively.
key words: DRAM, address mapping schemes, energy efficiency

1. Introduction

As the size of transistors shrinks, the amount of hardware
resources equipped on server platforms has been increasing.
As a result, state-of-the-art servers can contain hundreds of
cores and a few terabytes of DRAM [1]. A larger amount
of resources can yield higher performance but also cause
higher power consumption. In particular, processors and
DRAM typically consume a large fraction of the system-
level power. While the power consumption of processors
has not been largely increased with decreasing CPU fre-
quency, that of DRAM continues to grow. Since it is not
rare that DRAM consumes higher power than processors on
modern servers [2], a reduction in the energy consumption
of DRAM is a critical challenge to reduce that of an entire
system.
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In terms of the DRAM energy consumption, there are
two important parameters: row buffer locality (RBL) [3]–
[7] and bank-level parallelism (BLP) [8]–[14]. DRAM con-
tains a row buffer, which acts as a cache for the most re-
cently accessed DRAM row, per bank, and memory accesses
become faster and more energy-efficient if required data is
stored in a row buffer. RBL is generally defined as the spa-
tial data locality in row buffers. On the other hand, current
memory systems commonly apply multi-bank architectures,
which can achieve a high memory bandwidth because mul-
tiple banks can be accessed in parallel. This parallelism is
called BLP. Although improving these two parameters is ef-
fective to reduce the DRAM energy consumption, our pre-
liminary evaluation on a real server demonstrates that RBL
is generally low across 15 multithreaded benchmarks.

In this paper, we first investigate the memory access
patterns of these benchmarks using a simulator in order to
analyze the reason for low RBL. We use a cache line-grained
channel interleaving scheme for this investigation, because
it is typically applied on modern servers to fully exploit
the bandwidth of multiple memory channels [4], [9], [10].
Our analysis reveals that the 15 benchmarks are classified
into two groups. The five of them originally expose low
RBL due to their irregular memory access patterns. On the
other hand, the remaining ten benchmarks potentially pos-
sess high RBL, but we obtain the following observations for
them. (1) The cache line-grained scheme hurts the RBL of
each thread. (2) It efficiently exploits BLP across multiple
threads, but not within each thread.

On the basis of these observations, we focus on a row-
grained channel interleaving scheme that interleaves con-
tiguous row-sized blocks across memory channels [8], [15].
It can improve RBL of each thread with sustaining high BLP
across multiple threads, leading to a performance improve-
ment. Moreover, it can reduce the DRAM power consump-
tion by reducing the number of banks used in parallel. In
order to show its effect on the DRAM energy consumption,
we quantitatively compare it with three types of cache line-
grained schemes.

The contributions of this work are as follows∗.

∗This paper is an extended version of our previous paper [16]
that evaluated a row-grained channel interleaving scheme for a
graph analysis benchmark on a simulator. In this paper, we evalu-
ate it with various types of multithreaded benchmarks and investi-
gate its impact on a real server.
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• Our evaluation on the simulator with the 15 mul-
tithreaded benchmarks shows that the row-grained
scheme reduces the DRAM energy consumption by
16.7%, 12.3%, and 5.5% on average (up to 34.7%,
28.2%, and 12.0%) compared to three cache line-
grained schemes, respectively.

• The sensitivity analysis on the simulator in terms of the
numbers of cores and memory channels reveals that the
row-grained scheme is effective for various configura-
tions of memory controllers.

• We emulate the row-grained scheme on a real server us-
ing a micro-benchmark and demonstrate that its impact
depends on the RBL and memory access frequency of
a program, but it is effective in various situations.

This paper is organized as follows. Section 2 describes
the mechanisms of DRAM and shows the results of our
preliminary evaluation. Section 3 introduces related work.
Section 4 then analyzes the memory access patterns of the
benchmarks and demonstrates the effect of the row-grained
scheme. Section 5 and Sect. 6 show evaluation results on
the simulator and on the real server, respectively. Finally,
we conclude this work in Sect. 7.

2. Preliminary

In this section, we first explain the DRAM mechanisms of
modern memory systems and then evaluate the RBL of mul-
tithreaded benchmarks on a real server.

2.1 DRAM Mechanisms

Current memory systems typically apply multi-bank archi-
tectures, which have conceptual hierarchical structures in-
cluding channels, ranks, and banks, as illustrated in Fig. 1.
A memory controller on a processor manages multiple chan-
nels, each of which contains multiple ranks. A rank is a
set of multiple banks. Moreover, a bank consists of multi-
ple rows, each of which contains multiple columns corre-
sponding to 64-bit data. The number of banks accessed in
parallel (i.e., BLP) is an important parameter for memory
bandwidth.

A row buffer is a cache included per bank to store a
most recently accessed row in a corresponding bank. There
are three types of row buffer accesses, as illustrated in Fig. 2.
If a row buffer stores a row containing required data (e.g.,
row 2 in Fig. 2), it can be accessed immediately. This situa-
tion is called a row buffer hit. If a row buffer does not store
a row, a memory controller must issue an activate command
to fetch the required row into a row buffer; then, required
data can be accessed. This is called a row buffer miss. Fur-
thermore, if a row buffer contains a different row from the
required one (e.g., row 1 in Fig. 2), the row must be written
back to the original row by a precharge command; then, the
required row is fetched into a row buffer by an activate com-
mand. After that, the required data is finally accessed. This
situation is called a row buffer conflict. In general, RBL is

Fig. 1 Conceptual structure of multi-bank architectures.

Fig. 2 Three types of row buffer accesses. A row buffer hit can skip
precharge and activate commands, and a row buffer miss can skip a
precharge command.

defined as the ratio of row buffer hits to all memory accesses.
Since the latency of a memory access becomes longer in the
order of a row buffer hit, miss, and conflict, improving RBL
leads to a performance improvement.

There are two well-known policies to manage row
buffers: open-page and closed-page. The former keeps a
row in a row buffer after it is accessed. While subsequent
accesses to the same row become row buffer hits, accesses
to different rows become row buffer conflicts. On the other
hand, the latter writes back a row in a row buffer to the orig-
inal row immediately after it is accessed. Thus, all memory
accesses become row buffer misses. In order to leverage
the advantages of both policies, modern memory controllers
apply adaptive open-page policies. For example, the mem-
ory controllers of AMD Bulldozer processors keep a row
buffer open during 128 memory clocks after it is accessed
and close it if there is no access during this period [17].

Address mapping schemes of memory controllers de-
termine the location of data in DRAM using a physical ad-
dress and significantly affect the DRAM energy consump-
tion. Park et al. developed a tool to analyze address map-
ping schemes on real platforms and revealed that contiguous
cache line-sized (64 B) blocks are interleaved across multi-
ple channels on an Intel Nehalem platform [12]. We call
this the per-cache-line channel interleaving (PCL) scheme.
This scheme has been commonly used as a baseline in prior
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Fig. 3 Physical addresses of four address mapping schemes. Gray por-
tions represent the channel ID bits.

Table 1 Simulation parameters

Parameters

Processor 16 out-of-order cores, 3.0 GHz
4 issue width, 5 commit width

L1 I cache Private, 32 KB, 4-way, 2-cycle latency
L1 D cache Private, 32 KB, 8-way, 4-cycle latency
L2 cache Private, 256 KB, 8-way, 6-cycle latency
L3 cache Shared, 16 MB, 16-way, 30-cycle latency

Memory Adaptive open-page policy [17]
controller FR-FCFS scheduling policy [5]
DRAM 32 GB, DDR3-1333, 1 KB row

4 channels, 4 ranks/channel, 8 banks/rank
Timing tCL=10, tRCD=10, tRP=10, tRAS=24
Current (mA) IDD0=130, IDD1=155, IDD2P=10, IDD2N=70,

IDD3P=60, IDD3N=90, IDD4W=300,
IDD4R=255, IDD5=305, IDD6=9

Voltage (V) VDD=1.5

work [4], [9], [10]. Figure 3 (a) illustrates a physical address
for the PCL scheme with DRAM parameters summarized
in Table 1. In this case, the 2-bit channel ID is located
at the 6th bit. We also investigate schemes used on Intel
SandyBridge and Haswell platforms with the analysis tool
and observe that contiguous two cache line-sized (128 B)
blocks are interleaved across channels. We call this the
per-2-cache-line channel interleaving (P2CL) scheme. As
shown in Fig. 3 (b), the channel ID is located at the 7th bit
by inserting one bit of the column ID at the right side of the
channel ID. Moreover, Kaseridis et al. proposed a scheme
that interleaves contiguous four cache line-sized (256 B)
blocks across channels, banks, and ranks [4]. Figure 3 (c)
shows that the channel ID is located at the 8th bit. This
scheme aims to achieve high BLP while retaining RBL
within each 256 B block. Finally, some literature mentions a
scheme that interleaves contiguous row-sized blocks across
channels [8], [15]. We call this the per-row channel inter-
leaving (PR) scheme, which locates the channel ID at the
13th bit as shown in Fig. 3 (d).

Fig. 4 Row buffer hit ratio of 15 multithreaded benchmarks on a real
sever that applies the P2CL scheme.

2.2 Evaluation of Row Buffer Locality on a Real Server

We evaluate the row buffer hit ratio (i.e., RBL) of 15 multi-
threaded benchmarks on a real server that applies the P2CL
scheme. The details of the experimental setup are explained
in Sect. 4.2 and Sect. 6.1. Figure 4 demonstrates that RBL is
relatively high for only a few benchmarks such as G500BU2
and Hull, but is generally low across the other benchmarks.
It is an effective approach for reducing the DRAM energy
consumption to improve low RBL.

3. Related Work

In this section, we introduce prior work that aims to effi-
ciently leverage row buffers and/or BLP.

Improving the efficiency of row buffers: Zhang et al.
proposed an address mapping scheme to reduce row buffer
conflicts with retaining the RBL of single-threaded pro-
grams [3]. Their scheme arranges data causing frequent row
buffer conflicts onto different banks by xor-ing two different
parts of a physical address. As they assume single-channel
memory systems, it does not apply channel interleaving.
Memory access scheduling of memory controllers has also
been thoroughly studied. The FR-FCFS policy, which
is widely used in modern memory controllers, improves
RBL by providing memory accesses to opened row buffers
with high priorities [5]. Since this policy may cause unfair
scheduling when multiple processes are executed simulta-
neously, Mutlu et al. [6] and Kim et al. [7] devised fairness-
aware scheduling polices for multi-programmed workloads.
Sudan et al. proposed techniques that co-locate heavily ref-
erenced cache blocks from different OS pages in a single
row buffer to improve RBL [18]. Muralidhara et al. pro-
posed a channel partitioning scheme that partitions data with
different characteristics onto separate channels in order to
avoid row buffer conflicts [8]. Park et al. observed that the
similar memory access patterns of multiple threads cause
frequent row buffer conflicts and introduced randomness in
an OS page allocator to scatter memory accesses of multi-
ple threads over different banks [12], [19]. Liu et al. imple-
mented an OS-based bank partitioning technique that allo-
cates distinct banks to each thread in order to eliminate row
buffer conflicts among multiple threads [9].

Improving BLP: As the above bank partitioning
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technique limits BLP for each thread, Jeong et al. [10] and
Xie et al. [11] proposed new bank partition techniques that
balance RBL and BLP. In order to improve BLP for each
thread, Jeong’s technique divides a rank into multiple sub-
ranks, and Xie’s technique allocates the appropriate number
of banks to each thread in response to its BLP requirement.
Tang et al. showed that multithreaded programs with irreg-
ular memory access patterns exhibit very low BLP and pre-
sented a compiler/runtime-based loop iteration scheduling
strategy to maximize BLP [13]. Kaseridis et al. proposed the
address mapping scheme described in Sect. 2.1 to improve
RBL with sustaining high BLP [4]. They also devised a
mechanism that combines open-page and closed-page poli-
cies using prefetch engines to improve RBL.

In this paper, we focus on address mapping schemes
applying channel interleaving, because they significantly
affect both RBL and BLP. We compare the four schemes
shown in Fig. 3 and show that the PR scheme achieves the
lowest DRAM energy consumption for multithreaded pro-
grams. Although various state-of-the-art schemes were in-
troduced [20], [21], we focus on evaluating how the granu-
larity of channel interleaving affects the DRAM energy con-
sumption.

4. Memory Access Analysis

In this section, we analyze the memory access patterns of
representative benchmarks with the PCL scheme on a simu-
lator and show how the PR scheme can improve the DRAM
energy consumption.

4.1 Simulator Setup

We use a cycle-accurate multicore simulator
MARSSx86 [22] combined with a DRAM simulator
DRAMSim2 [23]. As summarized in Table 1, a 3.0 GHz
16-core processor with 32 GB of DRAM is configured. The
cache-line size of each cache memory is 64 B. The row
buffer management policy is the adaptive open-page policy
of AMD Bulldozer processors [17] explained in Sect. 2.1.
Row buffers are also closed after accessed four times in or-
der to prevent bank starvation, which is the default setting of
DRAMSim2. DRAM contains four channels, four ranks per
channel, and eight banks per rank. Thus, the total number of
banks is 128. For timing, current, and voltage parameters of
DRAM, we use a configuration file included in DRAMSim2
which assumes a DDR3-1333 DIMM. Note that we do not
implement hardware prefetchers in this simulator, but ad-
dress mapping schemes of memory controllers affect mem-
ory accesses issued by prefetchers.

4.2 Multithreaded Benchmarks

We use 13 multithreaded benchmarks from the problem-
based benchmark suite (PBS) [24] and the Graph500
benchmark that executes breadth-first search on a

Table 2 Descriptions of 15 multithreaded benchmarks

Type Benchmark Input data

Sort 224 random floating points

Sequences
Isort
Remdups 224 random unsigned integers
Dict

G500BU1 Kronecker graph with 222 vertices
G500BU2 and 226 edges

Graphs
MIS
Matching R-MAT graph with 222 vertices
MSF and 226 edges
SF

Hull 224 random points within a unit circle

Neighbors 224 2D random points in a cube
Geometry Delaunay

224 random points a unit circle
& graphics Refine

Ray Happy Buddha

graph [25]†. The BFS benchmark in PBS that also exe-
cutes breadth-first search is substituted by the Graph500
benchmark. Table 2 describes these benchmarks. For
the Graph500 benchmark, we use a state-of-the-art mul-
tithreaded implementation that consists of top-down and
bottom-up algorithms [26]. Note that the latter is only used
in our evaluation because it spends almost the whole execu-
tion time. Moreover, as it consists of two portions with dif-
ferent characteristics, we separately evaluate them (labeled
as G500BU1 and G500BU2). All of the 15 benchmarks are
compiled by GCC 4.8.5 with OpenMP support and executed
with 16 threads.

4.3 Memory Access Traces with the PCL Scheme

With the memory access traces of the 15 benchmarks us-
ing the PCL scheme, we observe that they are classified into
two groups: high-RBL and low-RBL. The G500BU2 bench-
mark is a representative of the former group, and Figs. 5 (a)
and 5 (b) show its results with 16 threads and one thread,
respectively. Note that the other threads have similar access
patterns. For this benchmark, we obtain four observations
as follows.

1. In Fig. 5 (a), almost all accesses follow activate com-
mands (•), and each bank is accessed only once until
its row buffer is closed by a precharge command ( ).
This implies that these accesses are row buffer misses.

2. In Fig. 5 (a), almost all banks are not conflicted by mul-
tiple threads. This is because each thread accesses its
private data, which is larger than the row size and is
interleaved across different banks.

3. In Fig. 5 (b), a certain thread has a regular memory
access pattern. Consecutive accesses are distributed
to four banks that are 32 banks apart, which implies
that this thread sequentially accesses contiguous 64 B
blocks interleaved across four channels by the PCL

†The SA and Nbody benchmarks in PBS are omitted because
they cannot be executed in our experimental environment due to
segmentation faults.
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Fig. 5 Memory access traces with the PCL scheme. The dots are classified into three types. Black
circles (•) and squares ( ) correspond to activate and precharge commands, respectively. The colored
dots with different colors and shapes indicate memory accesses requested by different threads.

scheme.
4. In Fig. 5 (b), consecutive accesses reach to DRAM at

a 60-cycle interval, which means that BLP is not ex-
ploited within each thread. Moreover, a particular bank
is accessed at a 180-cycle interval because it is ac-
cessed once every four accesses. Therefore, a row
buffer of each bank is closed during this interval by the
adaptive open-page policy.

From the above observations, we figure out that (1) the
PCL scheme hurts the RBL of each thread by interleaving its
private data across multiple banks of different channels, and
(2) BLP is exploited across multiple threads, but not within
each thread.

Next, Figs. 5 (c) and 5 (d) show the results of the MIS
benchmark which is a representative of the low-RBL group.
In Fig. 5 (c), almost all accesses are row buffer misses
in similar to Fig. 5 (a), but the reason is different. Fig-
ure 5 (d) demonstrates that each thread has an irregular
memory access pattern, and a particular bank is not accessed
consecutively.

4.4 Memory Access Traces with the PR Scheme

With the observations in the previous section, we can expect
that the RBL of each thread will be improved if each thread
sequentially accesses a row in a particular bank. In this

case, although each thread cannot access multiple banks in
parallel, high BLP can be sustained because different
threads will access different banks in parallel. Thus, we here
focus on the PR scheme. Since it interleaves a contiguous
physical address space across channels in the granularity of
rows, each thread can sequentially access a whole row.

Figure 6 plots the memory access traces of the
G500BU2 benchmark with the PR scheme. As expected,
each thread consecutively accesses the same bank, and dif-
ferent threads access different banks in parallel. Compared
to the results with the PCL scheme (Fig. 5 (a)), the PR
scheme obviously improves the RBL of each thread and re-
duces the numbers of activate (•) and precharge ( ) com-
mands. Thus, the performance of this benchmark should be
improved. Moreover, as the number of banks used in par-
allel is reduced, the power consumption of DRAM will be
reduced. Current DRAM devices become a low-power state
when all banks in a rank are closed [27]. The smaller num-
ber of banks used in parallel will increase this opportunity.

Although the PR scheme is beneficial to the memory
access patterns as shown in Fig. 5 (a), it may significantly
hurt performance if multiple threads cannot exploit BLP
(e.g., for single-thread programs). In this case, fine-grained
channel interleaving schemes such as the PCL scheme will
outperform the PR scheme by exploiting BLP within a
thread across multiple channels. Therefore, we hope that



2252
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.9 SEPTEMBER 2018

Fig. 6 Memory access traces with the per-row channel interleaving (PR) scheme.

we can change different channel interleaving schemes on
future server platforms. Some servers have a BIOS option to
enable or disable channel interleaving. Although disabling
channel interleaving can improve the RBL of each thread in
similar to the PR scheme, the bandwidth of multiple chan-
nels cannot be fully exploited because a single channel is
preferably used.

5. Evaluation of DRAM Energy Consumption

In this section, we evaluate the DRAM energy consumption
on the simulator with the four address mapping schemes.
We first analyze results with a certain simulator setup in de-
tail. Second, we conduct a sensitivity analysis in terms of
the numbers of cores and channels. Finally, we discuss the
results in consideration of DDR4.

5.1 Evaluation with 16 Cores and 4 Channels

Each of the 15 benchmarks is executed during a hundred
million instructions on the simulator with parameters sum-
marized in Table 1. Figure 7 shows row buffer hit ratio
(i.e., RBL), the number of cycles, and the DRAM energy
consumption with the four address mapping schemes. The
DRAM energy consumption is calculated as the number of
cycles times the average power consumption of DRAM ob-
tained from the DRAMSim2 simulator.

As shown in the top figure, the ten benchmarks at the
left side (Hull to G500BU1) are classified as the high-RBL
group. In this group, RBL is improved in the order of PCL,
P2CL, Kaseridis, and PR, because the number of consec-
utive accesses to the same row is increased in this order.
Exceptionally, Kaseridis’s scheme degrades the RBL of the
Refine and G500BU1 benchmarks compared to the P2CL
scheme. Since Kaseridis’s scheme interleaves contiguous
256 B blocks across channels, ranks, and banks, the num-
ber of banks each thread accesses in parallel becomes larger
than the other schemes, which causes a larger number of
row buffer conflicts among multiple threads. In contrast, the
PR scheme achieves the highest RBL for all of the bench-
marks. The five benchmarks at the right side (Ray to Match-

Fig. 7 Evaluation results of four address mapping schemes with 16 cores
and four channels. The number of cycles and DRAM energy consumption
are normalized by the results with the PCL scheme.

ing) originally expose low RBL, but the PR scheme can ef-
ficiently exploit their low RBL.

In terms of the number of cycles shown in the mid-
dle figure, there is a trade-off between RBL and BLP for
the high-RBL group. As the number of banks each thread
accesses in parallel is increased, BLP is improved but the
RBL of each thread is decreased, and vice versa. Since the
PCL scheme interleaves contiguous 64 B blocks across four
channels, each thread accesses four banks in parallel. The
P2CL scheme can improve RBL by arranging two contigu-
ous 64 B blocks in the same row, whereas BLP cannot be
exploited between these blocks. Consequently, the P2CL
scheme scarcely reduces the number of cycles. Kaseridis’s
scheme can further improve RBL by arranging four contigu-
ous 64 B blocks in the same row with sustaining high BLP
by interleaving clusters of the four blocks across channels,
ranks, and banks. Thus, this scheme reduces the number
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Fig. 8 Evaluation of four address mapping schemes with various numbers of cores and channels for
the G500BU2 benchmark.

of cycles for some benchmarks such as Hull and Dict. The
PR scheme also reduces the number of cycles for the Hull,
G500BU2, and G500BU1 benchmarks, by improving RBL
within each thread with sustaining high BLP across multiple
threads. However, it has negative effects for the Refine and
Remdups benchmarks, because each thread of them can effi-
ciently exploit BLP. On the other hand, the five benchmarks
in the low-RBL group are not largely affected by the ad-
dress mapping schemes. The rightmost bars indicate the ge-
ometric means across the 15 benchmarks, which shows that
Kaseridis’s scheme slightly outperforms the other schemes.

The bottom figure shows that the DRAM energy con-
sumption is generally reduced in the order of PCL, P2CL,
Kaseridis, and PR for the high-RBL group. This is be-
cause the DRAM power consumption is reduced in this or-
der due to a decreasing number of banks accessed in paral-
lel. Modern DRAM devices enter power-down modes when
all banks in a rank are closed, and the DRAMSim2 simula-
tor models this functionality. The smaller number of banks
accessed in parallel can increase this opportunity. However,
Kaseridis’s scheme consumes higher energy than the P2CL
scheme for several benchmarks, because it tends to access
more banks in parallel. In contrast, the PR scheme achieves
the lowest energy consumption for all of the benchmarks in
the high-RBL group. Moreover, it is also beneficial to the
benchmarks in the low-RBL group. It reduces the DRAM
energy consumption on average by 16.7%, 12.3%, and
5.5% (up to 34.7%, 28.2%, and 12.0% for the Hull bench-
mark) compared to the PCL, P2CL, and Kaseridis schemes,
respectively.

5.2 Sensitivity Analysis

In addition, as the memory access patterns of multithreaded
programs may depend on the numbers of cores and chan-
nels, we evaluate the four address mapping schemes with
varying them on the simulator. Modern processors con-

tain multiple memory controllers per chip, each of which
manages different numbers of cores and channels [28]. For
example, two memory controllers on a 12-core processor
manage a group of eight cores and that of four cores, re-
spectively. Moreover, high-end processors commonly in-
clude two to four channels. Thus, this sensitivity analysis is
important to validate the benefit of the PR scheme for var-
ious configurations of memory controllers. We change the
number of cores to 4, 8, 12, and 16 and the number of chan-
nels to 2 and 4. The other parameters are same as those in
Table 1. Figure 8 shows the row buffer hit ratio (i.e., RBL)
and DRAM energy consumption of the G500BU2 bench-
mark with the four schemes. Note that the DRAM energy
consumption is normalized by the result of the PCL scheme
with each configuration.

Row buffer hit ratio is obviously improved in the order
of PCL, P2CL, Kaseridis, and PR with four channels, but
not with two channels. In the case of the PCL scheme, each
thread accesses the same bank once every four times with
four channels, whereas it does so once every two times with
two channels. Thus, an interval between two consecutive
accesses to the same bank is halved with two channels. For
example, a 180-cycle interval in Fig. 5 (b) becomes around
90 cycles. Since this interval is shorter than the duration to
close row buffers (128 cycles), the second access becomes
a row buffer hit. The PCL scheme, therefore, achieves over
50% of row buffer hit ratio with two channels, and the im-
pacts of the other schemes become small. However, the PR
scheme reduces the DRAM energy consumption in some ex-
tent by reducing the DRAM power consumption.

On the other hand, the number of cores scarcely af-
fects RBL and the DRAM energy consumption. Intuitively,
an interval between consecutive accesses to the same bank
may become shorter as the number of cores is decreased, be-
cause the number of memory accesses a memory controller
must schedule in a time unit is reduced. If the interval be-
comes shorter than 128 cycles, row buffer hit ratio will be
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Table 3 Advantages of DDR4 over DDR3 [29]

Feature DDR3 DDR4

Data rate [Mb/s] 800-2133 1600-3200
Densities 512Mb-8Gb 2Gb-16Gb
Internal banks 8 16
Voltage 1.5 V 1.2 V

improved. However, the above observation implies that the
interval is independent of the number of cores, and it is
determined by instruction counts executed by each thread
between consecutive accesses. We investigate how the
length of the interval affects the benefit of the PR scheme
in the next section.

In summary, Fig. 8 demonstrates that the PR scheme is
beneficial to various configurations of memory controllers.
Compared to Kaseridis’s scheme, it reduces the DRAM en-
ergy consumption by 11.2% to 15.1% with two channels and
10.6% to 12.8% with four channels, respectively.

5.3 Discussion on the Assumption of DDR4

Although we have evaluated four address mapping schemes
on the assumption of DDR3, recent servers typically apply
DDR4. Its main advantages over DDR3 are a higher data
rate, higher density with more internal banks, and lower
voltage, as summarized in Table 3. With a lower volt-
age, DDR4 DRAM can reduce power consumption by 20–
30% compared to the same size of DDR3 DRAM [30], [31].
However, the system-level DRAM power consumption may
be increased by migrating from DDR3 to DDR4, because
the maximum DRAM capacity on a single server will be
doubled. In this case, the amount of power reduction by
the PR scheme will be larger than our results with DDR3.
On the other hand, there is not a large difference in access
latency between DDR3 and DDR4 devices. For example,
tCL, tRCD, and tRP are 13-14 ns on a DDR3 DIMM [32]
and 13-15 ns on a DDR4 DIMM [33], respectively. Thus,
the impact of the PR scheme on performance is not largely
changed by migrating from DDR3 to DDR4. Consequently,
the amount of energy reduction by the PR scheme will be
larger on a server with DDR4 compared to our results with
DDR3.

6. Emulation of the PR Scheme on a Real Server

In this section, we emulate the PR scheme using a micro-
benchmark on a real server and investigate its impacts on
performance and the DRAM energy consumption. We de-
scribe the experimental setup and then show evaluation
results.

6.1 Experimental Setup

We use a server that contains an 8-core (16-thread) Intel
Xeon E5-4640 processor and four-channel 128 GB DDR3.
On this server, we can enable or disable channel interleaving
via a BIOS setting. When channel interleaving is enabled,

Algorithm 1 Pseudo code of our micro-benchmark
Input: RBHitRatio(%), numInc
1: Allocates 128/#threads GB of integers and initializes them to 0
2: for i← 1 to 1,000,000 do
3: for j← 1 to RBHitRatio do # Hit loop
4: tmp← the first integer in a cache-line-sized block
5: for k ← 1 to numInc do
6: tmp++
7: end for
8: Select the next cache-line-sized block
9: end for

10: for j← 1 to (100 - RBHitRatio) do # Miss loop
11: tmp← the first integer in a row-sized block
12: for k ← 1 to numInc do
13: tmp++
14: end for
15: Select the next row-sized block
16: end for
17: end for

the P2CL scheme is applied. The power consumption of
DRAM is obtained via Intel Running Average Power Limit
(RAPL) [34]. Moreover, the numbers of memory accesses
and row buffer hits are obtained from hardware performance
counters with an open-source tool called Likwid [35].

We emulate the PR scheme using a multithreaded
micro-benchmark with channel interleaving disabled. Each
thread of this benchmark executes the pseudo code shown
in Algorithm 1 in parallel. It can adjust row buffer hit ratio
(i.e., RBL) and an interval between memory accesses with
two input parameters: RBHitRatio and numInc. The former
represents the parentage of row buffer hit ratio from 0 to 100,
and the latter is the number of increment operations exe-
cuted between memory accesses. Each thread first allocates
and initializes its private data so that the total data size of all
threads fits 128 GB memory. As each private data is stored
on different banks across four channels, this benchmark can
exploit BLP among multiple threads. After that, the follow-
ing two loops are repeated a million times. In the first loop
called hit loop, each thread accesses contiguous cache line-
sized blocks as many times as the RBHitRatio parameter.
As we disable channel interleaving and software/hardware
prefetchers for this benchmark, each thread sequentially ac-
cesses an entire row on DRAM, and these accesses become
row buffer hits. In each iteration of the hit loop, the first inte-
ger in the current block is incremented as many times as the
numInc parameter. The duration of these increments deter-
mines an interval between memory accesses. On the other
hand, in the second loop called miss loop, each thread ac-
cesses contiguous row-sized blocks as many times as (100−
RBHitRatio) and increments the first integer of each block
in similar to the hit loop. Since different rows are accessed
in each iteration, these accesses become row buffer misses.

6.2 Evaluation Results

We run the above benchmark with 16 threads on the exper-
imental server. We evaluate its execution time and DRAM
energy consumption by comparing the emulated PR scheme
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Fig. 9 Comparison of the emulated PR scheme with the P2CL scheme
on a real server platform.

with the P2CL scheme as a baseline. For this baseline, we
enable channel interleaving and always set the RBHitRatio
parameter to zero. That is, all memory accesses become row
buffer misses with the P2CL scheme. Figure 9 plots the re-
sults with the emulated PR scheme which are normalized
by those with the P2CL scheme. The x-axis represents row
buffer hit ratio improved by the PR scheme, which corre-
sponds to the RBL each thread potentially possesses. The
y-axis shows the number of memory accesses per second
(i.e., the memory access frequency of each thread). Deeper
red and blue colors mean a larger increase and reduction in
each metric, respectively.

In the top figure, we can see that the execution time
is reduced more significantly as the RBL becomes higher.
Moreover, the impact of the PR scheme strongly depends
on the frequency of memory accesses. If the frequency is
high, the PR scheme hurts BLP each thread can exploit be-
tween consecutive accesses. On the other hand, if the fre-
quency is low, the impact of the PR scheme is small be-
cause each thread is not memory-intensive. Consequently,
the PR scheme degrades performance if RBL is low and the
frequency of memory accesses is high (at the upper left in
the figure). In contrast, it improves performance if RBL is
high and the frequency of memory accesses is moderate (at
the middle right in the figure). In the bottom figure, we ob-
serve that the PR scheme can reduce the DRAM energy con-
sumption in various situations. This is because it can reduce
the DRAM power consumption by reducing the number of
banks used in parallel. Even if it degrades performance,

it has almost no negative impact on the DRAM energy
consumption.

7. Conclusions

We investigate the memory access patterns of multithreaded
benchmarks using a simulator and reveal the reason why
the RBL of them is low. With our observations, we focus
on the PR scheme and demonstrate that it can improve the
RBL of each thread with sustaining high BLP across mul-
tiple threads. Our evaluation on the simulator shows that it
reduces the DRAM energy consumption by 16.7%, 12.3%,
and 5.5% on average (up to 34.7%, 28.2%, and 12.0%)
compared to three cache line-grained schemes, respectively.
Moreover, our sensitivity analysis shows that it is beneficial
to various configurations of memory controllers. Finally, we
emulate the PR scheme on a real server and observe that its
impact depends on the RBL and memory access frequency
of an executed program, but it can reduce the DRAM energy
consumption with various situations.
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